
Revisiting Naur’s Programming as Theory
Building for Enterprise Architecture Modelling

Balbir S. Barn and Tony Clark

Middlesex University, Hendon, London, UK, NW4 4BT

Abstract. The recent burgeoning interest in Enterprise Architecture
and its focus on artifact driven methods is taken as a motivation for the
re-appraisal of Peter Naur’s notion of “programming as theory building”.
Naur strongly disputes the value of the role and orientation of the IS
discipline around artifacts and argues that algorithmic methods do not
lead to a theory of a domain. Such a viewpoint provides an alternative
lens with which to view current developments and may lead to addi-
tional insights by providing the reader with a source for questioning and
reflecting critically on the re-focusing of method design on conversation
rather than artifact production . It is suggested that such a conversa-
tional framework based on Toulmin and Pask may provide a means to
establish and test theory building views of enterprise architecture.

1 Introduction

This account sets out to re-appraise Peter Naur’s influential paper on Program-
ming as Theory Building [11] in the context of model building and the recent
focus on Enterprise Architecture. It is the intention of this paper to evaluate how
theory building can play an important role in helping organizations make more
use of their enterprise architecture activity and in particular how theory building
may influence methods, techniques and tools to support enterprise architecture
by focusing on conceptual modelling as a conversation process.

The starting point for this work has been triggered by the extent of activity
that is currently surrounding Enterprise Architecture. As systems supporting
business become increasingly more significant and complex an important ap-
proach to management and planning of systems that has gained prominence is
model-based Enterprise Architecture (EA). EA has its origins in Zachman’s orig-
inal EA framework [21] while other leading examples include the Open Group
Architecture Framework (TOGAF) [17] and the framework promulgated by the
Department of Defense (DoDAF) [19]. In addition to frameworks that describe
the nature of models required for EA, modeling languages specifically designed
for EA have also emerged. One leading architecture modelling language is Archi-
mate [7].

Central to enterprise architecture is the notion of development and presen-
tation of models. Given the plethora of models available two concerns of note
arise: Firstly, given the range of models available, it is difficult to ascertain why



a particular model is relevant and preferable over others. This arises from a
lack of clarity of the link between the contents and structure of a model on one
hand and its purpose on the other [4]. Secondly, evaluation of quality of mod-
els in general, and therefore EA models, is relatively under researched. While
there are international standards for software systems there is “little agreement
among experts as to what makes a “good” model” [8]. Empirical measurements
of the goodness of an EA model are generally lacking in the literature. Is that
because we want to evaluate the final outputs of the modelling process rather
than the success of the modelling process? Would a re-appraisal of Naur’s ideas
will provide a new insight and approach to questioning the “why” of a model?
Similarly, would a re-appraisal provide insight to the “goodness” of a model for
assessing the efficacy of a model in representing knowledge of a domain? These
questions are the subject of this paper.

The remainder of the paper is structured as follows: Section 2 outlines the
main hypotheses posed by Naur. Section 3 and 4 presents a more detailed anal-
ysis of aspects of the hypotheses (programs as models and methods). Section
5 provides an alternative view of how methods for EA should structured and
presents two underlying philosophical and psychological theories and their con-
ceptual integration as the basis for a conversation framework approach to EA
method design rather than the algorithmic artifact oriented views that are cur-
rently prevalent. Section 6 concludes with an overview of the implications arising
from this re-appraisal of Naur’s seminal paper in the context of conversational
processes for EA modelling.

2 Programming as Theory Building

Peter Naur wrote “Programming as Theory Building” in 1985, it was reprinted
later in his collection of works, Computing: A Human Activity in 1992 [10]. The
paper presents a discussion that contributes to what programming is. While
it is tempting to assume from the title of the paper that Naur is focused on
the minutiae of programming, he is specific in that programming denotes the
“whole activity of design and implementation” and thus his theory applies to the
field of software engineering. The fundamental premise asserts that program-
ming should be regarded as an activity by which programmers achieve a certain
insight or theory of some aspect of the domain that they are addressing. The
knowledge, insight or theory that the programmer has come into possession of
is a theory in the sense of Ryle [15]. That is, a person who has a theory knows
how to do certain things and can support the actual doing with explanations,
justifications and responses to queries. That insight or theory is primarily one
of building up a certain kind of knowledge that is intrinsic to the programmer
whilst any auxillary documentation remains a secondary product. Of particular
interest, is how Naur explains the life-cycle of a program. Programs are created
by the establishment of a theory, the maintenance of a program is dependent
on the theory being transferred between programmers; and the program dies
when the theory has decayed. Program revival is described as re-establishing the



theory behind the program which cannot be done merely from documentation
and should only be considered in exceptional circumstances as the cost of the-
ory revival is prohibitive and the resulting theory may be different from that
originally conceived.

In addition to the theory view of a program life cycle, he also directed criti-
cism at the then significant emphasis of methods for program development. He
claimed that the methods based on sequences of actions of certain kinds can-
not lead to the development of a theory of the program because the intrinsic
knowledge held by a human has no inherent division into parts nor an inherent
ordering. Instead the person possessing the knowledge is able to present mul-
tiple viewpoints as responses to requests. Where methods were supplemented
with notations or formalizations then these were treated as secondary items as
the theory of a program is intrinsic and cannot be expressed. Thus: “...there can
be no right method”.

Having outlined the basic hypotheses of Naur’s paper, the remainder of this
account continues the critique of Naur’s ideas and applies them to modeling and
Enterprise Architecture.

3 Programs as models

Naur was concerned with programs, but Enterprise Architecture is concerned
with the production of models of interconnected systems or components. Thus
we need to explore the relationship between programs and models and use that
as a basis for analysing the applicability of Naur’s hypothesis in the context of
Enterprise Architecture.

A major activity in software engineering and computer science in general is
modelling and as Fetzer [1] has noted “the role of models in computer science
appears to be even more pervasive than has been generally acknowledged..”. A
key feature of modelling is the existence of an isomorphic relationship between
the parts of the model and the parts of the thing modelled at some level of
abstraction. Smith [16] whilst noting these different types of models emphasizes
the nature and importance of “representation”:

“To build a model is to conceive of the world in a certain delimited
way... Computers have a special dependence on these models: you write
an explicit description of the model down inside the computer...”.

Smith suggests this feature distinguishes computers from other machines because
they run by manipulating representations. “Thus there is no computation with-
out representation” [16, p, 360] If we pursue this analysis further: From Naur
we can state that the program is a theory; from general computation principles,
we can state: the program is a model. This leads to the notion that there is
an equivalence between program = theory = model. We might moderate this
further by noting that a program is a representation of a slice of “the” theory. In
general though, this blurring between programs, theories and models is confus-
ing and inaccurate. While models may exhibit an isomorphic relationship with



their subject matter, this relationship may not reveal the theoretical connections
that allow the theory to be defended in the form of Ryle’s definition of a theory.
Ideally, then, the theory must be statable independent of the computer model.
In an essay that predates Naur’s paper but still based on a prevailing view of
the time that programs are theories, James Moor notes:

“My claim is that this is rarely, if ever, the correct response. Even if
there is some theory behind a model, it cannot be obtained by simply
examining the computer program. The program will be a collection of
instructions which are not true or false, but the theory will be a collec-
tion of statements which are true or false. Thus, the program must be
interpreted in order to generate a theory. Abstracting a theory from the
program is not a simple matter for different groupings of the program
can generate different theories. Therefore, to the extent that a program,
understood as a model, embodies one theory it may well embody many
theories.”[9, p.221]

From this analysis arises two key concerns. Firstly, programs and models may
have multiple theories and a program or model may not refer to the same theory.
Secondly these theories must be state-able independent of the program or the
model. Then, there is an additional dichotomy: Is a program a representation of
one view of an aggregate theory or is the program a representation of a compo-
nent theory of the aggregate theory? These complexities, in the case of Naur’s
Programming as theory perspective have implications, because if the program is
the only vehicle through which a theory can demonstrate that requirements of
the intended system have been met, then, that theory testing process comes too
late in the system life cycle.

4 On methods and theory building

Earlier we noted that Naur had reserved considerable criticism for methods. We
develop this discussion further in this section. The tendency of methods research
in the IS discipline is to propose algorithmic steps to analysing and designing
solutions to problems. As Naur notes: “A method implies a claim that program
development can and should proceed as a sequence of actions leading to a partic-
ular kind of documented result”. In contrast, a theory building view holds that
a theory “held by a person has no inherent division into parts and no inherent
ordering”. At large, IS/SE research is embarked on a journey based on episte-
mological foundations and as a consequence has mostly neglected techne (the
technical know how of getting things done) and phronosis (wisdom derived from
socialised practices) [20]. In a more generalised form, this has correspondence to
the distinctions between explicit and tacit knowledge [12] and Naur would seem
to be arguing the case for methods research that suggests more attunement with
the effects that methods may have in the education of programmers. That is,
the creation and embedding of tacit knowledge rather than the production of
artifacts representing explicit knowledge through an algorithmic process.



Naur cites a study of five different methods by Floyd et al (cited here for
completeness [2])where the key result that a system of rules will lead to good
solutions is an illusion, what remains is the effect of methods on the education
of programmers. Thus the use of methods may themselves not lead to a good
design but the practice of the method may lead to a better innate ability for
theory building.

5 Theory building and testing as a conversation process

The act of constructing a conceptual model that describes an enterprise archi-
tecture is essentially all about communication. For example, when we engage
in a discussion of budgetary requirements, we are requiring the architecture de-
scription to provide us with a theory of budgetary models. A description of the
communication of how that theory is explicated is at the heart of that architec-
ture description. In a modelling process, participants such as the domain expert
and the systems analyst (who may have no knowledge of the domain) engage in a
conversational process through which concepts understood by the domain expert
are formalised by the systems analyst through some dialogue document in a con-
trolled language[3]. The goal of the modelling process is to reach a state where
all participants agree that they have some degree of common understanding[14].

When Naur describes theory building amongst teams of programmers who
share the same theory he would appear to be alluding to a similar socialisation
process. More recently and in line with what we propose in this section, Kruchten
[5] provides a critique of software architecture from a knowledge management
perspective where architectural knowledge is a composite of the architecture (de-
sign) and a rationale for design decisions. The support for the rationale comes
through a socialisation process framed by the SECI (socialisation, externalisa-
tion, combination, internalisation), model [12]. Significantly, though, the artifact
remains central albeit augmented by more human centred activity.

In the development of a theory, Naur also suggests three tests to check if the
programmers knowledge transcends the written documentation consistent with
Ryle’s notions that a theory should be defensible and justifiable by the presenta-
tion of evidence. These are: the programmer can explain how the solution relates
to the affairs of the worlds that it helps to handle; the programmer can explain
why each part of the program is what it is, in other words, is able to support
the actual program text with a justification of some sort; and the programmer
is able to respond constructively to any demand for a modification.

Here we propose that the first test can be addressed by consideration of an
integration of two other philosophical theories in this field: Toulmin’s informal
argumentation model [18] and Pask’s conversation theory [13] and to suggest
that theory testing can be achieved by constrained conversations using models
as the subject. More pertinently, it may help us to address the “why” of an
enterprise architecture.



5.1 Conversation Theory

A conceptual model represents the arrival of a shared understanding of a sub-
ject area between two different actors – the domain expert and the systems
designer. One way of viewing the process of understanding is through the lens
of Conversation Theory (CT) [13]. As theory of exposition and defence, CT can
be summarised as follows: one participant (say, the domain expert) describes a
body of knowledge to a second participant (the Systems Analyst). Both these
participants are a type of organization – the psychological (p-) individual. A
p-individual is a stable closed system comprising memory (facts), rules for inter-
preting the memory (concepts), rules for structuring the derivation of concepts
– “how to” understand concepts and rules for understanding how topics in the
memory relate to each other. In a basic conversation (“skeleton of a conversa-
tion”), there are two levels – the “how” and “why”. The “how” level describes
how to do a topic for example, recognizing, constructing and maintaining a topic,
while the “why” level is focused on explaining or justifying the topic perhaps in
terms of other topics. The basic conversation is provocative, that is participants
are provoked into constructing understandings of each others’ beliefs. A “mod-
eling facility” provides the medium in which concepts are understood between
individuals.

A key aspect of CT is the embodiment of knowledg (e.g. the workings of the
combustion engine, finite state machines or any other coherent whole) which is
viewed as a set of topics or facts that are related to each other. Relations be-
tween topics are either decompositional (hierarchical) or analogous (heterarchi-
cal), when such relationships and topics are static then that static representation
is called an entailment structure. When a topic is understood by a learner (via
a reproducible procedure) then the topic also exists as a concept for potential
sharing with another p-individual.

5.2 Argumentation Theory

A person who has or possesses a theory knows how to do certain things and can
support those actions with explanations, justifications and answers to queries.
This is similar to Toulmin’s argumentation model [18] - a logical structure for
reasoning about the validity of arguments, the structure of which are described
below:

Claim A proposition representing a claim being made in an argument;
Grounds One or more propositions acting as evidence justifying the Claim;
Warrant One or more rules of inference describing how the Grounds contribute

to the Claim;
Backing The knowledge establishing the Grounds for believing the Warrant;
Qualifier A phrase qualifying the degree of certainty in the argument for the

Claim;
Rebuttal One or more propositions challenging the validity of the Claim.



An example of a Toulmin argumentation model might be as follows: Object
oriented modelling is a more natural way for most business analysts to capture
requirements. Such a statement is a claim that includes a qualifier - most. The
grounds for this statement might refer to hard facts or evidence that supports
this claim. The warrant might indicate how object concepts provide a closer
correspondence to objects in the real world. The backing for the claim might be:
because object modeling is derived from entity modeling and entity relationship
modeling has considerable history of efficacy in requirements capture. A rebuttal
is a counter claim and has its own argumentation model.

Taken together, the two theories present a potential opportunity to review
how we design methods and their supporting tools. The argumentation model
presents a conversational framework which allows the theory builder to create
an orderly and intelligible conversation - a discussion of the theory. But because
such discourse analysis has the potential to generate large amounts of data by
utilizing a limited set of concepts derived from the domain (the topics in the
entailment mesh from conversation theory) it is possible to make the resulting
analysis more amenable.

6 Implications for Enterprise Architecture

Enterprise Architecture (unlike programming) has no target theory. The exe-
cution of a program can be used to validate the quality of the theory that a
programmer constructed but mechanisms for executing enterprise architectures
are still largely an area of research focus. Prevailing methods and languages for
EA (and using ArchiMate as a canonical example) have focused on developing
artifacts and models for explicit knowledge [6, p.75] and so are subject to Naur’s
criticisms. EA frameworks such as TOGAF provides an exhaustive set of activ-
ities, phases of activities, ordering of activities and artifacts to be produced by
activities with the intent of capturing in its entirety a theory of the EA. Accept-
ing the theory building view forces us to reject firstly that such an exhaustive
methodological approach can lead us to a universal theory of Enterprise Archi-
tecture for a domain. Secondly the focus on explicit knowledge does not allow
us to extract from the plethora of method the essence of “why”. Instead, a model
of incremental, modular theory building which involves the real world thorugh a
conversational process as a source of knowledge and validation may unlock the
real value of an enterprise architecture.

This takes us then to a more fundamental re-thinking of method development.
A method for EA should not (algorithmically) take us to a model of EA (because
no one model exists), instead a method should instill in the practitioner, the
cognitive processes for constructing theories about the enterprise architecture.
The conversational approach outlined earlier is one such candidate basis for such
cognitive processes as it enables both the testing of a theory and the collaborative
development of a theory. Indeed it might allow us to measure the efficacy of a
method not by how a solution is designed or quality of solution but by how the



engineer has modified their psychological processes for theory building and so
the corresponding implications for software engineering education.

References

1. J.H. Fetzer. The role of models in computer science. The Monist, 82(1):20–36,
1999.

2. Christiane Floyd. Eine untersuchung von software-entwicklings-methoden. In
H. Morgenbrod, W. Sammer, and I. Tagung, editors, Programmierumgebugnen
und Compiler. Tuebner Verlag, 1984.

3. S. Hoppenbrouwers, HA Proper, and T.P. der Weide. A fundamental view on the
process of conceptual modeling. Conceptual Modeling–ER 2005, pages 128–143,
2005.

4. P. Johnson, M. Ekstedt, E. Silva, and L. Plazaola. Using enterprise architecture
for cio decision-making: On the importance of theory. In the Proceedings of the
2nd Annual Conference on Systems Engineering Research (CSER), 2004.

5. P. Kruchten. Documentation of Software Architecture from a Knowledge Manage-
ment Perspective–Design Representation. Software Architecture Knowledge Man-
agement, pages 39–57.

6. M. Lankhorst. Enterprise architecture at work: Modelling, communication and
analysis. Springer-Verlag New York Inc, 2009.

7. M. M Lankhorst, H.A H.A. Proper, and J. Jonkers. The Anatomy of the ArchiMate
Language. International Journal of Information System Modeling and Design, 1(1).

8. D.L. Moody. Theoretical and practical issues in evaluating the quality of concep-
tual models: current state and future directions. Data & Knowledge Engineering,
55(3):243–276, 2005.

9. J.H. Moor. Three myths of computer science. British Journal for the Philosophy
of Science, 29(3):213–222, 1978.

10. P. Naur. Computing: a human activity. ACM New York, NY, USA, 1992.
11. Peter Naur. Programming as theory building. Microprocessing and Microprogram-

ming, 15(5):253 – 261, 1985.
12. I. Nonaka and H. Takeuchi. The knowledge-creating company. New York, 1, 1995.
13. G. Pask. Conversation, cognition and learning. Amsterdam and New York: Else-

vier, 1975.
14. K. Pohl. The three dimensions of requirements engineering: A framework and its

applications* 1. Information systems, 19(3):243–258, 1994.
15. G. Ryle. The concept ofmind. London, Hutchinson, 1949.
16. B.C. Smith. Limits of correctness in computers. Academic Press Professional, Inc.,

1991.
17. J. Spencer et al. TOGAF Enterprise Edition Version 8.1. 2004.
18. S.E. Toulmin. The uses of argument. Cambridge Univ Pr, 2003.
19. DE Wisnosky and J. Vogel. DoDAF Wizdom: A Practical Guide to Planning,

Managing and Executing Projects to Build Enterprise Architectures Using the
Department of Defense Architecture Framework (DoDAF), 2004.

20. Boris Wyssusek. A philosophical re-appraisal of peter naur’s notion of "program-
ming as theory building". In European Conference on Information Systems (ECIS),
2007.

21. J.A. Zachman. A framework for information systems architecture. IBM systems
journal, 38(2/3):454–470, 1999.


