
Aspect-Oriented Metamodelling

Tony Clark1, Andy Evans2 and Stuart Kent3

1Department of Computer Science, Kings College, London, UK
2Department of Computer Science, University of York, UK

3Computing Laboratory, University of Kent, UK

Email: anclark@dcs.kcl.ac.uk, andye@ukc.ac.uk, sjhk@ukc.ac.uk

The Object Management Group's (OMG) Model Driven Architecture (MDA)
strategy envisages a world where models play a more direct role in software pro-
duction. To ensure that the burden of maintaining more than one formal model
does not outweigh the potential bene�ts, powerful tool support is required. How-
ever, each domain, organisation, even project, is likely to need its own particular
process supported by its own particular con�guration of modelling languages. The
challenge is to provide de�nitions of languages that not only support the con�g-
uration and extension of those languages for use with particular processes, but
also can be used directly in the customisation/generation of tools. This paper de-
scribes an aspect-oriented, metamodelling approach to language de�nition which
aims to meet this challenge. This exploits two mechanisms (package extension
and package templates), which are similar to mechanisms proposed to support
aspect-oriented design with UML. Thus the paper can also be viewed as describ-
ing a case study in aspect oriented design. The approach is illustrated by extracts
from the 2U submission to the UML 2.0 RFPs issued by the OMG in 2001. The
paper concludes with a discussion on the customisation and generation of tools

from such de�nitions.

1. INTRODUCTION

As the complexity of systems continues to increase, in-
dustry is looking for better ways to abstract from de-
tail and separate concerns. There are two complimen-
tary approaches that seem to be gaining some credence:
aspect-oriented and model driven approaches to soft-
ware development. The aspect-oriented approach treats
software as a multi-dimensional artefact [21], whose de-
velopment can be made more tractable by allow di�er-
ent dimensions, or aspects, to be de�ned separately and
then merged or woven together to produce the required
result. The model-driven approach envisages a world
where (high level) models play a more direct role in
software production, being amenable to manipulation
and transformation by machine. One realisation of this
approach is the Object Management Group's (OMG)
Model Driven Architecture (MDA) strategy [19], which
focuses, in particular, on the separation between plat-
form independent and platform speci�c models.

In [18], we argue for bringing together these two ap-
proaches, and envisage a multi-dimensional modelling
space which includes the abstract/concrete separation
as one of its dimensions. The idea is that for any par-
ticular development project one de�nes a development
process that, amongst other things, identi�es the arte-
facts (models) to be manipulated, and the mappings
between them. It may be that the process is aimed at
constructing new artefacts or refactoring existing arte-
facts, or some combination of the two. It may be that

there is only one artefact | the program, as recom-
mended by more recent agile approaches to software
development.

Identifying models might proceed as follows. First,
identify the modelling dimensions that need to be con-
sidered, which includes de�ning the points of interest
along those dimensions. Some of those dimensions are
likely to be standard across projects, for example au-
thorship and version, only needing to decide whether
the dimension needs to be included or not. A subject
area dimension is likely always to be present, and that
will require the subject areas to be identi�ed. Simi-
larly one will need to decide the relevant points on (an)
aspect dimension(s), for example whether points are re-
quired for concurrency or distribution, for information
and data, and so on. One will also need to de�ne the
stakeholders involved; and the levels of abstraction that
are of interest (for MDA, one may choose that the only
two points of interest are PIM and PSM along the latter
dimension).

Second, determine what intersections of the various
dimensions are of interest for the development project
at hand. This determines the models that need to be
considered. In theory, there could be a di�erent lan-
guage for describing models at each intersection. In
practice, the language used at a particular point of in-
tersection will be determined by one (or a small subset)
of the dimensions that determine that point. For exam-
ple, a subject area may be de�ned from the perspective
of many di�erent aspects, and the language used might

The Computer Journal, Vol. ??, No. ??, ????



2 Clark, Evans & Kent

be determined by the aspect being described. The lan-
guage is unlikely to be di�erent for di�erent subject ar-
eas. It may also be that the level of abstraction and/or
stakeholder will inuence the language to be used. With
regard to the latter, a business expert and programmer
are likely to need to see the speci�cation of a system
in di�erent languages, even though the two renderings
would be isomorphic | they are at the same level of ab-
straction, looking at the same aspect and subject area.
If one is to believe this scenario, then it is very likely

that processes, and accompanying modelling spaces,
will be populated di�erently for di�erent domains, or-
ganisations and even projects. Evidence of this is al-
ready emerging in the recent surge of proposals for
UML pro�les (specialisations/variations on UML for
modelling in speci�c contexts) at the OMG. It is also
likely that there will be considerable overlap between
languages used for modelling at di�erent points in the
space, as well as di�erences. If one were able to support
the de�nition of product lines or families of languages,
then this overlap could be exploited to make de�nition
of specialised/bespoke languages, and the mappings be-
tween them, easier, and in provisioning tool support.
An alternative approach is to provide a single,

general-purpose language which includes mechanisms
for de�ning and combining models from di�erent per-
spectives. For example, one could take a general pur-
pose modelling language, like UML, and add mech-
anisms, such as (package) templates and (package)
composition. This would allow, for example, aspects
to be encoded as templates capturing parameterised,
commonally-used modelling patterns, and for di�erent
modelling perspectives (some stamped out from tem-
plates and some constructed bespoke) to be combined
using composition. Such an approach to modelling,
which builds on work in subject-oriented and aspect-
oriented programming, has been proposed by [9, 10].
This approach is attractive because it means that

only one language needs to be supported, for example
in the provision of educational materials and tooling.
It is quite restricted, however, as it presumes that the
general purpose modelling language will be accessible to
all stakeholders, and be rich enough to support all mod-
elling requirements. Of course, in some restricted do-
mains it may be all that is needed | indeed, this paper
proposes the use of such mechanisms for aspect-oriented
metamodelling; but in general, there will remain a need
to de�ne languages to support the modelling of di�er-
ent aspects of a system, and, what is more, those lan-
guages are likely to vary across domains, organisations
and projects.
To ensure that the burden of maintaining more than

one formal model does not outweigh the considerable
bene�ts of models as tools for abstraction, summarising
and providing alternative perspectives, powerful tool
support is required. On the other hand, building tools
by hand is resource intensive, and certainly could not
be done for every project-speci�c con�guration of lan-

guages and mappings. And here is the challenge: to
provide an approach to de�ning modelling languages
and mappings, which not only supports the exibility
to specialise and con�gure those de�nitions, but which
also can be used to customise and/or generate tools to
support that particular con�guration.
This paper describes an approach to language design

which begins to meet this challenge. The approach ex-
tends metamodelling techniques with mechanisms suit-
able for aspect-oriented modelling. Metamodelling has
come to mean the use of an object-oriented modelling
language for the de�nition of languages, and is the ap-
proach used by the OMG to de�ne its modelling lan-
guages. Currently these are de�ned using a subset
of UML, or the Meta Object Facility (MOF). UML
and MOF are currently being revised [4, 5], and one
goal of this revision is to make the MOF language the

subset of UML used for metamodelling. In our ap-
proach to metamodelling, we have employed mecha-
nisms (package extension and package templates) for
aspect-oriented modelling. These originated with the
Catalysis method [11] and are similar in spirit, though
slightly di�erent in execution, to those suggested by [9]
for aspect-oriented software design. (The paper does
not provide a metamodel for these mechanisms, which
are being de�ned elsewhere [8].) The approach proposes
that language de�nitions should be architected to sup-
port the development of families of languages, and that
this is made possible by the use of package extension
and template mechanisms in metamodelling. In partic-
ular, the mechanisms can be used to combine existing
language units to form languages, as well as customise
(construct) existing (new) units, using prede�ned tem-
plates that capture patterns or aspects of language de-
sign. The templates can also be customised.
The paper is structured as follows. Section 2 de-

scribes package extension and package template mech-
anisms which we use in conjunction with usual object
modelling techniques. Section 3 describes the overall
architecture of the de�nition of a family of languages,
and how this supports extension and customisation of
languages. Section 4 outlines the application of this ap-
proach to the de�nition of UML in the 2U submission
to UML 2.0, using fragments of that submission as il-
lustration. Section 5 discusses the challenges in using
the metamodel de�nitions to customise/generate tools.
Section 6 provides a summary, considers limitations of
the approach and looks forward to future work.

2. PACKAGE EXTENSION AND TEM-

PLATES

The package extension and template mechanisms were
originally suggested as part of the Catalysis approach
to software development [11]. The mechanisms used
in this paper are a re�nement and concrete reali-
sation of those original ideas, and are in the pro-
cess of being rigorously de�ned [8]. These mecha-

The Computer Journal, Vol. ??, No. ??, ????



Aspect-Oriented Metamodelling 3

nisms are similar in principle to those described in
[9] for aspect-oriented software design. Clarke de-
�nes di�erent notions of package composition, one of
which is to merge packages, matching model elements
across packages by name. Let the Clarke mecha-
nism be represented by an operation mergeByName,
so that mergeByName(name,fP1,..,Png) results in a
package, with name name, that is the merge of P1

to Pn, matching model elements by name. Now let
the Catalysis extension mechanism be characterised
as a tuple <Q,body,fP1,..,Png>, where Q is the
name of the child package, P1 to Pn are the par-
ent packages, and body is the locally-de�ned part
of Q. Then the expansion of this structure could
be de�ned as expansion(<Q,body,fP1,..,Png>) =

mergeByName(Q,fbody,P1,..,Png). This equation
also shows that mergeByName could be de�ned in terms
of expansion, by making body empty.
As we see below, package extension also allows ele-

ments to be renamed. Similarly, Clarke allows elements
to matched explicitly, rather than by name. These
mechanisms could be factored in, but the basic com-
parison between the two approaches would remain the
same.
The package extension mechanism is illustrated by

Figure 1.

P

R

Q

X Y Z

1

*

*

1

*

x

y y

z
zx*

x.z= z

X Y
0..1

distinguishedY

containedY
*1 x

containedY->includes(distinguishedY)

Z / Y
Y / X
distinguishedZ / X::distinguishedY
containedZ / X::containedY
y / Y::x

containedZ / Y::z

a:int

Z

FIGURE 1. Package extension example

Q is a package that extends R and P. Extension be-
tween packages is shown by a UML generalisation ar-
row. The contents of R and P get included in Q, with
anything common between the two being merged. Com-
mon model elements are elements of the same kind with

the same name. Renaming clauses may be used to an-
notate a package extension either to prevent a merge or
to force one. In this case, the classes X and Y in R are
renamed to Y and Z, respectively, to force them to be
merged with the classes Y and Z in P. Q also contains
a fragment a class Z, with an attribute a, that is also
merged with the P::Z and R::Y (which is renamed to
Z). The unfolding of both package extensions results in
the expansion of Q which is given in 2.

Q

X Y

1

*

*

1
*

x

y

y

containedZ

zx*

x.z= z

a:int

Z

containedZ->includes(distinguishedZ)

0..1

distinguishedZ

FIGURE 2. Expansion of child package

Package templates allow a package de�nition to be
parameterised over arguments, thereby supporting the
encoding of common patterns which can be bound to
particular fragments of model through parameter sub-
stitution. The package template mechanism is illus-
trated by Figure 3.
This is similar to the package extension example of

Figure 1, except that now package R has been turned
into a package template. The template takes two string
arguments (X and Y in the dashed box), and names
of elements in the package are parameterised by these
arguments. Not only are the names of classes param-
eterised, but also the labels on the association ends,
which are referred to in the accompanying constraint.
Instantiation of a template is shown using a generalisa-
tion arrow, which must be annotated by a substitution
for the arguments, shown by a dashed box called out
from the arrow. Template instantiation works by eval-
uating the expressions that provide the names for ele-
ments in the template with arguments substituted. The
result is then merged with the target of the instantia-
tion. A template instatiation may be annotated further
with one or more renaming clauses, which override any
names calculated from the argument substitutions. In
this example there are no such renamings.
Templates e�ectively allow a (sometimes large) set

of renamings to be calculated from a small number of
arguments. In this example, the �ve renamings on the
extension from R to Q in Figure 1 are replaced by a
substitution for two arguments. Not only does this save
work for the modeller, it also ensures more accurate use
of the template by forcing a particular set of renamings
(which may be overridden in extremis) whenever the

The Computer Journal, Vol. ??, No. ??, ????



4 Clark, Evans & Kent

P

R

Q

X Y Z

1

*

*

1

*

x

y y

z

zx*

x.z= z

<X> <Y>
0..1

distinguished<Y>

contained<Y> *

1

<x>

contained<Y>->includes(distinguished<Y>)

containedZ / Y::z

a:int

Z

X, Y

Y, Z

FIGURE 3. Package template example

template is applied.
A rigorous and detailed de�nition of package exten-

sion is provided in [8]. A de�nition of package templates
is in preparation.

3. METAMODEL ARCHITECTURE

Figure 4 illustrates the general architecture of our ap-
proach to language de�nition. The outermost pack-
age represents the domain of Language De�nition.
Within this a number of language families are de-
�ned (e.g. LanguageFamily1 and LanguageFamily2).
There may also be some templates (most likely) and
language units (less likely) generic to language de�-
nition. A language family (e.g. LanguageFamily1)
may itself have its own locally de�ned templates and
language units (both likely). A language family may
have sub-families (e.g. LanguageFamily11), which may
extend/instantiate language units/templates from any
family in which they are nested. A language family in-
cludes a set of languages which may extend/instantiate
language units from that family or any family nested
within it.
Language units allow related features of a language

to be grouped into separate fragments; fragments may
be common to many languages. Language units can be

L2

LU2

LanguageUnits

LanguageFamily1

Languages

Templates

Templates

L1

LU1

LU3

T3
T4

T1
T2

LanguageDomain

Language
Units

LanguageFamily2

Language
Family11

LU4

FIGURE 4. Language de�nition architecture

composed, using package extension, to form complete
languages. Package extension may also be used to in-
crementally extend language units. Package templates
capture cross-cutting architectural patterns, and can be
used to impose a uniform and consistent architecture
across de�nitions. The latter is essential for the com-
position of language units to work correctly. They also
ensure more complete de�nitions by enabling reuse: im-
portant structures and constraints are captured once in
a template and reused many times over in stamping out
de�nitions of language units. In this way, one is able to
reap the rewards from e�ort invested in a template.

The architecture of language units and languages is
given by Figure 5. There is an abstract syntax, to which
a semantics is given through a mapping to a semantics

domain. The abstract syntax may take on many con-
crete forms; the mapping between each of these and the
abstract syntax can also be de�ned as part of the meta-
model.
The abstract syntax characterises, in abstract form,

the expressions of the language in question. If the lan-

The Computer Journal, Vol. ??, No. ??, ????



Aspect-Oriented Metamodelling 5

LUn or Ln

Abstract
Syntax

Semantics
Domain

notation
X

model

CS
X

AS

notation
Concrete
Syntax

Semantics

FIGURE 5. Language unit architecture

guage is used to make general statements about the
behaviour of the system being described, the semantics
domain represents, again in abstract form, the domain
of examples and counter-examples of that behaviour.
Semantics is a statement of what it means for an el-
ement of the semantics domain to be a valid example
of a described behaviour. We say the example satis�es

the behaviour; a counter-example is one that does not.
The distinction between language units and lan-

guages is somewhat fuzzy. Although many language
units will be mini-languages in their own right, it is ex-
pected that they only become practically useful when
combined with other units to form a language. Thus
the languages are combinations of language units that
the designer of the language family has deemed to be
�t for a particular purpose.
The proposed language architecture supports the de-

velopment of new languages through the following steps,
which assume that (a) the appropriate language family
has already been identi�ed and (b) there is not already
a language in that family suitable for the task at hand.
The steps are listed in order of diÆculty.

� Identify appropriate language units. It may be that
all that is required is some composition of the ex-
isting language units. In which case, de�ning the
language is a matter of having the new language
extend each of the chosen language units.

� Specialise existing language units. The language
may require some specialisation of language units
before they are composed. For example, it may
have stronger well-formedness constraints, or spe-
cialist forms of certain model elements. In this
case, those units should be extended, and the ex-
tended versions merged with any other units re-
quired to form the language.

� Create new language units. If there are elements of
the language which can not be supplied by existing
language units, then it will be necessary to con-
struct new language units. These could be created
from scratch, or existing templates used to gener-
ate the new unit. The application of templates will
depend on the richness and exibility of the tem-
plate library. (One would hope that there would

already be a rich library of templates cultivated to
support language de�nition.

4. APPLICATION TO UML2

The approach is being used in the 2U submission [20]
to the UML 2 revision process, and fragments of this
approach have been published in a series of papers [13,
1, 3, 7]. This section gives an overview of some of the
templates, language units and languages being de�ned
in that submission. (Please note that the 2u submission
is still work in progress at the time of writing, so the
fragments presented here may not exactly correspond
with the �nal version of the submission.)

4.1. Templates

The 2U submission follows the architecture outlined in
Section 3. According to this, templates are organised
into two groups: those fundamental to language de�-
nition in general, and those particular to the language
family being de�ned, in this case UML. Templates cap-
ture cross-cutting patterns of language de�nition.
Figures 6 and 7 provide an overview of some of the

more fundamental templates.

TypedElement

<TypedElement><Type>
type

0..1
*

Type,
TypedElement

Namespace

name : Name
visibility : VisibilityKind

<Named
Element>

<Namespace>

*

*

<member>

owned<Member>*0..1

<namespace>

Namespace,
NamedElement,
Member

<member>Of

Generalisable

<Element>

generalisation

1

<Element>
Generalisation

specialisation

*

Element

LanguageDomain::Templates

1

*

FIGURE 6. Generic templates (1)

The Namespace template characterises the situation
common in many languages where named elements are

The Computer Journal, Vol. ??, No. ??, ????



6 Clark, Evans & Kent

Valuespace

id : Identity

<ValueElement>

<Valuespace>

owned<ValueElement>

*

0..1 <valuespace>

ValueSpace
ValueElement

Namespace Namespace,
NamedElement,
Member

Namespace
Semantics

<Valuespace>

Namespace,
NamedElement,
Member,
ValueSpace,
ValueElement

<ValueElement>

<Namespace>

<NamedElement>

of

of

1

1

LanguageDomain::Templates

FIGURE 7. Generic templates (2)

owned by some namespace. It also identi�es members of
a namespace, which includes those owned by a names-
pace (for example, a class has members which it owns
and elements which it inherits). TypedElement is self-
explanatory. Generalisable is a template that cap-
tures the notion of generalisation and specialisation.
Valuespace is like Namespace except that it is intended
to be used in the semantics domain part of a language
de�nition. This is then combined with Namespace to
give a NamespaceSemantics template.
The templates are accompanied by various query

operations and well-formedness constraints written in
OCL. For example, the template NamespaceSemantics
has the following well-formedness constraint, which en-
sures that the value elements in a valuespace are values
of named elements in a namespace.

context NamespaceSemantics inv:

Values of <Namespace> contain

values of <NamedElement>

self.owned<NamedElementValue>->forAll(c |

self.of.owned<NamedElement>->exists(d |

c.of = d))

Note how the constraint, including the initial com-

ment, is also parameterised by arguments of the tem-
plate. When the template is instantiated, the result will
include a constraint of this form, with template argu-
ments substituted appropriately.
These templates illustrate the general principle of

building a template library. That is, start simple, build-
ing up more complex templates in small incremental
templates, often by combine other templates. For ex-
ample, NamespaceSemantics is constructed by merging
two more basic templates, then adding a couple of as-
sociations and constraints.

Namespace

StructuralFeature
Classifier

Namespace,
NamedElement,
Member

Classifier,
StructuralFeature,
Type

TypedElement

Type,
TypedElement

Type,
StructuralFeature

Classifier,
StructuralFeature,
StructuralFeature

Generalisable

Element

Classifier

Templates

UML

Templates

LanguageDomain

isStatic : Boolean

<Feature>

<Feature
Classifier>

*

*
inherited<Feature>

inheriting<Feature>

FIGURE 8. A UML family template

In the same vein, Figure 8 illustrates the derivation
of a UML-speci�c template from the generic templates.
This uses terminology familiar to the UML community,
and provides, as a template, some of what is provided
through abstract classes in a traditional metamodelling
approach. It combines Generalisablewith Namespace

and TypedElement. The expansion of the template
StructuralFeatureClassifier is given by Figure 9.
This template illustrates how package extension and

template instantiation can be used to weave together
cross-cutting aspects captured in separate templates.
Here, the a generalisation aspect is being combined with

The Computer Journal, Vol. ??, No. ??, ????



Aspect-Oriented Metamodelling 7

StructuralFeatureClassifier

name : Name
visibility : VisibilityKind

<Structural
Feature>

<Classifier>
owned<StructuralFeature>

*owning<Classifier>

Classifier,
StructuralFeature,
Type

<Type>

<Classifier>
Generalisation

generalisation specialisation* *

1 1specific general

type

1

*

*
1

member<StructuralFeature>

*

*

inherited<StructuralFeature>

inheriting<Classifier>

FIGURE 9. StructuralFeatureClassi�er template

a typed element aspect and a namespace aspect. In the
future, we expect to develop families of templates cor-
responding to one aspect, and the language designer
will make a choice as to which version of that aspect
they wish to use. For example, this only one model of
generalisation shown here. A simpler model would be
to omit the Generalisation class. A more complex
model would have to deal with the possibility of named
elements being renamed when a namespace is gener-
alised, and might look like something like the rather
sophisticated model de�ned in [8].
Although not shown here, there is an equivalent se-

mantics template, which, in particular, deals with se-
mantics of generalisation. Other templates in devel-
opment are aiming to capture the essence of expression
languages, of action systems, and semantics for dynamic
behaviour (traces, �lmstrips, etc.).
There are also more basic templates that we are ex-

ploring. In particular, [2] describes a family of mod-
elling patterns for describing mappings in metamod-
els, that can easily be captured as templates. Map-
pings are important not only for de�ning translations
between languages, but also for de�ning the relation-
ship between di�erent aspects of a language: concrete
syntax, abstract syntax and semantics domain.

4.2. Language Units

Figure 10 shows the current arrangement of language
units in the 2u submission.
This arrangement grows language units in layers.

Datatypes, Classes and Expressions are at the top of
the tree. Associations are layered on Classes (their
ends refer to classes) and Packages on Associations and
Datatypes (packages can contain associations, classes
and datatypes). Queries are layered on top of Classes
(classes can contain queries) and Expressions (the re-
sult of a query is de�ned by expressions). Constraints

QueriesPackages

Classes

Constraints

Associations

UML2::LanguageUnits::Core

DataTypes Expressions

Actions

Templates Operations

FIGURE 10. UML2 language units

are layered on Queries (constraints may refer to queries
and are special kinds of expression|Queries extends
Expressions). Operations are layered over Queries, and
actions (which de�ne the meaning of both operations
and queries, plus a core action \calculus") on them.
Language units are built from templates. For ex-

ample, consider the derivation of the Classes and
Associations units, in Figure 11.
Both are built from the same template

(StructuralFeatureClassifier) with Associations

also being derived from a Multiplicity template.
Only the derivation of abstract syntax has been shown.
Semantics would be derived from one of the semantics
templates (see Section 4.1) in combination with this.
We have also omitted to show the model elements de-
�ned locally in each of the LUs. This can be deduced
by comparing the expansion of the LUs in Figure 12
with the StructuralFeatureClassifier template
in Figure 9. For example, in Classes a generlisa-
tion arrow between Class and Classifier has been
added, and in Associations some extra detail about
navigable ends is required.
The choice of language units is a matter of design.

The current arrangement is quite coarse-grained, and
has the advantage of remaining relatively uncompli-
cated, whilst still maintaining a separation of concerns.
A disadvantage is that it limits the ways in which lan-
guage units can be combined. For example, whilst it
is possible to build a language from these units which,
say, combines associations with classes queries and con-
straints, it is not possible to build one which combines
packages with classes and constraints, but no queries
and no associations (in such a language, constraints
would apply to attributes). If one examines the lan-
guage units closely, one sees that actually the depen-
dencies between the language units are less than the

The Computer Journal, Vol. ??, No. ??, ????



8 Clark, Evans & Kent

StructuralFeatureClassifier

Classifier,
StructuralFeature,
Type

Associations

Association,
AssociationEnd,
Class

AbstractSyntax

Multiplicity

AssociationEnd

TypedFeature

Classes

Class,
Attribute,
Classifier

AbstractSyntax

UML2::Templates

UML2::LUs

Core

FIGURE 11. Derivation of Classes and Associations LUs

current layering would suggest, so a refactoring that re-
duces layering and introduces greater orthogonality be-
tween the packages might be possible. Indeed, this has
been achieved to some extent in the current model.
Consider again the Classes language unit in Figure

12. This shows the de�nition of an Attribute class with
type Classifier. Class is a subclass of Classifier.
Given that, in this language unit, the only possible
types for attributes are classes, one might surmise that
Classifier is redundant. It is included to provide a
\plug point" for combination with other language units.
So, if one wants a language that includes datatypes
as well as classes, one can combine the Classes pack-
age with the Datatypes package. This has classes like
Datatype and CollectionType which are also subclasses
of Classi�er. Separating Classes and Datatypes into
separate LUs in this way, gives greater exibility to the
language designer, by allow him or her to mix a de�-
nition of classes with di�erent collections of datatypes,
or indeed anything else that the designer chooses could
act as a type for an attribute.
It is interesting to note that subclassing is the device

that has been used to support plugpoints when merg-
ing composing language units. The underlying reason
is that a class in one language unit needs to a poly-

Associations::AbstractSyntax

name : Name
visibility : VisibilityKind

AssociationEnd

Association
ownedAssociationEnd

*owningAssociation

Class

Association
Generalisation

generalisation specialisation* *

1 1specific general

type

1

*

*

memberAssociationEnd
*

*

*

inheritedAssociationEnd

inheritingAssociation

NavigableEnd

lower : Integer
upper : Integer
isUnlimited : Boolean

Range

multiplicity 0..1

range *

Property

property

isOrdered : Boolean

Multiplicity

Classes::AbstractSyntax

name : Name
visibility : VisibilityKind

Attribute

Class
ownedAttribute

*owningClass

Classifier

Class
Generalisation

generalisation specialisation* *

1 1specific general

type

1

*

*

memberAttribute
*

*

*

inheritedAttribute

inheritingClass

FIGURE 12. Classes and Associations LUs

morphic reference to another class (an attributes type
is a Classifer), which can be ful�lled by objects of
classes provided by another language unit (Datatype
and CollectionType in the Datatypes LU). Thus
package extension does not mean that class inheritance
can be dispensed with; only that the latter need not
be used for reuse (templates can do that), but instead
reserved for cases where a polymorphic reference is re-
quired.

4.3. Languages

The third element in the metamodelling architecture
is the de�nition of languages. The di�erence between
languages and language units is one of intended use.
Language units are intended to provide relatively small,
self-contained packages of language features that have
been designed to be composed together in di�erent com-
binations to form di�erent languages in the family. Lan-
guages are intended to be used in a particular context.
There are many di�erent applications to which UML

(or, more accurately, specialised subsets of UML) are
being used, and this has given rise to a number of dif-

The Computer Journal, Vol. ??, No. ??, ????



Aspect-Oriented Metamodelling 9

ferent UML pro�les [14], in addition to ad-hoc subsets
that, for example, are typically used in books on UML.
The 2U submission has so far focussed on the language
units required to de�ne two languages. The �rst is the
modelling language that is part of the Meta Object Fa-
cility (MOF) [15]. This is the language used for meta-
modelling, which is also currently being revised [5]. The
de�nition of MOF is given by Figure 13.

QueriesPackages

Classes

Constraints

Associations

UML2::LanguageUnits::Core

DataTypes Expressions

Actions

Templates Operations

UML2::Languages

MOFLanguage

FIGURE 13. MOF language

The second language is a general purpose language
for platform, independent modelling (PIM). This is
like MOF, with the possible exclusion of templates (al-
though the growing popularity of AOSD would suggest
that they should be included), and the de�nite inclusion
of actions. Such a language will also include additional
language units layered on actions, dealing with interac-
tions, state machines and operation speci�cations. Of
course, the language architecture, means that there may
be a small sub-family of PIM languages, which will pro-
vide di�erent combinations of the language units.
Other languages deemed important, but which have

not yet been brought into focus, include:

� Programming language speci�c variants of UML
(e.g. depicting Java programs using class diagrams
and interaction diagrams).

� Languages for describing component-oriented sys-
tems, using notions such as component, port and
connector. The need for such languages is illus-
trated by two UML pro�les, for Enterprise Dis-

tributed Object Computing (EDOC) [17] and En-
terprise Application Integration (EAI) [16].

5. TOOLS

The vision is not only to have a means for de�ning fam-
ilies of languages and the mappings between them, but
also for those de�nitions to be used to customise and/or
generate tools to support the languages and mappings
so de�ned.

We have been investigating how this might be done.
A ptototype tool (dubbed MMT | Meta-Modeling
Tool) has been constructed. This is still under develop-
ment and has its roots in OO meta-programming the-
ory and systems such as Smalltalk, CLOS and the Ob-
jVLisp model. It directly interprets metamodel de�ni-
tions expressed in our language, including a de�nition
of the metamodeling language itself, on which it is boot-
strapped. Only a tiny kernel of the tool is hardcoded;
a semantics for this kernel is de�ned in [6].

It is possible to input and check metamodel de�ni-
tions in the tool. This includes some support for in-
stantiation of templates and composition of packages
through package extension. For the tool to directly in-
terpret a metamodel de�ntion, it is necessary to pro-
vide that de�nition in an `executable' form. This can
make the de�nition less readable, and we are working
on de�ning templates which combine both a descrip-
tive and executable de�nition of common metamod-
elling patterns. The tool is itself bootstrapped using
a metamodel de�nition of the metamodelling language
being employed. This includes a de�nition of concrete
syntax, so the user interface can be con�gured by alter-
ing the metamodel de�nition.

This characterises one approach to tooling. Another
approach would be to take the MOF route, and provide
tools that generate other tools. MOF is now supported
by tools that, for example, generate working reposito-
ries for models in a language from metamodel de�ni-
tions of that language [12].

One possibility for further work in this area would be
to generate editors and viewers from de�nitions which
include concrete syntax as well as abstract syntax. An-
other, to generate tools that can exploit the semantics
de�nition. One kind of tool we have in mind, is a tool
that exploits the de�nition of semantics: the mapping
between abstract syntax and semantics domain. We
imagine a tool that allows examples and counter exam-
ples to be created and checked against a model, and that
provides assistance in constructing a model from a body
of examples and counter-examples. Such a tool would
be useful, for example, in validating a model with a cus-
tomer, or constructing a model from customer require-
ments, which are often expressed in terms of examples
and counter examples, such as use case scenarios.

The Computer Journal, Vol. ??, No. ??, ????



10 Clark, Evans & Kent

6. CONCLUSIONS

This paper has described an approach to language
design and de�nition called aspect-oriented metamod-

elling. This uses mechanisms for aspect-oriented mod-
elling, namely package templates and package exten-
sion, for metamodelling. We have shown how these
mechanisms can be used to de�ne a metamodel archi-
tecture that supports the de�nition of language families,
and illustrated this with fragments of the 2U UML sub-
mission, which is applying the approach in response to
the UML 2.0 RFP from the OMG. This demonstrates
that it is possible to capture commonly-occurring as-
pects of language de�nition as templates, which can
then be used to stamp out signi�cant parts of the de�-
nition of UML, both syntax and semantics, as language
units that can then be combined to form di�erent lan-
guages.
Although the work with UML looks promising, there

are still questions to be answered with respect to this
approach to metamodelling. One concerns the granu-
larity of language unit required to allow languages to
be constructed just by composing di�erent units. It
is hard to determine the optimum without building a
number of languages in the family. One future work
item is to apply the approach to de�ning a number of
the UML pro�les currently being rati�ed by the OMG
[14]. This should establish a relatively stable set of lan-
guage units for UML. Another concerns the applicabil-
ity of templates: how applicable is the existing set of
language de�nition templates we have de�ned? This
can be determined by trying to use the templates to
de�ne other languages which are not part of the UML
family. Some of the languages for which XML is being
used to de�ne might be interesting candidates, includ-
ing XML itself. A third question concerns the template
mechanism itself. In Section 4.1 we mentioned the need
to develop families of templates dealing each dealing
with a particular aspect, such as generalisation, in the
context of language design. The development of such
families could be facilitated by the inclusion of condi-
tional statements in a template, which could be used
to control which parts of a template are instantiated.
The conditions could be controlled (though not exclu-
sively) by boolean switches passed as argument to the
template. This would allow a template family to be
captured as a single template.
The prospect of tools that can interpret metamodel

de�nitions is exciting. E�ort so far has focussed on the
development of tools which ignore templates once the
result of instantiating the template has been obtained.
This fails to exploit the fact that a particular template
has been used. For example, we have been develop-
ing templates for expressing mappings between models,
based on patterns for modelling relationships [2]. We
suspect that if mappings are modelled as instantiations
of this template, then it will be much easier to generate
tools that implement those mappings to perform use-

ful tasks, such as tracking consistency between models,
generating one model from another, and so on. Solving
this problem, could help with the generation of tools
to support the concrete/abstract syntax and semantics
mappings, such as those suggested in Section 5.

ACKNOWLEDGEMENTS

Many of the ideas described herein were developed in
conjunction with and support of a number of collabo-
rators. Speci�c thanks go to Steve Cook, who facili-
tated the early development of the ideas in a collabora-
tion with IBM [1], and members of the 2U UML2 sub-
mission team [20]. Stuart Kent is partially supported
by a Royal Society Industry Fellowship grant. Tony
Clark and Andy Evans are partially supported by Tata
Consultancy Services and Andy Evans is partially sup-
ported by BAE Systems.

REFERENCES

[1] Clark A., Evans A., Kent S., Brodsky S., and Cook S.,
A feasibility study in rearchitecting UML as a family of
languages using a precise OO meta-modeling approach,
Available from www.puml.org, September 2000.

[2] D. Akehurst and S. Kent, A relational approach to
de�ning transformations in a metamodel, Submitted to
UML'02, March 2002.

[3] J. M. Alvarez, A. Clark, A. Evans, and P. Sammut, An
action semantics for MML, Proceedings of The Fourth
International Conference on the Uni�ed Modeling Lan-
guage (UML'2001) (C. Kobryn and M. Gogolla, eds.),
LNCS, Springer, 2000.

[4] OMG Analysis and Design Task Force,
UML 2.0 requests for proposals, OMG doc-
ument number ptc/02-01-23, available from
www.omg.org/techprocess/meetings/schedule/, 2001.

[5] , MOF 2.0 requests for proposals, OMG
document number ptc/02-01-23, available from
http://www.omg.org/techprocess/meetings/schedule/,
2002.

[6] A. Clark, A. Evans, and S. Kent, The meta-modeling
language calculus: Foundation semantics for uml,
Proceedings of ETAPS 01 FASE Conference, LNCS,
Springer, April 2001.

[7] , Engineering modelling languages: A precise
meta-modelling approach, Proceedings of ETAPS 02
FASE Conference, LNCS, Springer, April 2002.

[8] , Package extension, Submitted to UML'02,
March 2002.

[9] S. Clarke, Composition of object-oriented software de-
sign models, Ph.D. thesis, Dublin City University, Jan-
uary 2001.

[10] , Extending standard uml with model compo-
sition semantics, Science of Computer Programming
(2002), To appear.

[11] D. D'Souza and A. Wills, Objects, components
and frameworks with UML: The Catalysis approach,
Addison-Wesley, 1998.

[12] DSTC, dMOF: An OMG Meta Object
Facility implementation, available from

The Computer Journal, Vol. ??, No. ??, ????



Aspect-Oriented Metamodelling 11

http://www.dstc.edu.au/Products/CORBA/MOF/,
2002.

[13] Andy Evans and Stuart Kent, Core meta-modelling se-
mantics of UML: The pUML approach, UML'99 - The
Uni�ed Modeling Language. Beyond the Standard. Sec-
ond International Conference, Fort Collins, CO, USA,
October 28-30. 1999, Proceedings (Robert France and
Bernhard Rumpe, eds.), LNCS, vol. 1723, Springer,
1999, pp. 140{155.

[14] Object Management Group, Cata-
log of OMG modeling speci�cations,
www.omg.org/technology/documents/modeling spec catalog.htm.

[15] , The Meta Object Facility (MOF) version 1.3.1,
OMG document number formal/2001-11-02, available
from http://www.omg.org/, 2002.

[16] , Uml pro�le for enterprise application integra-
tion EAI (�nal adopted speci�cation), OMG document
number ptc/02-02-02, available from [14], 2002.

[17] , Uml pro�le for enterprise distributed object
computing EDOC (�nal adopted speci�cation), OMG
document number ptc/02-02-05, available from [14],
2002.

[18] S. Kent, Model driven engineering, Proceedings of
Third International Conference on Integrated Formal
Methods, May 2002, Invited paper.

[19] OMG Architecture Board ORMSC,Model driven archi-
tecture (MDA), OMG document number ormsc/2001-
07-01, available from www.omg.org, July 2001.

[20] 2U Submitters, Submission to UML 2.0 RFP's, avail-
able from http://www.2uworks.org.

[21] P. Tarr, H. Ossher, W. Harrison, and Jr. S. M. Sutton,
N degrees of separation: Multidimensional separation
of concerns, Proceedings of the 21st International Con-
ference on Software Engineering (ICSE'99), May 1999,
pp. 107{119.

The Computer Journal, Vol. ??, No. ??, ????


