
Event Driven Architecture Modelling and
Simulation

Tony Clark, Balbir S. Barn
School of Engineering and Information Sciences

Middlesex University, London, UK
{t.n.clark,b.barn}@mdx.ac.uk

Abstract—Enterprise Architecture (EA) Modelling aims to
analyze an organization in terms of its components, IT systems
and business processes. Current modelling approaches are based
on Service Oriented Architecture (SOA) whereby components
publish interfaces of operations that are used via message passing.
It has been argued that SOA leads to tight coupling between com-
ponents and does not handle complex component interactions,
with resulting maintenance difficulties. Event Driven Architecture
(EDA) is an alternative strategy, based on listening for events,
that is designed to address SOA shortcomings. However, there
are no EA modelling technologies based on EDA. This paper
reviews EA, SOA and EDA, identifies EDA characteristic features
and proposes modelling and simulation technologies that are
introduced through a simple case study.

I. INTRODUCTION

Enterprise Architecture (EA) describes a collection of ap-
proaches that support the design and analysis of an IT infras-
tructure and how it relates to the goals, directives, processes
and organization of a business. There are various approaches to
organizing an architecture, but most involve the identification
of logical or physical business units, or components, that man-
age their own data and resources, implement a collection of
business processes, and communicate with other components
using a variety of message passing styles.

Different styles of message passing lead to different types
of architecture. A Service Oriented Architecture (SOA) in-
volves the publication of logically coherent groups of business
functionality as interfaces, that can be used by components
using synchronous or asynchronous messaging. An alternative
style, argued as reducing coupling between components and
thereby increasing the scope for component reuse, is Event
Driven Architecture (EDA) whereby components are event
generators and consumers. EDA is arguably more realistic in a
sophisticated, dynamic, modern business environment, and can
be viewed as a specialization of SOA where communication
between components is performed with respect to a single
generic event interface.

An important difference between SOA and EDA is that the
latter generally provides scope for Complex Event Processing
(CEP) where the business processes within a component are
triggered by multiple, possibly temporally related, events. In
SOA there is no notion of relating the invocation of a single
business process to a condition holding between the data
passed to a collection of calls on one of the component’s
interfaces.

Given that EDA and CEP are claimed to be more flexible
than SOA, how should we design and verify an EA using
these concepts? Some specialized languages for CEP exist,
however they are specifically designed to efficiently process
relatively simple event streams, and do not integrate into a
component architecture required by EA. The most widely used
language for modelling systems is UML, however UML does
not provide any specific support for this type of EA.

The contribution of this paper is to identify the key charac-
teristic features of EDA and to use them as the basis for both
an EDA modelling notation and a simulation language where
no such technology currently exists. The modelling notation is
defined as a UML class diagram stereotype and an extension of
OCL that supports event processing. The simulation notation is
defined as an action language for the modelling notation. The
simulation language has been implemented as an interpreter
in Java.

The paper is structured as follows. Section II reviews com-
plex event processing and EA modelling languages. Section III
performs a domain analysis on EDA and describes an EDA
modelling language. Section IV describes a case study as an
EDA model. Section V describes an EDA simulation language
and provides an example by implementing the case study.
The simulation language has been implemented in Java and
is described in section VI.

II. EVENT DRIVEN EA

A. Service Oriented Architecture

Service Oriented Architecture (SOA) organizes a system
in terms of components that communicate via operations or
services. Components publish services that they implement
as business processes. Interaction amongst components is
achieved through orchestration at a local level or choreography
at a global level.

Its proponents argue that SOA provides loose coupling,
location transparency and protocol independence [1] when
compared to more traditional implementation techniques. The
organization of systems into coherent interfaces has been
argued [2] as having disadvantages in terms of: extensions;
accommodating new business functions; associating single
business processes with complex multi-component interac-
tions. These can be addressed in terms of CEP as described
in the next section.

B. Complex Event Processing

Complex Event Processing (CEP) [3] can be used to process
events that are generated from implementation-level systems
by aggregation and transformation in order to discover the
business level, actionable information behind all these data. It
has evolved into the paradigm of choice for the development
of monitoring and reactive applications [4].

CEP can be viewed as a specialization of SOA where
components are decoupled from multiple interfaces and where
each component implements a single generic event interface.
Components both raise and handle events in terms of this
interface and therefore it is more flexible in terms of extension
and maintenance. In addition, CEP implements events in terms
of business rules compared to SOA that implements operations
using business processes. Typically, a business rule can depend
on multiple, possibly temporally related, events, whereas a
business process is invoked on receipt of a single operation
request. Therefore, SOA can implement CEP by enforcing
a single operation interface across an architecture and by
providing special machinery to aggregate multiple operation
calls.

There are various proposals for how complex events can be
used efficiently to process streams of data such as those gener-
ated in applications including hotel booking systems, banking
on-line credit systems, business activity monitoring (BAM),
real-time stock analysis, and real-time security analysis. Most
proposals aim to address efficiency issues related to the scale
and frequency of the information that is generated [5]. The
current state of the art is described in [6] where the key
features of an event driven architecture (EDA) are outlined as
including an architecture diagram showing the processes of the
system and their interconnections, a behaviour specification
including the rules used to process events and to control data,
and the specification of inter-process communications.

As described in [7] events can be extracted from services,
databases, RFID and activities. The events are processed by
rules that detect relationships between event properties and
the times at which the events occur. Each rule matches against
multiple events that occur from a variety of sources and, when
all required events have been matched, the rule performs a
business action. In [7] the authors describe the implementa-
tion of a complex event processing architecture that involves
attaching an extractor to event sources and compiling event
processing rules into complex event recognition tables. The
language does not address modularity issues and how the
complex event architecture maps onto modern approaches
to EA. Wu et al [8] describe a language called SASE for
processing complex events from RFID devices. The language
is based expressing patterns of events over events in time-
windows and the authors describe various optimizations that
can be performed. The language is general purpose but does
not implement negation or offer features for modularity.

The approach described in [9] is based on logic program-
ming for complex event processing and in a way is the opposite
to our forward-driven approach. The authors use Prolog-style

backtracking to find solutions to goals.

C. Enterprise Architecture

Enterprise Architecture (EA) aims to capture the essentials
of a business, its IT and its evolution, and to support analysis
of this information: ‘[it is] a coherent whole of principles,
methods, and models that are used in the design and realization
of an enterprise’s organizational structure, business processes,
information systems and infrastructure.’ [10].

A key objective of EA is being able to provide a holistic
understanding of all aspects of a business, connecting the
business drivers and the surrounding business environment,
through the business processes, organizational units, roles
and responsibilities, to the underlying IT systems that the
business relies on. In addition to presenting a coherent ex-
planation of the what, why and how of a business, EA aims
to support specific types of business analysis including [11],
[12], [13], [14], [15]: alignment between business functions
and IT systems; business change describing the current state
of a business (as-is) and a desired state of a business (to-
be); maintenance the de-installation and disposal, upgrading,
procurement and integration of systems including the pri-
oritization of maintenance needs; quality by managing and
determining the quality attributes for aspects of the business
such as security, performance to ensure a certain level of
quality to meet the needs of the business; acquisition and
mergers describing the alignment of businesses and the effect
on both when they merge; compliance in terms of a regulatory
framework, e.g. Sarbanes-Oxley; strategic planning including
corporate strategy planning, business process optimization,
business continuity planning, IT management.

EA has its origins in Zachman’s original EA framework
[16] while other leading examples include the Open Group
Architecture Framework (TOGAF) [17] and the framework
promulgated by the Department of Defense (DoDAF) [18].
In addition to frameworks that describe the nature of models
required for EA, modelling languages specifically designed for
EA have also emerged. One leading architecture modelling
language is ArchiMate [19].

As described in [20] and [21], complex events can be the
basis for a style of EA design. Event Driven Architecture
(EDA) replaces thick interfaces with events that trigger or-
ganizational activities. This creates the flexibility necessary
to adapt to changing circumstances and makes it possible to
generate new processes by a sequence of events [22]. Whilst
a complex event based approach to architectural design must
take efficiency concerns into account, the primary concern is
how to capture, represent and analyze architectural information
as an enterprise design.

EDA and SOA are closely related since events are one
way of viewing the communications between system compo-
nents. The relationship between event driven SOA and EA
is described in [23] where a framework is proposed that
allows enterprise architects to formulate and analyze research
questions including ‘how to model and plan EA-evolution to
SOA-style in a holistic way’ and ‘how to model the enterprise

on a formal basis so that further research for automation can
be done.’

A number of commercial EA analysis and simulation tools
are available [24]. Many of these are based around industrial
standards such as UML and BPMN. However they are gener-
ally very complex and lack a precisely defined semantics. Our
work aims to provide a precise, well-defined basis for event
driven EA analysis and simulation.

III. EVENT DRIVEN MODELLING

A. Features

Our aim is to provide a modelling and simulation language
for EDA that is based on features provided by UML. In order
to do this we need to identify characteristic EDA features. This
section lists the features and the following section describes
how they are to be implemented using UML class model
stereotypes and an extension to OCL.

An EDA architecture is based on components each of which
represents an organizational unit. Components map onto phys-
ical IT systems or organizational units. Each component man-
ages local private data that maps onto databases (relational,
files, etc). As in SOA, a component may offer operations
that can be invoked by sending messages. An operation is
specified in terms of pre and post conditions expressed in
terms of the component’s data. In addition to modifying local
data, an operation may send messages and raise events. An
event is used by a component to signify a significant change
in state that may be of interest to any component that is
listening. Components use rules to process events; a rule
matches against local state and one or more events that are
received by the component. The body of a rule is an action in
terms of local state changes, events and messages. Components
are designed in isolation, however global invariants place
constraints on component state synchronization and lead to
implementation requirements in terms of event connectivity
between components.

Thus the characteristics are drawn from established and well
understood concepts from component based design, distributed
architectures.

B. An EDA Modelling Language

Section III-A has outlined the key features that characterize
EDA models. This section describes how each of the features
are represented as a conservative extension to UML in a
similar way to component models described in [25] and [26].
The extension is deliberately minimal in order that existing
UML tools can support EDA models in terms of stereotypes
and, where OCL cannot be extended, using textual comments.
Section IV uses the extended UML to implement a case study
and is a key contribution of the paper.

Figure 1 shows a simple meta-model and its extension
for EDA modelling. The basic modelling language consists
of packages of classes and associations. Each class contains
a collection of attributes and operations. An operation is
specified using pre and post conditions.

The EDA language extends the basic language with the
following features. CmpDef is a specialization of Package
that defines a single component. Each of the other classes con-
tained in a CmpDef must be structured types since they cannot
have any behaviour. All classes in a CmpDef must be asso-
ciated directly or indirectly to the component. Component
is a specialization of Class that has business rules and
input/output events. A component listens for output events
raised by other components; when an output event is produced
it is received as an input event by the listening component.
CmpOperation is a component operation specification that
can involve an action that, in addition to pre and post-
conditions, defines the events that are raised by the operation.
Action is used in a component operation to specify the
events that are raised when the operation completes. An action
is either single event Raise or is a Loop through a collection
of elements, where an action is performed for each member
of the collection. A BizRule has a guard that must be
satisfied before the rule can be fired. After the rule is fired,
the post-condition of the rule is satisfied and the rule action is
performed. A Pattern matches against the events that have
been received by a component. A pattern may match a single
event EventPattern, may be conjunctions or disjunctions
of patterns, or may be a negated pattern.

The meta-model in figure 1 describes an extension to
conventional UML class diagrams. Although, UML has com-
ponents, they do not correspond to Component and CmpDef
in the meta-model, so we use stereotypes to tag and extend
the appropriate UML elements; this allows standard UML
modelling tools to be used to support EDA component mod-
elling. Component definitions are represented as UML pack-
ages (class diagrams) with exactly one class with the stereo-
type <<component>>. Components may have attributes and
operations which are interpreted as standard class features
although operations are invoked using messages in the sense
of SOA.

Associations on the UML class diagram from the compo-
nent to classes define the local structured data of the compo-
nent. These classes may have attributes and associations, but
do not have any operations since all execution is defined by
component interaction.

In addition, a component may have operations with stereo-
types <<eventin>> and <<eventout>> The signature
of the operation defines the name and internal structure of
events. An input event declares that the event will be received
via some externally monitored component. An output event
declares that the component will raise the event via an oper-
ation or a business rule.

Operations are specified using standard OCL pre and post
conditions. A CmpOperation can be defined for operations
that includes an action:
context C::o(arg*)

pre exp
post exp
action

The action part is of a constraint is used to specify the events

Fig. 1: EDA Meta Model

Fig. 2: Semantic Domain

that are raised by an operation (or a business rule). An action
may involve a single event or may loop through a collection
in order to raise several events:
action ::= raise name(exp*) |

with name:type in exp [when exp] do action

Business rules monitor events received by a component. A
rule may depend on multiple events and the current state of
the component. The rule may cause a state change to the
component and may raise events. We propose a new form
of OCL that supports business rules that match event and data
patterns such as those described in [27] as follows:
context C

on pattern*
pre exp
post exp
action

The semantics of EDA models is defined in terms of a rela-
tionship between the meta-model in figure 1 and the semantic

domain model given in figure 2. The semantic domain extends
object models (snapshots) to support components. An object
model consists of snapshots that contain objects and links.
The objects are instances of classes and have slots that are
instances of the corresponding class attributes. The links are
relationships between objects and are instances of associations
between corresponding classes.

A component is a special type of object that has a pair
of event queues. Each queue contains a partially ordered
sequence of events. The input queue contains events that have
been received by a component and the output queue contains
events that have been produced by the component. A trace is
a sequence of snapshots that describe how a system of objects
and components change over time.

A semantic relationship holds between the meta-model and
the semantic domain that defines the meaning of EDA models.
The essential features of the relationship are as follows.
Snapshots may only contain objects, components and links
that correspond to the classes, component definitions and
associations that are defined in the corresponding EDA model.
A step in a trace is defined to hold when a rule is fired or when
a message is sent. A message is handled by an operation whose
behaviour is defined in terms of a pre and post-condition.
The pre-condition must hold in the pre-snapshot and the post-
condition must hold in the post-snapshot. A rule is ready to
fire when its pattern is satisfied by the state of its component
in terms of the slots, links and input event queue. The rule’s
pre-condition must also hold. The post-snapshot in the step is
defined by the post-condition of the operation and its action.
The action may cause one or more events to be raised and the
listening relationships in the model define the co-ordination of
input/output event queues. A rule may only fire once using the

same component state which implies that events have unique
identifiers.

IV. CASE STUDY

A. Overview

Our case study for evaluating the design of the EDA
Modelling Language is drawn from a UK higher education
(HE) context. In the UK, EA and in particular the use of shared
services has become an increasingly important strategic driver.
Our approach presents one possible technology for addressing
some of the issues currently prevalent in this sector. A recent
report into the use of IT in HE [28] examines how successful
UK HE has been at exploiting the opportunities offered by
ICT. It argues that there is little high-level strategic impetus
behind the integration and that the sector is struggling to get
systems to talk to each other. The associated JISC report1

describes the public sector support for SOA in HE with the
intention of leading to shared services across the sector. It
argues that EA can address problems relating to data silos,
information flow, regulatory compliance, strategic integration,
institutional agility reduction in duplication and reporting to
senior management.

EA can be applied within an organization in order to
determine how to comply with externally applied regulations.
Architecture models can answer questions about the reuse of
existing components, the locality of regulatory information and
to identify the need for new information sources. This section
describes a case study which is typical of current issues facing
the UK HE sector. We describe the case study and then use
the EDA modelling and simulation languages to describe an
EA for the application.

The UK Borders Agency requires all Higher Education
institutions to produce a report that details the number of
points of contact between the institution and any student that
has been issued with a student visa. This regulation places a
requirement on the institution to ensure that the information
is gathered at the appropriate points of contact. Furthermore,
there is a business imperative for each institution to be able to
detect students that may be likely to fail to record the required
number of contact points in order to take remedial action and
thereby avoid paying penalties with respect to trusted status
whereby visas are granted via a lightweight process.

B. Components

The University of Middle England (UME) decides to con-
struct an EA model in order to determine the components, data
stores and interactions that are required to comply with the
regulations. The model will be exercised through simulation
and will be the basis of an as-is and to-be analysis in order
to plan how to proceed. The first step is to construct a model
of the components that will be required. New components can
be designed as part of the model, however reuse of existing
components is preferred to keep costs down.

1http://www.jisc.ac.uk/media/documents/techwatch/jisc_ea_pilot_study.pdf

UME makes a list of existing systems that can be used to
track student interactions: the Library; the Student Office for
each University Department; the Registry. A new component,
the Monitor, is required in order to aggregate the events raised
by the components and to manage a point of contact database.

1) The Registry: The registry is responsible for managing
the list of all UME students and their course of study. It is
the first point of contact for any student where the student
registers for a particular course:

The Registry component manages a database of students
containing the student’s name (assumed to be unique) and
the name of the course they are to study. Currently the
registry does not inform any other UME system of a new
registration. However, student registration is a point of contact
and therefore our model requires that an event is raised:
context Registry::register(name:String,course:String)

pre not students->exists(s | s.name = name)
post students->exists(s | s.name = name)
raise register(name,course)

2) The Library: Once a course has started, students use the
library in order to access learning resources. Students must
register with the library, after which they can borrow and
return books. The current library system manages a database
of registered students, books and borrowing records.

The current library system provides an interface of operations
for registration and book borrowing. Each operation counts
as a point of contact and therefore should raise events. The
event just informs any listener of a library transaction for a
particular student:
context Library::register(name:String)

pre not students->exists(s | s.name = name)
post students->exists(s | s.name = name)
raise library(name)

context Library::borrow(student:String,book:String)
pre students->exists(s | s.name = student) and

books->exists(b |

b.name = book and
not borrows->exists(b | b.book = b))

post borrows->exists(b |
b.student.name = student and
b.book.name = book)

raise library(name)

3) Time: The UK Borders Agency requires UME to
report on students by a given date which we will measure
in the number of elapsed weeks after the start of a course.
Therefore, the UME IT architecture must be aware of how
many weeks have passed and includes a timing component
that ticks at the end of each week:

4) The Student Office: Each UME department has a
student office that manages student coursework (although
since they are all the same we will only include one student
office in our UME design). Currently in UME there is no
standardization between student offices. However, handing in
coursework counts as a point of contact and late coursework
is an indicator that things are going wrong for a student.
UME decides to standardize student office components:

The office maintains a database of all courses including
modules and courseworks. Each coursework has a due date
(measured in weeks).

Registration events can be processed by each student office
in order to initialize a student with their department:
context StudentOffice

on register(student:String,course:String)
post students->exists(s |
s.name = student and
s.course.name = course and
s.submitted->size = 0)

Coursework submission counts as a point of contact and
therefore the student office is required to raise an event:
context StudentOffice::handin(student:String,cw:String)

post students->exists(s |
s.name = student and

s.submitted->includes(
s.course.modules.assessments->select(a | a.id = cw)))

raise office(student)

The student office processes timing events by checking
whether there are any outstanding coursework and generating
late coursework events. Such events can be used to remind
students that they have a deadline and thereby improve the
number of contacts within the limits imposed by the UK BA.
The following query operations calculate a set of records of
the form {name=n;cw=i} where n is the name of a student
and i is a coursework identifier:
context StudentOffice::missed(time:Integer) =
students->iterate(s R=Set{} |

let req = s.course.modules.courseworks->select(c |
c.due < time)

in R + missed(s.name,req,s.submitted))

context StudentOffice::missed(s,req:Set(CW),done:Set(CW)) =
(req-done)->collect(cw | {name=s;cw=cw.id})

The student office generates a missing event for each missing
coursework:
context StudentOffice

on tick(time:Integer)
with x:{name:String;cw:String} in missed() do
raise missing(x.name,x.cw)

5) The Monitor: Finally, UME requires a new component
that monitors student contacts and generates alerts when the
limit is reached:

When a student is registered, the monitor must initialize a
local record:
context Monitor

on register(name:String,_)
pre not contacts->exists(c | c.name = name)
post contacts->exists(c | c.name = name and c.contacts = 1)

When the student uses the library or hands in coursework, the
monitor must increase the number of contacts:
context Monitor

on library(name:String) or office(name:String)
pre contacts->exists(c | c.name = name)
post contacts->exists(c |
c.name = name and c.contacts = c.contacts@pre + 1)

The monitor generates an alert when the number of contacts
is insufficient and when time limit has been reached or when
the student has missed a coursework:

context Monitor
on tick(time:Integer)
pre time > limit
with c:Contact in contacts when c.contacts < min_contacts do
raise alert(c.name)

context Monitor
on missing(student:String,cw:String)
pre contents->select(c |
c.name = student and c.contacts < min_contacts)

raise alert(student)

C. Invariants

The previous sections have defined modules in isolation.
Each component contains a model of locally managed data,
implements an interface of operations, generates events, and
processes incoming events via rules.

The components must work together to enforce a collection
of invariants. At the specification level we need not be worried
about how the components manage the interactions, we just
state the conditions that must be satisfied.

Each component has a single instance and therefore, we can
associate the name of the component with that instance when
writing invariants. The following invariant ensures that the
registry, student office and the library are all in-sync when a
new student registers (note that not all students need to register
with the library but if they do they must have been processed
by the registry):
Registry.registered->size = StudentOffice.students->size
Registry.registered->size >= Library.students->size
Registry.registered->size = Monitor.contacts->size

The number of points of contact must be enforced by an
invariant that takes into account the number of registrations,
the uses of the library and coursework submission. The total
number of coursework submissions is maintained by the stu-
dent office, however the total number of library interactions is
not maintained since the borrowing record is removed when a
student returns a book. Fortunately, each component maintains
a list of raised and received events via special associations: in
and out. Events are just normal data that can be processed
via these associations:
Monitor.contacts->forall(c | c.contacts =
StudentOffice.students->select(s |
s.name = c.name).submitted->size +

Library.out->select(e | e.name = c.name)->size)

D. Monitoring Connections

The specification of each component given above does not
indicate the event connectivity between components. Each
component raises a number of event types and may listen
to events raised by any number of other components. The
next stage in the process is to define listening relationships.
Such a relationship can exist between any two components
but really only makes sense when one component produces
an event and the listening component consumes an event of
the same type. Figure 3 shows the listening dependencies
between UME components for the UK BA architecture. By
placing a dependency between, for example, Registry and
Monitor, we know that whenever the registry produces a

exp ::=
component (exp*) { components, monitored
[state { term* }] local data (optional)
[operations { op* }] methods (optional)
[rules { rule* }] event processing (optional)

}
| fun(arg*) exp functions
| exp(exp*) applications
| var variables
| atom integers, strings, booleans
| state local data
| self reference
| { exp* } blocks
| { bind* } records
| [exp | qual*] lists
| new term extension
| delete term deletion
| if exp then exp else exp conditional
| raise term event generation
| case exp { arm* } matching
| let bind* in exp locals
| letrec bind* in exp recursive locals
| exp <- term message passing
pattern ::=
var variables

| name(pattern*) term patterns
| atom ints, strings, bools
| name = pattern pattern binding
| [pattern*] lists
| pattern:pattern cons pairs
| ? exp predicate
term ::= name(exp*)
arm ::= pattern -> exp
bind ::= pattern = exp
qual ::= pattern <- exp | ?exp
op ::= name(arg*) { exp* }
rule ::= name : pattern* { exp* }

Fig. 4: EDA Simulation Language

register(student,course) event it will immediately
be available to the monitor.

V. EDA SIMULATION

Figure 4 shows a domain specific language that has been
defined to support EDA simulation. It is beyond the scope of
this paper to describe the detailed semantics of the language;
we give a brief overview and then show how the UME case
study is implemented in the language.

An EDA simulation consists of a collection of compo-
nent definitions. Each component monitors events (essentially
the connections shown in figure 3). The local data of a
component is represented as a collection of terms of the
form Name(v,...v). Components have conventional OO
methods that can be invoked synchronously (using .) and
asynchronously (using <-). Component rules match patterns
against events raised by monitored components and then
perform expressions.

Rule and operation bodies are standard functional language
expressions except for: sequenced blocks, local data modi-
fication (new and delete) and events raise. Access to
the list of all local terms in a component is provided via
state. List comprehensions are useful to process the local
state, for example [name | Person(name,age) <-
state, ?(age > 65)] constructs the names of all the
people in the local data that are over 65.

Fig. 3: Component Dependencies

An EDA system consists of a collection of named compo-
nents that publish their operation interfaces and that monitor
events. Events generated by a component C are received
by all components that monitor C. Component rule patterns
match against received events and against local data. When all
patterns have matched the rule is ready to fire; rules are fired
in any order.

The registry is defined as a component with no initial state
and no rules. The register operation allows new students to
be added to the local data and raises a registration event. The
students operation is used to query the registry database:
component registry

operations {
register(student,course) {

new Student(student,course);
raise Register(student,course)

}
students() { state }

}
}

The following component defines a library. The local data
declares all the available books. The register operation
checks whether the student exists, if not then a new student
is created and a library usage event is raised. The borrow
and return operations are as expected. The library defines
an operation books that calculates a list of books currently
borrowed by a student; this will be used by the user interface
component later. The library defines no rules.
component library() {

state {
Book(’b1’,’Programming’) ...

}
operations {
register(student) {

if student?(student)
then print(student + ’ exists in Library.’)
else {

new Student(student);
raise Library(student) }

}
borrow(student,book) {

if student?(student) and book?(book)
then {

new Borrows(student,book);
raise Library(student)

}
else print(student + ’ cannot borrow ’ + book)

}
return(student,book) {

delete Borrows(student,book);
raise Library(student)

}
student?(name) {
[s | Student(s) <- state,?(s=name)] != []

}
book?(id) {
[i | Book(i,n) <- state,?(i=id)] != []

}
books(student) {
[book | Borrows(s,id) <- state, ?(s=student),

Book(i,book) <- state, ?(i=id)]
}

}
}

The student office component is defined below. It predefines
the available courses, modules and assessments as local data.
The coursework operation queries the currently submitted
assessments for a student. The missed operation calculates
the assessments that are outstanding for all students. The
handin operation is used to record each new assessment.The
rule time uses the for operation to raise a missing event for
each outstanding coursework. The register rule initializes
a Student record in the student office:
component student_office(clock,registry) {

state {
Course(’MBA’,[
Module(’Marketing’,[CW(’MCW1’,5),CW(’MCW2’,8)])])

Course(’Business’,[
Module(’Marketing’,[CW(’B_MCW1’,6),CW(’B_MCW2’,9)])])

Course(’Business and IT’,[
Module(’Marketing’,[CW(’BIT_MCW1’,4),CW(’BIT_MCW2’,6)])])

}
operations {
courseworks(student) {
[id | student(s,c,cws) <- state, ?(s=student), id <- cws]

}
missed(time) {
[{name->name;id->id} |

Student(name,studying,cws) <- state,
Course(course,modules) <- state,
?(course=studying),

Module(mname,assessments) <- modules,
CW(id,due) <- assessments,
?(due<time),
?(not(member(id,cws)))]

}
handin(student,module,coursework) {

case [stud | stud=Student(s,c,cws) <- state, ?(student=s)] {
[Student(s,c,cws)] -> {

delete Student(s,c,cws);
new Student(s,c,cws+[coursework])

};
otherwise -> print(’handin: cannot find: ’ + student)

};
raise Office(student)

}
for(list,action) {

case list {
[] -> true;
x:xs -> { action(x); for(xs,action) }

}
}

}
rules {
time: Time(n) {

delete Time(n-1);
self.for(self.missed(n),fun(x) raise Missing(x.name,x.id))

}
register : Register(s,c) {

new Student(s,c,[])
}

}
}

The monitor component listens to events from all other compo-
nents. It handles registration events by initializing a Contact
record. Library and student office events increase the contact
count by 1. A Missing event occurs when a student has
not handed the coursework in on time and raises an alarm.
An alarm is also raised when the required number of contacts
have not been achieved by the required time.

component monitor(clock,registry,student_office,library) {
state {
Contacts(4,10)

}
operations {
count(student) {

case [c | c=Contact(s,n) <- state, ?(s=student)] {
[Contact(s,n)] -> n;
x -> 0

}
}

}
rules {
register: Register(s,c) {

new Contact(s,1)
}
library: l=Library(s) c=Contact(s,n) {

delete l;
delete c;
new Contact(s,n+1)

}
office: l=Office(s) c=Contact(s,n) {

delete l;
delete c;
new Contact(s,n+1)

}
missing: m=Missing(s,cw) {

delete m;
raise Alarm(s,’COURSEWORK’)

}
alarm: Time(t)

Contact(s,n)
Contacts(min,t’)
?(n<min) ?(t=t’) {

raise Alarm(s,’CONTACTS’)
}
time: Time(n) {

delete Time(n-1)
}

}
}

VI. IMPLEMENTATION AND ANALYSIS

In order to run, the simulation must be seeded with some
events that populate the components. For simulation purposes
we define two new components: the simulator and the
screen. The simulator component has a state consisting of
a collection of terms each of which is a message to one of
the UME components. The message contains a time and a
simulation rule matches each clock tick against the time in a
message term; when the time matches, the message is sent via
the built-in send operation:
component simulator(clock,monitor) {

state {
Send(1,registry,’register’,[’stud01’,’MBA’])
...

}
rules {
time: Time(n) { delete Time(n-1) }
step: Time(t) Send(t,target,message,args) {
send(target,message,args)

}
contact: Alarm(s,’CONTACTS’) {

raise Display(s,’red’)
}
assess: Alarm(s,’COURSEWORK’) {

raise Display(s,’green’)
}

}
}

In addition to sending messages, simulator monitors
Alarm events. Each event contains the name of a student
and a tag that describes the context of the alarm. The sim-
ulator generates events that describe the level of importance
associated with each student: green means that the student
is giving cause for concern and red means that the student
may cause UME to fail to achieve a key business goal.

The implementation uses a web-server to display infor-
mation about students. The information to be displayed is
encoded as HTML using terms. Figure 5 shows part of the
screen model that is used to encode HTML. Each class
is encoded as a term, attributes are encoded as term data
and associations are encoded as sub-terms. For example, to
produce a screen that contains a single table with two students:
Screen(
Table([
[Text(’student1’),Text(’MBA’)],
[Text(’student2’),Text(’Business’)]

])
)

A Button has a label and an action. The action is a function
with no arguments; when the button is pressed in a web-
browser, the function is called causing any actions in the body
of the function to be performed.

A Div term acts like a <DIV> element in HTML. The
record is used to set style attributes for the scope of the entries
in the body of the div. The optional record attached to a Table
performs the same function.

The screen component is defined below:
component screen(clock,simulator) {

operations {

Fig. 5: Screen Model

screen() {
Table([[students()],[Table([[step(),ticker()]])]])

}
text(n,c,s) {
Div({style->’font-size:’+n+’px; color:’+c+’;’},[Text(s)])

}
headers(str) { text(22,’black’,str) }
display(name,str) {

case [c | Display(s,c) <- state, ?(name=s)] {
[’red’] -> text(16,’red’,str);
[’red’,’green’] -> text(16,’red’,str);
[’green’,’red’] -> text(16,’red’,str);
[’green’] -> text(16,’green’,str);
otherwise -> text(16,’black’,str);

}
}
level(name) {

case [c | Display(s,c) <- state, ?(name=s)] {
[’red’] -> Text(’!!!’);
[’red’,’green’] -> Text(’!!!’);
[’green’,’red’] -> Text(’!!!’);
[’green’] -> Text(’???’);
otherwise -> Text(’.’)

}
}
courseworks(student) {
display(student,list(student_office.courseworks(student)))

}
cols() {
[’LVL’,’NAME’,’COURSE’,’CONTACTS’,’BOOKS’,’COURSEWORKS’]

}
student_details(name) {
[level(name),
display(name,name),
display(name,course),
display(name,monitor.count(name)),
books(name),
courseworks(name),
Button(’Contact ’ + name, fun() {

delete Display(name,’red’);
self <- update_display(name)

})]
}
students() {

let body = [student_details(name) |
Student(name,course) <- registry.students()]

head = [map(header,cols())]
in Table(head+body)

}
books(student) {
display(student,list(library.books(student)))

}
list(l) {

case l {
[] -> ’.’;
[t] -> t;
t:ts -> t + ’, ’ + (list(ts))

}
}
ticker () { Text(’Time: ’ + time()) }

time() {
case [t | Time(t) <- state] {
[t] -> t;
[] -> 0

}
}
step() { Button(’Step’,fun() clock <- tick()) }
server() {

case [s | Server(s) <- state] {
[s] -> s

}
}
update_display() {
server() <- display(Screen(screen())) }

tick(server) {
new Server(server);
server <- display(Screen(screen()))

}
}
rules {
tick_screen: t=Time(n) {

delete Time(n-1);
self.update_display()

}
}

}

The life-cycle of screen is as follows. When the web-server
first connects to screen it calls tick and supplies a web-
server server. The server is stored in the local data of
screen as the term Server(server) and is accessed us-
ing the function server(). When screen wants to update
web-server, it sends a message browser <- display(s)
where s is a screen (a term-instance of the model in figure
5). The initial screen contains a table of student information
and a button created by the operation step(); the button-
action is a function that sends a tick() message to the clock
causing a Tick(t) event to be raised and received by all
components monitoring clock. The rule tick_screen is
fired when screen receives a Tick(t) event and causes
the web-server to be supplied with a new screen via the
update_display() operation.

The screen component uses the screen() operation to
produce a table containing the following entries, each of which
is returned using a separate operation: student details; the step-
button; the current time. The student_details(name)
operation is used to produce a table row for the student
with the supplied name. The display operation is
used to construct text that has a colour defined by the
current alarm level for a student. The query operations
student_office.courseworks(student),
monitor.count(name), registry.students(),
library.books(student) are used to construct each
row. Where information is a list of strings, the operation
list(l) is used to concatenate the strings and separate
them with commas.

The implementation is written in Java and has an archi-
tecture as shown in figure 6. A standard web-server runs a
servlet labelled GUI that processes a term-encoding of the
model in figure 5. When the GUI starts, it supplies a handle
to itself (tick(server)) to the screen component. The
screen component informs GUI of a new screen server
<- display(Screen(...)) and prompts the clock to
advance under user control via the button-action tick().

(a) Student Registration (b) Missing Coursework

(c) Warning Signs (d) Business Goal in Jeopardy

Fig. 7: Simulation

Fig. 6: Implementation Architecture

A sequence of simulation snapshots is shown in figure 7;
each snapshot is a browser screen-shot generated after several
clicks of the Step button. Figure 7a shows the situation just
after students have registered for their courses and have eagerly
used the library. Figure 7b occurs a little later and shows that
student stud13 has missed a coursework deadline. Figure
7c shows the situation just before the UK BA deadline; stu-

dents stud05 and stud06 are hitting coursework deadlines,
however all other students have missed at least one deadline.
Figure 7d shows the situation immediately after the deadline
has passed. The system has flagged all students who have had
insufficient contacts with UME. Notice that since the deadline
for MCW2 has passed, student stud06 has changed status.

The buttons on the right hand side of the screen allow the
administrator to override students who are flagged as having
insufficient contacts. Figure 8 screen-shot shows the situation
where students stud02 and stud04 have been contacted
and their status has been reset (although their course-works
remain outstanding).

The simulation can be used by UME to analyze whether
or not the proposed architecture achieves the business goal
of complying with the UK BA regulations. It can determine
whether all appropriate events are recorded, whether there is
redundancy in the system, and whether existing IT systems are
sufficient. Once complete, a simulation can be implemented by
mapping it onto concrete IT systems and business processes.

Fig. 8: Manual Override

A. Conclusion

Event Driven Architecture is a style of system design that
lacks modelling notation. We have analyzed EDA, identified its
characteristic features, and have proposed a modelling notation
and associated simulation language. The modelling language
is defined as a conservative extension to UML so that existing
tools can use stereotyped UML elements to support component
models. The meta-model for the language and its associated
semantics has been defined. The simulation language shares
the semantic domain of the modelling language and therefore
EDA simulations can be viewed as a refinement of EDA
models. We have implemented the simulation language in Java
and used it to implement models taken from a representative
case study.

The simulation language has been implemented as a Java
interpreter2. Each component is deployed on a server that
handles communication via sockets; so that each component
can be written in the language or can be a wrapper around
a pre-existing IT system. Any data, including functions and
components, can be sent via messages; Java serialization is
used to pass information and global naming is used to manage
component identities. The intention is that the language will
be extended to allow the migration of system architectures,
firstly using complete simulation, then gradually incorporating
existing components via wrappers and finally introducing new
components.

There is currently no tool support for our approach, however
we intend to investigate the use of the Eclipse Modelling
Project to implement a UML profile and editor support for
the language through XText. Other features of EA modelling
include business goals and directives and we intent to extend
the language to include these features.

REFERENCES

[1] D. Barry, Web services and service-oriented architecture: the savvy
manager’s guide. Morgan Kaufmann Pub, 2003.

2http://www.eis.mdx.ac.uk/staffpages/tonyclark/Software/leap.zip and http:
//www.eis.mdx.ac.uk/staffpages/tonyclark/Software/leapgui.zip

[2] G. Wang and C. Fung, “Architecture paradigms and their influences and
impacts on component-based software systems,” 2004.

[3] L. David, “The power of events: an introduction to complex event
processing in distributed enterprise systems,” 2002.

[4] A. Buchmann and B. Koldehofe, “Complex event processing,” it-
Information Technology, vol. 51, no. 5, pp. 241–242, 2009.

[5] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient
pattern matching over event streams,” in Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM,
2008, pp. 147–160.

[6] D. Robins, “Complex event processing,” 2010.
[7] C. Zang and Y. Fan, “Complex event processing in enterprise infor-

mation systems based on rfid,” Enterprise Information Systems, vol. 1,
no. 1, pp. 3–23, 2007.

[8] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event
processing over streams,” in Proceedings of the 2006 ACM SIGMOD
international conference on Management of data. ACM, 2006, pp.
407–418.

[9] A. Paschke, A. Kozlenkov, and H. Boley, “A homogeneous reac-
tion rule language for complex event processing,” Arxiv preprint
arXiv:1008.0823, 2010.

[10] M. Lankhorst, “Introduction to enterprise architecture,” in Enterprise
Architecture at Work, ser. The Enterprise Engineering Series. Springer
Berlin Heidelberg, 2009. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-01310-2_1

[11] M. Ekstedt, P. Johnson, A. Lindstrom, M. Gammelgard, E. Johansson,
L. Plazaola, E. Silva, and J. Lilieskold, “Consistent enterprise software
system architecture for the cio - a utility-cost based approach,” in System
Sciences, 2004. Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS’04), 2004.

[12] C. Riege and S. Aier, “A Contingency Approach to Enterprise Architec-
ture Method Engineering,” in Service-Oriented Computing–ICSOC 2008
Workshops. Springer, 2009.

[13] K. Niemann, From enterprise architecture to IT governance: elements
of effective IT management. Vieweg+ Teubner Verlag, 2006.

[14] T. Bucher, R. Fischer, S. Kurpjuweit, and R. Winter, “Analysis and
application scenarios of enterprise architecture: An exploratory study,”
in 10th IEEE International Enterprise Distributed Object Computing
Conference Workshops, 2006. EDOCW’06, 2006.

[15] J. Henderson and N. Venkatraman, “Strategic alignment: Leveraging
information technology for transforming organizations,” IBM systems
Journal, vol. 32, no. 1, 1993.

[16] J. Zachman, “A framework for information systems architecture,” IBM
systems journal, vol. 38, no. 2/3, 1999.

[17] J. Spencer et al., TOGAF Enterprise Edition Version 8.1, 2004.
[18] D. Wisnosky and J. Vogel, “DoDAF Wizdom: A Practical Guide to Plan-

ning, Managing and Executing Projects to Build Enterprise Architectures
Using the Department of Defense Architecture Framework (DoDAF),”
2004.

[19] M. M. Lankhorst, H. H.A. Proper, and J. Jonkers, “The Anatomy of
the ArchiMate Language,” International Journal of Information System
Modeling and Design, vol. 1, no. 1.

[20] B. Michelson, “Event-driven architecture overview,” Patricia Seybold
Group, 2006.

[21] G. Sharon and O. Etzion, “Event-processing network model and imple-
mentation,” IBM Systems Journal, vol. 47, no. 2, pp. 321–334, 2008.

[22] S. Overbeek, B. Klievink, and M. Janssen, “A flexible, event-driven,
service-oriented architecture for orchestrating service delivery,” IEEE
Intelligent Systems, vol. 24, no. 5, pp. 31–41, 2009.

[23] M. Assmann and G. Engels, “Transition to service-oriented enterprise
architecture,” Software Architecture, pp. 346–349, 2008.

[24] C. Hall and P. Harmon, “The, enterprise architecture, process modeling,
and simulation tools report,” BPTrends. com, 2007.

[25] J. Cheesman and J. Daniels, UML components. Addison-Wesley, 2001.
[26] D. Lienhart, “Softbench 5.0: The evolution of an integrated software

development environment,” HEWLETT PACKARD JOURNAL, vol. 48,
pp. 6–7, 1997.

[27] A. Barros, G. Decker, and A. Grosskopf, “Complex events in business
processes,” in Business Information Systems. Springer, 2007, pp. 29–40.

[28] E. Deeson, “The e-revolution and post-compulsory education–by boys,
jos & ford, peter,” British Journal of Educational Technology, vol. 39,
no. 4, pp. 750–750, 2008.

