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Verification of Linear Duration Properties over Continuous-Time
Markov Chains

TAOLUE CHEN, MARCO DICIOLLA, MARTA KWIATKOWSKA,
and ALEXANDRU MEREACRE, University of Oxford

Stochastic modelling and algorithmic verification techniques have been proved useful in analysing and
detecting unusual trends in performance and energy usage of systems such as power management controllers
and wireless sensor devices. Many important properties are dependent on the cumulated time that the device
spends in certain states, possibly intermittently. We study the problem of verifying continuous-time Markov
Chains (CTMCs) against Linear Duration Properties (LDP), that is, properties stated as conjunctions of
linear constraints over the total duration of time spent in states that satisfy a given property. We identify
two classes of LDP properties, Eventuality Duration Properties (EDP) and Invariance Duration Properties
(IDP), respectively referring to the reachability of a set of goal states, within a time bound; and the continuous
satisfaction of a duration property over an execution path. The central question that we address is how to
compute the probability of the set of infinite timed paths of the CTMC that satisfy a given LDP. We present
algorithms to approximate these probabilities up to a given precision, stating their complexity and error
bounds. The algorithms mainly employ an adaptation of uniformisation and the computation of volumes
of multidimensional integrals under systems of linear constraints, together with different mechanisms to
bound the errors.
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1. INTRODUCTION

Stochastic modelling and verification [Kwiatkowska et al. 2007] have become estab-
lished as a means to analyse properties of system execution paths, for example, depend-
ability, performance, and energy usage. Tools such as the probabilistic model checker
PRISM [Kwiatkowska et al. 2011] have been applied to model and verify many systems,
ranging from embedded controllers and nanotechnology designs to wireless sensor de-
vices and cloud computing, in some cases identifying flaws or unusual quantitative
trends in system performance. The verification proceeds by subjecting a system model
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Fig. 1. An example CTMC and its associated infinitesimal generator.

to algorithmic analysis against properties, typically expressed in probabilistic tempo-
ral logic, such as the probability of the vehicle hitting an obstacle is less than 0.0001,
or the probability of an alarm bell ringing within 10 seconds is at least 95%. Many
important properties, however, are dependent on the cumulated time that the system
spends in certain states, possibly intermittently. Such duration properties, following
the terminology of Duration Calculus (DC) [Zhou et al. 1991], have been studied in the
context of Timed Automata (TAs) [Alur et al. 1997; Bouajjani et al. 1993; Kesten et al.
1999], but are not currently supported by existing probabilistic model checking tools.
They can express, for example, that the probability of an alarm bell ringing whenever
the button has been pressed, possibly intermittently, for at least 2 seconds in total is
at least 95%.

In this article, we consider Continuous-Time Markov Chain (CTMC) models and
study algorithmic verification for Linear Duration Properties (LDP), that is, prop-
erties involving linear constraints over cumulated residence time in certain states.
CTMCs are widely used for performance and dependability analysis, aided by recent
improvements [Baier et al. 2010]. CTMCs allow the modelling of real-time passage
in conjunction with stochastic evolution governed by exponential distributions. They
can be thought of as state transition systems, in which the system resides in a state
on average for 1/r time units, where r is the exit rate, and transitions between the
states are determined by a discrete probability distribution. As a concrete example of a
system and property studied here, consider the Dynamic Power Management System
(DPMS) from Qiu et al. [2001], analysed in Norman et al. [2005] against properties
such as average power consumption. The DPMS includes a queue of requests, which
have an exponentially distributed inter-arrival time, a power management controller,
and a service provider. The power management controller issues commands to the ser-
vice provider depending on the power management policy, which involves switching
between different power-saving modes. Figure 1 depicts a CTMC model of the service
provider for a Fujitsu disk drive. It consists of four states: Busy, Idle, Standby, and
Sleep. In this article, we are interested in computing the probability of, for instance,
that in 10 hours, the energy spent in the Standby state is less than the energy spent in
the Sleep state and the energy spent in the Idle state is less than one third of the energy
spent in the Busy state. We remark that the restriction to exponential distributions
is not critical, since one can approximate any distribution by phase-type distributions,
resulting in series-parallel combinations of exponential distributions [Neuts 1981].

The focus of CTMC model checking has primarily been on algorithms for specifica-
tions expressed in stochastic temporal logics, including branching-time variants, such
as CSL [Aziz et al. 2000; Baier et al. 2003; Zhang et al. 2012], as well as Linear-time
Temporal Logic (LTL), whose verification reduces to the same problem for embedded
Discrete-Time Markov Chains (DTMCs) [Courcoubetis and Yannakakis 1995]. Model
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checking Deterministic TA (DTA) properties can be achieved by a reduction to com-
puting the reachability probability in a piecewise-deterministic Markov processes (PDP,
[Davis 1993]), based on the product construction between the CTMC and the DTA
[Chen et al. 2009, 2011b; Barbot et al. 2011]. In Chen et al. [2011a], time-bounded
verification of properties expressed by Metric Temporal Logic (MTL) or general TAs,
which allow nondeterminism, is formulated. Approximation algorithms are proposed,
based on path exploration of the CTMC, constraints generation, and reduction to vol-
ume computation. There, “time-bounded” refers to the fact that only timed paths over a
time interval of fixed, bounded length are considered, for example, the probability of an
alarm bell ringing whenever the button has been pressed for at least 2 seconds contin-
uously. However, as pointed out in Alur et al. [1997], the expressiveness of DTA/MTL
is limited and cannot express duration-bounded causality properties which constrain
the accumulated satisfaction times of state predicates along an execution path, visited
possibly intermittently.

Contributions. We consider Linear Duration Formulas (LDF) expressed as finite con-
junctions of linear constraints on the cumulated time spent in certain states of the
CTMC; see Eq. (1) for the precise formulation. Since we work with CTMCs, we inter-
pret these formulas over finite and infinite timed paths. We distinguish two classes of
linear duration properties. The difference lies only in how to interpret LDF over infinite
timed paths. (Note that the LDF over finite timed paths is interpreted in a uniform
way.)

—Eventuality Duration Property (EDP). Given a set of goal states G of the CTMC
under consideration, an infinite path is said to satisfy LDF if its prefix until (the first
occurrence of) G is reached satisfies EDP. This is similar to Alur et al. [1997] and
Kesten et al. [1999]. Here, we also identify two variants, the time-bounded case and
the unbounded case;

—Invariance Duration Property (IDP). For an infinite path to satisfy LDF, we require
that each prefix of the infinite path satisfies LDF, again distinguishing the time-
bounded case and the unbounded case. This is similar to Bouajjani et al. [1993].
We remark that, in DC, a stronger requirement is imposed, that is, any fragment
(not only the prefix, but also starting from an arbitrary state) of the infinite path
must satisfy LDF. We do not adopt this view, as we work in the traditional setting of
temporal logics, rather than an interval temporal logic.

The central questions we consider is how to compute the probability of the set of timed
paths of the CTMC which satisfy linear-time properties expressed as LDF. To the best
of our knowledge, this is the first article that considers algorithmic verification of
duration properties for continuous-time stochastic models like CTMCs.

An extended abstract of the current article has appeared in Chen et al. [2012]. In
addition to providing full proofs, more explanation, and examples which are omitted
from Chen et al. [2012], this article also includes new results, namely a sharpened
error bound (refer to Section 3.2), and an extension to prefix-accumulation assertions
in the CTMC setting (refer to Section 5). We now give a brief account of the techniques
introduced in this article. We propose two approaches to verify the time-bounded vari-
ant of EDP. First, we define a system of Partial Differential Equations (PDEs) and a
system of integral equations whose solutions capture the probability that an EDP is
satisfied on a given CTMC. Second, we leverage the uniformisation method [Jensen
1953], which reduces the problem to computing the probability of a set of finite timed
paths under a system of linear constraints. This can be solved through the computation
of volumes of convex polytopes. In the unbounded case, by exploiting techniques mainly
from matrix theory and linear algebra, we show how to approximate the probability
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by choosing a sufficiently large timebound. This is of independent interest, and can
be used elsewhere, for example, to improve our previous results [Chen et al. 2011b,
2011a]. To verify an IDP, in the unbounded case we perform a graph analysis of the
CTMC according to the LDF, and thus obtain a variant of EDP, which can be solved by
extending the approaches developed in the previous case. The time-bounded case can
be tackled accordingly and is indeed easier.

We remark that LDPs are closely related to Markovian Reward Models (MRM, [Baier
et al. 2000]), which are CTMCs augmented with multiple reward structures assign-
ing real-valued rewards to each state in the model. A large variety of performability
measures for MRMs can be expressed in Continuous Stochastic Reward Logic (CSRL,
[Baier et al. 2000]). CSRL model checking for MRMs [Haverkort et al. 2002; Cloth
2006] involves time-bounded and/or reward-bounded reachability problems, which can
be formulated in terms of model checking of LDP, over CTMCs, by treating the rewards
in the MRM as coefficients of linear duration formulas. (This will be made clearer in
Section 2.3.) We emphasise that, in contrast to Baier et al. [2000], Haverkort et al.
[2002], and Cloth [2006], we allow the coefficients in LDF to be negative, and hence can
deal with CSRL in MRMs with arbitrary rewards. The link to MRMs (with arbitrary
rewards) is beneficial, as energy constraints [Bouyer et al. 2008; Bouyer et al. 2010]
studied in TA can be naturally adapted to stochastic models (such as CTMCs), and can
be solved by approaches presented in the current article.

Related work. Algorithmic verification of duration properties has primarily been
studied in the setting of TA, for instance [Alur et al. 1997; Bouajjani et al. 1993;
Kesten et al. 1999]. Similarly to our setting, TA also admit the unfolding of the system
into timed execution paths, except that we have to calculate the probability of the
set of paths satisfying a given property, rather than quantifying over their existence.
The “duration-bounded reachability” problem of Alur et al. [1997] can be viewed as a
subclass of EDP, in view of the requirement that all coefficients appearing in the linear
constraints are nonnegative. Reachability for integral graphs [Kesten et al. 1999] can
be reduced to verification of EDP for TA, which is solved by mixed linear-integer
programming. Bouajjani et al. [1993] extended the branching real-time logic TCTL
with duration constraints and studied response/persistence properties. For DC, which
is based on interval temporal logic that differs from our setting, the focus has been
on so-called Linear Durational Invariants (LDI, [Zhou et al. 1994]). Again, TA (and
their subclasses or extensions) are considered, and different techniques are proposed,
for instance, reduction to linear programming or CTL, and discretisation. We mention,
for example, Li et al. [1997], Thai and Hung [2004], and Zhang et al. [2008], which are
specific to TA and cannot be adapted to CTMCs.

There is only scant work addressing probabilistic/stochastic extensions of DC. Sim-
ple Probabilistic Duration Calculus, interpreted over (finite-state) continuous semi-
Markov processes, is introduced in Hung and Zhou [1999], together with the associated
axiomatic system, and applied to QoS contracts in Guelev and Hung [2010]. However,
algorithmic verification is not addressed. Hung and Zhang [2007] studied verification
problems of (subclasses of) LDI in the setting of probabilistic TA which only involves
discrete probabilities. The technique is an adaption of discretisation for TA.

We also mention Boker et al. [2011], which considers CTL and LTL extended
with prefix-accumulation assertions for a quantitative extension of Kripke structures
(i.e., weighted Kripke structures). (Un)decidability results are obtained. The prefix-
accumulation assertions are similar to our linear constraints modulo the difference
between models under consideration (CTMCs are a continuous-time model with ran-
domisation, whereas Kripke structures are a discrete model without randomisation.)
For further discussion, we refer the reader to Section 5.
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Structure of the Article. This article is organized as follows. Section 2 introduces
basic definitions of CTMCs and duration properties. The relation between the CTMCs
with duration property and MRMs is also discussed. Section 3 presents results on
verification of EDP, while Section 4 presents results on IDP. Section 5 shows how to
tackle extensions to the prefix-accumulation assertions. Section 6 concludes.

2. PRELIMINARIES

2.1. Continuous-Time Markov Chains

Given a set H, let Pr: F(H) → [0, 1] be a probability measure on the measurable space
(H,F(H)), where F(H) is a σ -algebra over H.

Definition 2.1 (CTMC). A (labelled) Continuous-Time Markov Chain (CT MC) is a
tuple C = (S, AP, L, α, P, E) where :

—S is a finite set of states;
—AP is a finite set of atomic propositions;
—L : S → 2AP is the labelling function;
—α is the initial distribution over S;
—P : S × S → [0, 1] is a stochastic matrix; and
—E : S → R>0 is the exit rate function.

Example 2.2. An example CTMC is illustrated in Figure 1, where AP = {Busy, Idle,
Sleep, Standby} and α(s0) = 1 is the initial distribution (in this case, a Dirac distribu-
tion). The exit rates are indicated at the states, whereas the transition probabilities
are attached to the transitions. The CTMC is a model of the service provider of the
DPMS system described in the introduction section of the article.

In a CTMC C, state residence times are exponentially distributed. More precisely,
the residence time of the state s ∈ S is a random variable governed by an exponential
distribution with parameter E(s). Hence, the probability to exit state s in t time units
(t.u. for short) is given by

∫ t
0 E(s) · e−E(s)τ dτ ; and the probability to take the transition

from s to s′ in t t.u. equals P(s, s′) · ∫ t
0 E(s) · e−E(s)τ dτ . A state s is absorbing if P(s, s) = 1.

We also define the infinitesimal generator Q of C as

Q = E · P − E,

where E is the diagonal matrix with exit rates on diagonal. Occasionally we use X(t) to
denote the underlying stochastic process of C.

We write π (t) for the transient probability distribution, where, for each s ∈ S,

πs(t) = Pr({X(t) = s})
is the probability to be in state s at time t. It is well-known that π (t) completely depends
on the initial distribution α and the infinitesimal generator Q, that is, it is the solution
of the Chapman-Kolmogorov equation

dπ (t)
dt

= π (t)Q, π (0) = α.

Note that efficient algorithms (e.g., the uniformisation approach; refer to Section 3.1.2,
Eq. (6)) exist to compute π (t).

An infinite timed path in C is an infinite sequence

ρ = s0
t0−→ s1

t1−→ s2 · · · tn−1−→ sn . . . ;

and a finite timed path is a finite sequence

σ = s0
t0−→ · · · tn−1−→ sn.
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In both cases we assume that ti ∈ R>0 for each i ≥ 0; moreover, we write ρ[0..n] for σ .
In what follows we usually follow the convention to let ρ (respectivelys σ ) range over
infinite (respectivelys finite) timed paths, unless otherwise stated. We define |σ | := n
to be the length of a finite timed path σ . For a finite or infinite path θ , θ [n] := sn is
the (n + 1)-th state of θ and θ〈n〉 := tn is the time spent in state sn; let θ@t be the state
occupied in θ at time t ∈ R≥0, that is, θ@t := θ [n], where n is the smallest index such that∑n

i=0 θ〈i〉 > t. Let PathsC denote the set of infinite timed paths in C, with abbreviation
Paths when C is clear from the context. Intuitively, a timed path ρ suggests that the
CTMC C starts in state s0 and stays in this state for t0 t.u., and then jumps to state
s1, staying there for t1 t.u., and then jumps to s2 and so on. An example timed path is

ρ = s0
3−→ s1

2−→ s0
1.5−→ s1

3.4−→ s2 . . . with ρ[2] = s0 and ρ@4 = ρ[1] = s1.
Sometimes we refer to Discrete-Time Markov Chains (DTMCs), denoted by

D = (S, AP, α, L, P),

where the components of the tuple have the same meaning as those of CTMCs defined
in Definition 2.1. In particular, we say such D is the embedded DTMC of the CTMC
C. Similarly, a (finite) discrete path ς = s0 → s1 → · · · is a (finite) sequence of states;
ς [n] denotes the state si, ς [0..n] denotes the prefix of length n of ς , and |ς | denotes the
length of ς (in case that ς is finite). We also define PathsD to be the set of all infinite
paths of the DTMC D. Given a finite discrete path ς = s0 → · · · → sn of length n
and x0, . . . , xn−1 ∈ R>0, we define ς [x0, . . . , xn−1] to be the finite timed path σ such that
σ [i] := si and σ 〈i〉 := xi for each 0 ≤ i < n. Let 	 ⊆ Rn

>0, then

ς [	] = {ς [x0, . . . , xn−1] | (x0, . . . , xn−1) ∈ 	}.
The definition of a Borel space on timed paths of CTMCs follows Baier et al. [2003].

A CTMC C yields a probability measure PrCα on PathsC as follows. Let s0, . . . , sk ∈ S
with P(si, si+1) > 0 for 0 ≤ i < k and I0, . . . , Ik−1 be nonempty intervals in R≥0. Let
C(s0, I0, . . . , Ik−1, sk) denote the basic cylinder set consisting of all ρ ∈ Paths such that
ρ[i] = si (0 ≤ i ≤ k) and ρ〈i〉 ∈ Ii (0 ≤ i < k). F(Paths) is the smallest σ -algebra on Paths,
which contains all sets C(s0, I0, . . . , Ik−1, sk) for all state sequences (s0, . . . , sk) ∈ Sk+1

with P(si, si+1) > 0 for (0 ≤ i < k) and I0, . . . , Ik−1 ranging over all sequences of
nonempty intervals in R>0. The probability measure PrCα on F(Paths) is the unique
measure defined by induction on k by PrCα(C(s0)) = α(s0) and for k > 0:

PrCα(C(s0, I0, . . . , Ik−1, sk))

= PrCα(C(s0, I0, . . . , Ik−2, sk−1)) ·
∫

Ik−1

P(sk−1, sk)E(sk−1) · e−E(sk−1)τ dτ .

Sometimes we write Pr instead of PrCα when C and α are clear from the context.
Elements of the σ -algebra denote events in the probability space. We now define two
such events that will be needed later.

Definition 2.3. Given a CTMC C and B ⊆ S, we define:

—♦≤T B = {ρ ∈ PathsC | ∃n.ρ[n] ∈ B and
∑n−1

i=0 ρ〈i〉 ≤ T }, that is, ♦≤T B denotes the set
of (infinite) timed paths which reach B in time interval [0, T ]. Note that PrC(♦≤T B)
can be computed by a reduction to the computation of the transient probability
distribution; see Baier et al. [2003].

—♦B = {ρ ∈ PathsC | ∃n.ρ[n] ∈ B}, that is, ♦B denotes the set of (infinite) timed paths
which reach B. (This is the unbounded variant of ♦≤T B.) Note that PrC(♦B) is
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essentially the reachability probability of B in the embedded DTMC of C; see Baier
et al. [2003].

For any two events 
1 and 
2, we write Pr(
1 | 
2) for the conditional probability of

1 given 
2, that is,

Pr(
1 | 
2) = Pr(
1 ∩ 
2)
Pr(
2)

.

2.2. Duration Properties

We first introduce a language which includes the propositional calculus augmented
with the duration function

∫
and linear inequalities. In the remainder of this section,

we assume a CTMC C = (S, AP, L, α, P, E).
State formulas are defined inductively as

sf ::= ap | ¬sf | sf1 ∧ sf2,

where ap ∈ AP. Given a state formula sf and a state s ∈ S we say that s satisfies the
state formula sf, denoted s |= sf , iff

s |= ap ⇔ ap ∈ L(s)
s |= ¬sf ⇔ s �|= sf
s |= sf1 ∧ sf2 ⇔ s |= sf1 and s |= sf2.

The duration function
∫

is interpreted over a finite timed path. Let sf be a state

formula and σ = s0
t0−→ . . .

tn−1−→ sn. The value of
∫

sf for σ , denoted �sf�σ , is defined
as

∑
0≤i<n,
σ [i]|=sf

ti. That is, the value of
∫

sf equals the sum of durations spent in states

satisfying sf.
A Linear Duration Formula (LDF) is of the form

ϕ =
∧
j∈J

⎛⎝∑
k∈Kj

c jk

∫
sf jk ≤ Mj

⎞⎠ , (1)

where c jk, Mj ∈ R, sf jk are state formulas, and J, Kj for j ∈ J are finite index sets.

Remark 2.4. We did not introduce the disjunction or (more general) Boolean oper-
ators in Eq. (1) for simplicity. All our results can be generalised to these cases by the
inclusion-exclusion principle, paying the price of higher complexity.

Definition 2.5. Given a finite timed path σ = s0
t0−→ s1

t1−→ · · · tn−1−→ sn and an LDF
ϕ of the form defined in Eq. (1), we write σ |= ϕ if for each j ∈ J,∑

k∈Kj

c jk · �sf jk�σ ≤ Mj .

Example 2.6. For the CTMC in Figure 1, the LDF ϕ = ∫
Idle− 1

3

∫
Busy ≤ 0 expresses

the constraint that during the evolution of the CTMC the accumulated time spent in the
Idle state must be less than or equal to one third of the accumulated time spent in the
Busy state.
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Inspired by the notation of Zhou et al. [1994], we shall also work on a slight extension
of LDF, that is, formulas of the form1:

� :=
∫

1 ≤ T → ϕ,

where T ∈ R≥0 ∪ {∞}. According to Definition 2.5,
∫

1 denotes the total time spent on
a finite timed path σ . Hence σ |= � if ϕ holds whenever the total time of σ is less or
equal than T . Note that, if T = ∞, � simply degenerates to ϕ.

In general, given a CTMC and a duration property specified by an LDF, we are
interested in computing the probability of infinite timed paths satisfying the LDF. We
now generalise the satisfaction relation on finite paths, as defined in Definition 2.5,
to infinite paths. Here we have two options, namely, using the finitary and infinitary
conditions. The former is motivated by standard automata theory, while the latter is
natural when one thinks of “globally” (e.g., the � operator in LTL).

Definition 2.7. Let ρ = s0
t0−→ s1

t1−→ . . . be an infinite timed path and ϕ (or �) be
an LDF.

—Finitary satisfaction condition. Given a set of goal states G ⊆ S, we write ρ |=G ϕ if
there exists some i ∈ N such that:
(1) ρ[i] ∈ G and for any 0 ≤ j < i, ρ[ j] /∈ G; and
(2) ρ[0..i] |= ϕ (refer to Definition 2.5).
Furthermore, we write ρ |=G

T ϕ for a given T ∈ R≥0 if, in addition to (1) and (2),∑i−1
j=0 ρ〈 j〉 ≤ T holds.

—Infinitary satisfaction condition. We write ρ |= ϕ if, for any n ≥ 0, ρ[0..n] |= ϕ (refer
to Definition 2.5).

Problem statements. Corresponding to Definition 2.7, we focus on algorithmic verifi-
cation problems for two classes of LDP, that is, Eventuality Duration Property (EDP)
and Invariance Duration Property (IDP), given shortly.

—Verification of EDP. Formally, given a CTMC C, a set of goal states G ⊆ S, and
an LDF � = ∫

1 ≤ T → ϕ, compute the probability of the set of infinite timed
paths of C satisfying � under the finitary satisfaction condition. Depending on T , we
distinguish two cases:
—Time-bounded case: T < ∞, for which we denote the desired probability by

Prob(C |=G �).
—Unbounded case: T = ∞, for which we denote the desired probability by

Prob(C |=G ϕ) . Note that this is valid as, in this case, � is simply equivalent
to ϕ.

The algorithms for these two cases are given in Section 3.1 and Section 3.2, respec-
tively.

—Verification of IDP. Formally, given a CTMC C and an LDF � = ∫
1 ≤ T → ϕ, com-

pute the probability of the set of infinite timed paths of C satisfying � under the
infinitary satisfaction condition. We also have two cases, namely the time-bounded
case and unbounded case, which we denote by Prob(C |= �) and Prob(C |= ϕ) , re-
spectively. The algorithms for these two cases are given in Section 4.2 and Section 4.1,
respectively.

1Note that 1 denotes “true”, → denotes “implication”, and
∫

1 ≤ T → ϕ is a single formula.
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2.3. Relationship to MRMs

In this section, we establish a link between the EDP of CTMC and the model of MRM.
We start with some definitions.

Definition 2.8 (MRM). A (labelled) Markovian reward model M is a pair (C, r),
where C is CTMC and r : S → Rd is a reward structure which assigns to each state
s ∈ S a vector of rewards (r1(s), . . . , rd(s)).

Remark 2.9. The MRM defined in Definition 2.8 is more general than the one in
Baier et al. [2000], in the sense that we have multiple reward structures, and, more
importantly, we allow arbitrary (instead of nonnegative) rewards associated with the
states.

As mentioned in Section 1, the logic CSRL is introduced in Baier et al. [2000]. The
fundamental model checking problem for this logic (in particular, a sublogic called
CRL) is the following reward-bounded verification problem (which we extend to the
multiple-reward setting, conforming to Definition 2.8): given a set of goal states G and
a vector of reward bounds Mj , compute the probability of the paths which reach G and
in which the j-th accumulated reward does not exceed Mj for each j. Next we show
that this problem is essentially the same as EDP for CTMCs.

On the one hand, for a CTMC C and LDF ϕ, we construct an MRM C[ϕ]. For every
state si ∈ S, we define

rji =
∑
t∈Kj ,

si |=sf jt

c jt

for all j ∈ J. This yields a multiple-reward structure r with r(si) = (r0i, . . . , r(|J|−1)i).
Hence C[ϕ] = (C, r). It is straightforward to see that the constraint expressed by LDF
can be alternatively formulated as the “reward-bounded” constraint for MRMs, since∑

k∈Kj
c jk

∫
sf jk essentially denotes the accumulated rewards along a finite timed path,

and hence each Mj can be regarded as the bound of the reward.
On the other hand, given an MRM and a vector of reward bounds Mj for each reward

structure, we construct an LDF ϕ as∧
j∈J

∑
s∈S

rj(s)
∫

@s ≤ Mj,

where @s is an atomic proposition which holds exactly at state s. Hence, the reward-
bounded verification problem for MRMs can be encoded into verification of linear du-
ration properties in CTMCs.

It is straightforward to see that this correspondence, stated in the (time)-unbounded
case, can be adapted to the time-bounded case without any difficulties.

3. VERIFICATION OF EDP

In this section, we show how to verify EDP formulas. Throughout this section, we fix a
CTMC C = (S, AP, L, α, P, E), a set of goal states G ⊆ S, and an LDF

� =
∫

1 ≤ T →
∧
j∈J

⎛⎝∑
k∈Kj

c jk

∫
sf jk ≤ Mj

⎞⎠
︸ ︷︷ ︸

ϕ

.
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3.1. Time-Bounded Verification of EDP

Our task is to compute Prob(C |=G �). First observe the following.

PROPOSITION 3.1. Given a CTMC C and an LDF �, we have:

Prob(C |=G �) = Pr(♦G) − Pr(♦≤T G) + Prob
(
C |=G

T ϕ
)
.

PROOF. We have that

Prob(C |=G �) = Pr({ρ ∈ PathsC | ρ |=G �})
= Pr

({
ρ ∈ PathsC | ρ |=G ¬

(∫
1 ≤ T

)
∨ ϕ

})
,

where ϕ = ∧
j∈J

(
∑

k∈Kj
c jk

∫
sf jk ≤ Mj). We know that

¬
(∫

1 ≤ T
)

∨ ϕ = ¬
(∫

1 ≤ T
)

∨
(

ϕ ∧
∫

1 ≤ T
)

.

Therefore, we have

Prob(C |=G �) = Pr
({

ρ ∈ PathsC
∣∣∣ρ |=G ¬

(∫
1 ≤ T

)
∨
(

ϕ ∧
∫

1 ≤ T
)})

= Pr
({

ρ ∈ PathsC
∣∣∣ρ |=G ¬

(∫
1 ≤ T

)
∨
(

ρ |=G ϕ ∧
∫

1 ≤ T
)})

= Pr
({

ρ ∈ PathsC
∣∣∣ρ |=G ¬

(∫
1 ≤ T

)})
+ Pr

({
ρ ∈ PathsC

∣∣∣ρ |=G ϕ ∧
∫

1 ≤ T
})

= Pr(♦G) − Pr(♦≤T G) + Prob
(
C |=G

T ϕ
)
.

This completes the proof.

Recall that Pr(♦G) and Pr(♦≤T G) can be easily computed (refer to Definition 2.3).
Hence, the remainder of this section is devoted to computing

Prob
(
C |=G

T ϕ
)

:= Pr
({

ρ | ρ |=G
T ϕ

})
,

that is, the probability of the set of paths of the CTMC C which reach G in time interval
[0, T ] and satisfy the LDF ϕ before that happens; see Definition 2.7 (1).

3.1.1. PDE and Integral Equation Formulations. In order to compute Prob(C |=G
T ϕ), we shall

use the link to MRMs established in Section 2.3. Recall that C[ϕ] is the MRM obtained
from C and ϕ. We need an extra transformation over C[ϕ], namely, making each state
s ∈ G absorbing and setting r(s) = (0, . . . , 0) (i.e., the rewards associated with s are all
0). We denote the resulting MRM C[ϕ, G]. Recall that X(t) is the underlying stochastic
process of the CTMC C. We denote by Y(T ) the vector of accumulated rewards in the
MRM C[ϕ] (see Section 2.3) up to time T , that is,

Y(T ) = (Y0(T ), . . . , Y|J|−1(T )) =
∫ T

0
r(X(τ ))dτ

and thus each Yj(T ) ( j ∈ J) corresponds to a reward structure in C. The vector of
stochastic processes Y(T ) is fully determined by X(T ) and the vector of reward struc-
tures of the state si is r(si) = (r0i, . . . , r(|J|−1)i).
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Define F(T , y) to be the matrix of the joint probability distribution of state and
rewards with entries F(T , y)[s, s′] = Fs′

s (T , y) for s, s′ ∈ S and

Fs′
s (T , y) = Pr

⎛⎝⎧⎨⎩X(T ) = s′,
∧
j∈J

Yj(T ) ≤ yj | X(0) = s

⎫⎬⎭
⎞⎠ ,

where y = (y0, . . . , y|J|−1). Note that we define F(T , y) over the induced MRM C[ϕ, G].

THEOREM 3.2. Given a CTMC C, an LDF ϕ, a vector M = (M0, . . . , M|J|−1), where
each Mj is defined as in ϕ (refer to Eq. (1)), and a set of goal states G, we obtain the
induced MRM C[ϕ, G], and we have

Prob
(
C |=G

T ϕ
) =

∑
s∈S

∑
s′∈G

α(s)Fs′
s (T , M).

PROOF. Let s′ ∈ G be an absorbing state with r(s) = (0, . . . , 0). The probability to
be in s′ at time T is the same as the probability to reach s′ before T (see Baier et al.
[2003]). Therefore, we have that

Pr
({

ρ ∈ PathsC(s) | ρ |={s′}
T ϕ

}) = Pr

⎛⎝⎧⎨⎩X(T ) = s′,
∧
j∈J

Yj(T ) ≤ Mj | X(0) = s

⎫⎬⎭
⎞⎠ ,

which directly follows from the construction in Section 2.3.

Theorem 3.2 suggests a reduction to F(t, y), which we now characterise in terms of a
system of PDEs.

THEOREM 3.3. For an MRM C[ϕ, G] the function F(t, y) is given by the following
system of PDEs:

∂F(t, y)
∂t

+
∑
j∈J

D j · ∂F(t, y)
∂yj

= Q · F(t, y), (2)

where D j is a diagonal matrix such that D j(s, s) = rj(s).

PROOF. We want to calculate Fs′
s (t, y). Assume that we are in state z at time �t, for

some small �t. We consider three possible scenarios, and calculate the probability of
each of them:

—no jumps before �t;
—one jump before �t;
—more than one jump before �t.

No jumps before �t. The probability of this scenario is

(1 + Q(s, s)�t) · Fs′
s (t, y − r(s)�t).

Here we indicate with y − r(s)�t the vector operation resulting in

y − r(s)�t = (y0 − r0(s)�t, . . . , y|J|−1 − r|J|−1(s)�t).

One jump before �t. We denote the probability of being in state z at time �t by gz(�t).
In order to derive the probability of this scenario we split it into three different cases:

(1) All rewards positive. Let

rmax =
(

max
s∈S

{r0(s)}, . . . , max
s∈S

{r|J|−1(s)}
)
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and

rmin =
(

min
s∈S

{r0(s)}, . . . , min
s∈S

{r|J|−1(s)}
)

.

The accumulated reward in �t is at most rmax�t and at least rmin�t. It follows that

Q(s, z)�t · Fs′
z

(
t, y − rmax�t) ≤ gz(�t) ≤ Q(s, z)�t · Fs′

z (t, y − rmin�t
)

.

(2) All rewards negative. Let

rmax =
(

max
s∈S

{|r0(s)|}, . . . , max
s∈S

{|r|J|−1(s)|}
)

and

rmin =
(

min
s∈S

{|r0(s)|}, . . . , min
s∈S

{|r|J|−1(s)|}
)

.

It follows that
Q(s, z)�t · Fs′

z (t, y − rmax�t) ≤ gz(�t) ≤ Q(s, z)�t · Fs′
z (t, y − rmin�t).

(3) Mixed rewards. Let

rmax =
(

max
s∈S

{r0(s)|r0(s) ≥ 0}, . . . , max
s∈S

{r|J|−1(s)|r|J|−1(s) ≥ 0}
)

and

rmin =
(

min
s∈S

{r0(s)|r0(s) < 0}, . . . , min
s∈S

{r|J|−1(s)|r|J|−1(s) < 0}
)

.

It follows that
Q(s, z)�t · Fs′

z (t, y − rmax�t) ≤ gz(�t) ≤ Q(s, z)�t · Fs′
z (t, y − rmin�t).

In all three preceding cases, note that

lim
�t→0

gz(�t)
�t

= Q(s, z)Fs′
z (t, y).

More than one jump before �t. The probability of this scenario is negligible, that is,
o(�t). Note that lim�t→0

o(�t)
�t = 0.

The joint distribution is given by

Fs′
s (t + �t, y) = (1 + Q(s, s)�t) · Fs′

s (t, y − r(s)�t) +
∑
z�=s

gz(�t) + o(�t).

From here on we derive the equations for Fs′
s (·) only for nonzero rewards. It can be

extended to the general case. Let |y| = |J| be the cardinality of y. We rewrite Fs′
s (t, y)

as Fs′
s (t, y0, . . . , y|J|−1) to ease the notation and proofs. Given the previous notation we

can add and subtract terms from the joint distribution of X(t) and Y(t) as follows.

Fs′
s (t + �t, y) = Fs′

s (t, y − r(s)�t) + Q(s, s)�t · Fs′
s (t, y − r(s)�t) +

∑
z�=s

gz(�t) + o(�t)

=
(

Fs′
s (t, y) − Fs′

s (t, y)
)

+ Fs′
s (t, y − r(s)�t) + Q(s, s)�t · Fs′

s (t, y − r(s)�t)

+
∑
z�=s

gz(�t) + o(�t)
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Let D̂(s) be a diagonal matrix such that D̂(s)[i, i] = ri(s), for all i ≤ |J| − 1 such that
ri(s) �= 0. Note that D̂(s) is invertible. We observe that

Fs′
s (t + �t, y) − Fs′

s (t, y)

= Fs′
s (t, y − r(s)�t) − Fs′

s (t, y) + Q(s, s)�t · Fs′
s (t, y − r(s)�t)

+
∑
z�=s

gz(�t) + o(�t)

= D̂(s)
−1 · D̂(s)

(
Fs′

s (t, y − r(s)�t) − Fs′
s (t, y)

)
+ Q(s, s)�t · Fs′

s (t, y − r(s)�t)

+
∑
z�=s

gz(�t) + o(�t),

and

Fs′
s (t + �t, y) − Fs′

s (t, y)
�t

= D̂(s)
−1 · D̂(s)

(
Fs′

s (t, y − r(s)�t) − Fs′
s (t, y)

�t

)
+ Q(s, s) · Fs′

s (t, y − r(s)�t)

+
∑
z�=s

gz(�t)
�t

+ o(�t).

Notice that all the three cases result in the same outcome. Taking the limit lim�t→0
and renaming the variables we obtain that

∂Fs′
s (t, y)
∂t

+
∑
j∈J

rj(s)
∂Fs′

s (t, y)
∂yj

=
∑
z∈S

Q(s, z)Fs′
z (t, y).

In matrix notation, one has

∂F(t, y)
∂t

+
∑
j∈J

D j · ∂F(t, y)
∂yj

= Q · F(t, y),

which completes the proof.

Remark 3.4. The system of PDEs from Theorem 3.3 is a special case of the system of
PDEs given in Horton et al. [1998] and Gribaudo and Telek [2007], which is presented
for stochastic Petri nets.

Example 3.5. For the CTMC depicted in Figure 1, with r(s0) = 1 and r(s1) = −1, we
can derive the following system of PDEs.

∂Fs1
s0

(t, y)
∂t

+ ∂Fs1
s0

(t, y)
∂y

= 10Fs1
s1

(t, y) − 10Fs1
s0

(t, y)

∂Fs0
s1

(t, y)
∂t

− ∂Fs0
s1

(t, y)
∂y

= −6Fs0
s1

(t, y) + 3Fs0
s0

(t, y)

+1.2Fs0
s2

(t, y) + 1.8Fs0
s3

(t, y)

Note that trivial equations like 0 = 0 are simply omitted.

Next we provide an alternative characterisation of the joint probability distribution
in terms of a system of integral equations, as follows.
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THEOREM 3.6. The solution of the system of PDEs in Eq. (2) is the least fixpoint of
the following system of integral equations.

Fs′
s (t, y) = eQ(s,s)t Fs′

s (0, y−r(s)t) +
∫ t

0

∑
z�=s

eQ(s,s)xQ(s, z)Fs′
z (t−x, y−r(s)x)dx

PROOF. One possible solution for the hyperbolic system of PDEs obtained is the
method of characteristics proposed in Pattipati et al. [1993]. The method consists in
finding the characteristic curves y(t) on which PDEs reduce to ODEs. Let y(t) be an
arbitrary curve and consider the derivative of Fs′

s (t, y(t)) in t. More specifically,

dFs′
s (t, y(t))

dt
= ∂Fs′

s (t, y(t))
∂t

dt
dt

+ ∂Fs′
s (t, y(t))

∂y
dy(t)

dt
.

Note that dt
dt = 1, then considering those curves y(t) such that dy(t)

dt = r(s) yields

dFs′
s (t, y(t))

dt
= ∂Fs′

s (t, y(t))
∂t

+
∑
j∈J

∂Fs′
s (t, y(t))
∂yj

rj(s). (3)

Note here that the right-hand side of Eq. (3) is the left-hand side of Eq. (2), which
implies that

dFs′
s (t, y(t))

dt
=
∑
z∈S

Q(s, z)Fs′
z (t, y(t)). (4)

Eq. (4) defines a system of ordinary differential equations that can be solved if we fix
an initial value for Fs′

s (0, y(0)). The solution is given by

Fs′
s (t, y(t)) = eQ(s,s)t

⎡⎣∫ t

0
e−Q(s,s)x

∑
z�=s

Q(s, z)Fs′
z (x, y(x))dx + Fs′

s (0, y(0))

⎤⎦ . (5)

The curve y(t) defined by the ODE dy(t)
dt = r(s) has as solution

y(t) = r(s)t + C.

We can calculate the value of C, given a time t∗ and the value y∗ of the accumulated
reward, by

C = y∗ − r(s)t∗.
In order to find the solution for the PDE in Eq. (2) at a given t∗ and y∗, we solve the

ODE in Eq. (4) on the curve given by

y(t) = r(s)t + y∗ − r(s)t∗ = y∗ − r(s)(t∗ − t),

and more specifically, by substituting x = t∗ − x.

Fs′
s (t∗, y∗) = eQ(s,s)t∗

Fs′
s (0, y∗ − r(s)t∗) +

∫ t∗

0

∑
z�=s

eQ(s,s)x Q(s, z)Fs′
z (t∗ − x, y∗ − r(s)x)dx

This completes the proof.

Remark 3.7. For readers who are familiar with PDP, Eq. (2) can also be obtained as
follows. For every state s of the CTMC we assign the system of differential equations:
for each j ∈ J,

dxj(t)
dt

= rj(s), xj(t) ∈ R.
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Note that xj(t) will denote the total accumulated reward at time t for the reward
structure j. This results in a PDP with the state space S × R|J|. The function Fs′

s (t, y)
represents the probability to reach the set of states {s′} × (−∞, y0] × · · · × (−∞, y|J|−1]
at time t.

Theorem 3.3 and Theorem 3.6 imply that, to solve the bounded-time EDP verification
problem, we need to solve (first-order) PDEs or integral equations. However, this is
usually costly and numerically unstable [Higham 2002]. We present solutions in the
next section, based on uniformisation.

3.1.2. Uniformisation. In this section we present a uniformisation-based algorithm to
compute Fs′

s (t, y). The uniformisation method [Jensen 1953] involves transforming the
CTMC C into a behaviorally equivalent DTMC D. (NB this is not the embedded DTMC
of C.) The state space and initial distribution of D are the same as for C. The probability
matrix P̂ of D is constructed by P̂ = I + 1

�
Q, where � is the maximal exit rate of C. We

obtain

π (t) = e(P̂−I)�t =
∞∑

n=0

P̂n (�t)n

n!
e−�t. (6)

We now apply the uniformisation technique to efficiently compute Fs′
s (t, y). First, we

note that the infinite sum in Eq. (6) is equal to the probability (�t)n

n! e−�t that exactly n
Poisson arrivals occur in an interval of time [0, t] multiplied with the probability P̂n to
take the state transitions corresponding to the arrivals. Then using Eq. (6) we obtain

Fs′
s (t, y) =

∞∑
n=0

e−�t (�t)n

n!
·
⎛⎝∑

|ς |=n

Pr({ς | X(0) = s}) · Pr
({X(n) = s′, Y(t) ≤ y | ς})

⎞⎠ ,

where for a given path ς = s → s1 → · · · → sn−1 → sn,

Prob(ς ) := Pr({ς | X(0) = s}) = P̂(s, s1) × · · · × P̂(sn−1, sn).

If |ς | = 0 then Prob(ς ) := 1. Pr({X(n) = s′, Y(t) ≤ y | ς}) denotes the conditional
probability that given the path ς at step n the state is s′ and the total accumulated
reward until time t is less than y. The preceding equation can also be written as

Fs′
s (t, y)=

∞∑
n=0

e−�t (�t)n

n!

∑
|ς |=n,
ς[0]=s,
ς[n]=s′

Prob(ς ) · Pr({Y(t) ≤ y | ς}). (7)

Note that

Prob(ς ) · Pr({Y(t) ≤ y | ς}) = Pr({Y(t) ≤ y ∧ ς}). (8)

Now the task is to compute Pr
({Y(t) ≤ y ∧ ς}), for which we reduce to the computation

of integration over a convex polytope. The basic idea is to generate timed constraints
over variables determining the residence time of each state along ς to make Y(t) ≤ y
hold. The desired probability can thus be formulated as a multidimensional integral,
which can be computed by the efficient algorithm given in Lasserre and Zeron [2001].

Given a discrete finite path ς of length k, an LDF ϕ, and a time bound T , we define the
set of linear constraints S generated in Algorithm 1. In Algorithm 1, line 3 generates
the set of constraints from each conjunct in formula ϕ. In line 5 we add one more
constraint to ensure that in the interval of time [0, T ] we will reach the last state of ς .
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ALGORITHM 1: Generate a set of linear constraints S induced by ϕ, ς and T
Input: LDF ϕ, a path ς of length k and a time-bound T
Output: A set of linear constraints S

1 S = ∅ ;
2 for j ∈ J do

3 S = S ∪

⎧⎪⎨⎪⎩∑
i∈Kj

c ji · ∑
0≤�≤k,

ς[�]|=sf ji

x� ≤ Mj

⎫⎪⎬⎪⎭;

4 end

5 S = S ∪
{

k−1∑
i=0

xi ≤ T
}

∪
{

k∑
i=0

xi ≥ T
}

;

6 S = S ∪ {xi > 0} for all xi ;
7 return S;

Example 3.8. Assume the LDF ϕ = ∫
Idle − 1

3

∫
Busy ≤ 0 ∧ ∫

Idle − 1
4

∫
Sleep ≤ 0,

the discrete path ς = s0 → s1 → s2 → s1 → s3, and the time bound T = 6. The set of
linear constraints S generated by Algorithm 1 induced by ς , ϕ and T is

S =

⎧⎪⎪⎨⎪⎪⎩
− 1

3 · x0 + x1 + 0 · x2 + x3 ≤ 0
0 · x0 + x1 − 1

4 · x2 + x3 ≤ 0
x0 + x1 + x2 + x3 ≤ 6
x0, x1, x2, x3 > 0.

LEMMA 3.9. Assume a discrete path ς of the CTMC C, an LDF ϕ, and a time bound
T . Let S be the set of linear constraints obtained by Algorithm 1. Then

ς [x0, . . . , xk−1] |=
(

ϕ ∧
∫

1 ≤ T
)

iff (x0, . . . , xk−1) satisfies the constraints in S.

PROOF. Let ϕ j be the j-th conjunct of ϕ. It is easy to see that

ς [x0, . . . , xk−1] |= ϕ j iff (x0, . . . , xk−1) satisfies the constraints in S,

which follows from the definition of |= (see Definition 2.5). Note that ς [x0, . . . , xk−1] |=∫
1 ≤ t iff

∑k−1
i=0 xi ≤ t (see Definition 2.7), which proves the lemma.

We define

Prob(ς [S]) := PrC(ς[0])({ς [x0, . . . , xk−1] | (x0, . . . , xk−1) satisfies the constraints in S}).
For future use, declare the function V olume int(α, ς,S) which, given an initial dis-

tribution α, a finite discrete path ς = s0 → · · · → sk of length k, and a set of linear
constraints S over x0, . . . , xk−1, returns

α(s0) ·
k−1∏
i=0

E(si) · P(si, si+1) ·
∫

· · ·
∫

︸ ︷︷ ︸
k

S

k−1∏
i=0

e−E(si )τi dτi. (9)

Evidently Prob(ς [S]) is equal to V olume int(α, ς,S). In Lasserre and Zeron [2001] an
algorithm based on the Laplace transform is proposed to compute certain multidi-
mensional integrals over polytopes. In Eq. (9) the integration is over S, which is the
intersection of hyperplanes (in terms of linear inequalities). Hence, the algorithm of
Lasserre and Zeron [2001] can be applied directly. The time complexity of solving the
multidimensional integral is O(|J|k). Recall that |J| is the number of constraints and k
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is the number of variables. Note that we omit the simple constraints from Algorithm 1,
lines 5 and 6, when computing the complexity of the algorithm. The simple constraints
denote a constant term in the overall complexity.

The following theorem concludes this section, showing that, in order to compute
Pr

({Y(t) ≤ y ∧ ς}), one only needs to compute Prob(ς [S]), where S is generated from
Algorithm 1.

THEOREM 3.10. Let ς be a discrete path of the CTMC C ending in G, C[ϕ, G] be the
MRM induced by C, and LDF ϕ, and S the set of linear constraints generated by ς , ϕ
and time bound t. We have that

PrC(s)[ϕ,G]({Y(t) ≤ y ∧ ς}) = Prob(ς [S]),

where y = M = (M0, . . . , M|J|−1).

PROOF. Let C(s) be the CTMC C such that, for a given state s ∈ S, α(s) = 1. From
Theorem 3.2 we know that

PrC(s)[ϕ,G]({Y(t) ≤ y}) = PrC(s)
({

ρ ∈ PathsC(s) | ρ |=G
t ϕ

})
.

Let ς be a discrete path of length k such that ς [0] = s. We have that

PrC(s)[ϕ,G]({Y(t) ≤ y ∧ ς})
= PrC(s)[ϕ,G]

(
{X(t) = ς [k], Y(t) ≤ y ∧

∃z0, . . . , zk−1, 0≤z0<z1< · · ·<zk−1<t, X(0)

= s,
k−1∧
i=0

X(zi) = ς [i]}
)

= PrC(s)[ϕ,G]

({
ρ ∈ PathsC(s) | ρ |=ς[k]

t ϕ,

k−1∧
i=0

ρ[i] = ς [i]

})
.

From Lemma 3.9 we obtain

Prob(ς [S]) = PrC(ς[0])
({

ρ ∈ PathsC | ς [ρ〈0〉, . . . , ρ〈k − 1〉] |= ϕ ∧
∫

1 ≤ t
})

.

One can easily see that

PrC(s)[ϕ,G]

({
ρ ∈ PathsC(s) | ρ |=ς[k]

t ϕ,

k−1∧
i=0

ρ[i] = ς [i]

})
=

PrC(ς[0])
({

ρ ∈ PathsC | ς [ρ〈0〉, . . . , ρ〈k − 1〉] |= ϕ ∧
∫

1 ≤ t
})

.

This completes the proof.

3.1.3. Algorithm. In order to compute Fs′
s (t, y) we must pick a finite set P of paths from

PathsD. Following Qureshi and Sanders [1994], we introduce a threshold w ∈ (0, 1)
such that only if Prob(ς ) > w then ς ∈ P. This is mainly for efficiency considerations.
We also fix a maximum length N for the paths in P. Now we define

P(s, s′, w, N) := {ς ∈ PathsD | |ς | = N, ς [0] = s, ς [N] = s′, Prob(ς ) > w}.
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ALGORITHM 2: Compute F̃w
N

s′

s (t, y)

1 Prob = 0;
2 Paths = {s};
3 while Paths �= ∅ do
4 choose ς ∈ Paths;
5 Paths = Paths \ {ς};
6 if Prob(ς ) > w and |ς | ≤ N then
7 if ς [|ς |] = s′ then
8 Prob+ =e−�t (�t)|ς |

|ς |! Prob(ς ) Pr{Y(t)≤y | ς};
9 else

10 for s′′ ∈ S do
11 insert (ς ◦ s′′) into Paths;
12 end
13 end
14 end
15 end
16 end
17 return Prob;
18 Note that ◦ represents the concatenation operator; ς [|ς |] is the last state of ς .

We can approximate Fs′
s (t, y) as

F̃w
N

s′

s (t, y) =
N∑

n=0

e−�t (�t)n

n!

∑
ς∈P(s,s′,w,n)

Prob(ς ) Pr({Y(t) ≤ y | ς}),

where w and N are chosen as stated in Theorem 3.12. The approximation algorithm to
compute Prob := Fs′

s (t, y) is given in Algorithm 2.

Error bound. We give a bound for the truncation of the infinite sum to a finite one,
considering only the discrete paths whose probability is greater than w. We start with
the following technical lemma.

LEMMA 3.11. Let ε ∈ R>0 and T ∈ R≥0. For any N > �T e2 + ln( 1
ε
), we have that

∞∑
i=N+1

e−�T (�T )i

i!
≤ ε.

PROOF. We have that
∞∑

i=N+1

e−�T (�T )i

i!
= e−�T ·

( ∞∑
i=N+1

(�T )i

i!

)

≤ e−�T · e�T · (�T )N

N!
(Taylor expansion)

≤ (�T )N

(N/e)N =
(

�T e
N

)N

(Stirling’s approximation)

≤
(

1
e

)N

(N > �T e2)

≤
(

1
e

)ln(1/ε)

= ε.

(
N > ln

(
1
ε

))
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The following theorem states the error bound, which also suggests how to choose N
and w for Algorithm 2 for a given ε.

THEOREM 3.12. Given ε > 0, for N > �te2 + ln
( 1

ε

)
, and w < ε∑N

n=0 e−�t (�t)n
n!

, we have that∣∣∣Fs′
s (t, y) − F̃w

N
s′

s (t, y)
∣∣∣ ≤ 2ε.

PROOF. ∣∣∣Fs′
s (t, y) − F̃w

N
s′

s (t, y)
∣∣∣

=
∣∣∣∣ ∞∑

n=0

e−�t (�t)n

n!
·
∑

|ς |=n,
ς[0]=s,
ς[n]=s′

Pr({ς}) · Pr({Y(t) ≤ y | ς})

−
N∑

n=0

e−�t (�t)n

n!
·
∑

ς∈P(s,s′,w,n)

Pr({ς}) Pr({Y (t) ≤ y | ς})
∣∣∣∣

=
∣∣∣∣ ∞∑

n=N+1

e−�t (�t)n

n!
·
∑

|ς |=n,
ς[0]=s,
ς[n]=s′

Pr({ς}) · Pr
({Y(t) ≤ y | ς})

︸ ︷︷ ︸
()

+
N∑

n=0

e−�t (�t)n

n!
·
∑

|ς |=n,
ς[0]=s,
ς[n]=s′

Pr({ς}) · Pr({Y(t) ≤ y | ς})

︸ ︷︷ ︸
()

−
N∑

n=0

e−�t (�t)n

n!
·

∑
ς∈P(s,s′,w,n)

Pr({ς}) Pr({Y (t) ≤ y | ς})
︸ ︷︷ ︸

()

∣∣∣∣
We bound term () and term () separately.

—First, for N > �te2 + ln
( 1

ε

)
and by Lemma 3.11, we have

() ≤
∞∑

n=N+1

e−�t (�t)n

n!
≤ ε.

—Second, we have

() =
N∑

n=0

e−�t (�t)n

n!
·

∑
ς �∈P(s,s′,w,n)

Pr({ς}) Pr({Y (t) ≤ y | ς})

≤
N∑

n=0

e−�t (�t)n

n!
· w ·

∑
ς �∈P(s,s′,w,n)

Pr({Y (t) ≤ y | ς})

≤ w ·
N∑

n=0

e−�t (�t)n

n!
.
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It follows that ∣∣∣Fs′
s (t, y) − F̃w

N
s′

s (t, y)
∣∣∣ ≤

∣∣∣∣∣ε + w ·
N∑

n=0

e−�t (�t)n

n!

∣∣∣∣∣ .
Taking w ≤ ε∑N

n=0 e−�t (�t)n
n!

, we obtain∣∣∣Fs′
s (t, y) − F̃w

N
s′

s (t, y)
∣∣∣ ≤ 2ε.

This completes the proof.

Complexity. We analyse the complexity of Algorithm 2. Recall that |S| is the number
of states of C. Algorithm 2 is composed of two main steps: (1) find all paths of length at
most N; and (2) for each of those paths, ς , compute Pr({Y(t) ≤ y | ς}).

THEOREM 3.13. The complexity of Algorithm 2 is O(|S|N · (|J| + |J|N)).

PROOF. The number of paths of length less than N − 1, from standard graph theory,
is at most |S|N (in case of fully connected CTMCs). Subsequently, for each of those
|S|N paths, say ς , we have to compute Pr({Y(t) ≤ y | ς}). Using the approach that
generates the set of linear constraints we have that the complexity to compute the
volume of convex polytopes defined over N variables is |J|N (see Lasserre and Zeron
[2001]), whereas the complexity to generate the set of linear constraints is linear in the
cardinality of J. Therefore, the total complexity of Algorithm 2 isO(|S|N ·(|J|+|J|N)).

3.2. Unbounded Verification of EDP

In this section we show how to compute Prob(C |=G ϕ). The main idea is that we
approximate Prob(C |=G ϕ) by Prob(C |=G

T ϕ) for a sufficiently large T ∈ R≥0. Hence,
we reduce the problem to time-bounded verification of EDP, which has been solved in
Section 3.1.

For this purpose, we first introduce some background from linear algebra and matrix
theory. We write A for a square matrix, with aij ∈ R the element of the i’th row and
j’th column of A. A is a nonnegative matrix if for any i, j, aij ≥ 0. We write eig(A) to be
the set of all eigenvalues of matrix A, and ρ(A) = max{|λ| | λ ∈ eig(A)} be the spectral
radius of A, that is, the maximum module of the eigenvalues of A.

Definition 3.14. Let A be a square matrix. The logarithmic norm of A, denoted by
μ(A), is defined as

μ(A) = max
{
λ

∣∣∣λ ∈ eig
(

A + A�

2

)}
.

Note that this is well-defined; as A+A�
2 is a symmetric matrix, all the eigenvalues are

reals.

Note that μ(A) ≤ ρ( A+A�
2 ) and ρ(A) = ρ(A�).

Definition 3.15. Let A be a square matrix of dimension m. We call the graph GA of
A the dependency graph where:

—the nodes of the graph are {1, . . . , m}, and
—there is an edge from i to j iff aij > 0.

Let GA be a dependency graph. GA is called strongly connected if there is a path from
each vertex in GA to every other vertex. The Strongly Connected Components (SCCs) of
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GA are its maximal strongly connected subgraphs. Moreover, a matrix A is irreducible
iff GA is strongly connected.

PROPOSITION 3.16 [DAHLQUIST 1958]. Let || · || be the spectral matrix norm, α be a
vector with its associated Euclidean vector norm, and T ≥ 0. It holds that

||α · eQT || ≤ ||α|| · eμ(Q)T .

PROPOSITION 3.17 [HORN AND JOHNSON 1990]. Let A be an arbitrary matrix and ε > 0,
then there exists some induced matrix norm || · || such that

||A|| ≤ ρ(A) + ε.

Definition 3.18. An m×msubstochastic matrix A is a nonnegative matrix with the
following properties:

—for any 0 ≤ i ≤ m,
∑

1≤ j≤m aij ≤ 1; and
—there exists some 0 ≤ i ≤ m, such that

∑
1≤ j≤m aij < 1.

LEMMA 3.19. Let A be an m × m irreducible substochastic matrix. It holds that
ρ(A) < 1.

PROOF. For any 1 ≤ i ≤ m let r(n)
i = ∑m

k=1 An
ik be the i-th row sum of An. For n = 1

we write ri instead of r(1)
i . Since A is substochastic we have that 0 ≤ ri ≤ 1 for any

1 ≤ i ≤ m and rj < 1 for at least one 1 ≤ j ≤ m. Note that for n ≥ 1,

r(n)
j =

m∑
k=1

An
jk =

m∑
k=1

A jkr(n−1)
k ≤

m∑
k=1

A jk = rj < 1.

By irreducibility of A, for any i there is l such that Al
i j > 0. In fact, given that A is

an m× m matrix and i �= j then we can assume l < m. Thus, we have that

r(m)
i =

m∑
k=1

Al
ikr

(m−l)
k < r(l)

i ≤ 1.

By the Gershgorin circle theorem [Horn and Johnson 1990], we have that ρ(Am) < 1.
Hence ρ(A) < 1.

LEMMA 3.20. Suppose that ρ(A) < 1, then μ(A) < 1.

PROOF. We know that μ(A) ≤ ρ( A+A�
2 ). For any induced matrix norm || · ||, it holds

that

ρ

(
A + A�

2

)
≤ 1

2
(||A + A�||) ≤ 1

2
||A|| + 1

2
||A�||.

Let ε > 0 then from Proposition 3.17 it holds that for some matrix norm || · ||:

μ(A) ≤ ρ

(
A + A�

2

)
≤ 1

2
||A|| + 1

2
||A�||

≤ 1
2

ρ(A) + 1
2

ε + 1
2

ρ(A�) + 1
2

ε

= ρ(A) + ε.
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From Lemma 3.19 we know that ρ(A) < 1 and so we can pick an ε such that ρ(A) +
ε < 1. It follows that μ(A) < 1.

Now fix the CTMC C and the set of goal states G ⊆ S with |G| = m. Recall that Q is
the infinitesimal generator of C. As the first step, we identify the set of states S>0 ⊆ S
starting from which there is positive probability to reach G. This can be done through
a graph analysis in a standard way; see Baier and Katoen [2008, Chapter 10]. We still
write Q>0 for the principal submatrix of the infinitesimal generator Q corresponding
to S>0. We partition Q>0 as follows

Q>0 =
[

Q1 Q2
0 0

]
, (10)

where Q1 is the square matrix of size (|S>0| − m) × (|S>0| − m) denoting transitions
between the set of transient states s ∈ S>0 \ G, Q2 is the matrix of size (|S>0| − m) ×
m denoting transitions from the transient states to the set of goal states G, and 0
is a matrix composed of zeros. The reader should note that, given any infinitesimal
generator Q, it is always possible to express Q = �(P − I), where � is the maximal
exit rate of C, I is the identity matrix, and P = (I + Q

λ
) is a stochastic matrix. In the

sequel we indicate with P1 the principal submatrix of P corresponding to Q1. Abusing
notation we indicate with I1 the identity matrix of the same size as P1.

We define a random variable TG : PathsC → R≥0 that will denote the first entrance
time of G. More specifically, given a path ρ,

TG(ρ) =
⎧⎨⎩

∞ ∀ j ∈ N. ρ[ j] /∈ G
k−1∑
j=0

ρ〈 j〉 o/w, where k = min{l | ρ[l] ∈ G} .

The following proposition states a helpful property of the “transient part” of the in-
finitesimal generator of C, relying on Lemma 3.19 and Lemma 3.20. Note that Etessami
et al. [2012] contain a similar argument showing essentially the same result, although
in a different context.

PROPOSITION 3.21.

μ(Q1) < 0.

PROOF. We first focus our attention on P1, which is a substochastic matrix. Let GP1

be the dependency graph of P1. We consider the SCC-decomposition of GP1 , and assume
a topological ordering among SCCs {B1, . . . , Bk} such that, for i ∈ Bm and i′ ∈ Bm′ , the
existence of an edge from i to i′ implies that m < m′. By Lemma 3.19, we have the
following property: for any � ∈ {1, . . . , k} and the principal submatrix corresponding to
B�, written as P1[B�],

ρ(P1[B�]) < 1. (11)

Since P1 is a nonnegative matrix, we have that there exists a nonnegative eigenvector
v associated with ρ(P1), that is,

P1v = ρ(P1)v.
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We observe that, for any index 1 ≤ i ≤ n, if vi > 0 then, for any j such that there is an
edge from j to i, we have that

(P1v) j =
∑

1≤k≤n

pjkvk

=
∑

1≤k≤n,
k�=i

pjkvk + pjivi

≥ pjivi

> 0.

Since (P1v) j = ρ(P1)v j , we obtain that v j > 0. Repeating the same argument, we
have that, for each SCC, if for some index i we have vi > 0, then for any index i in this
SCC, vi > 0.

It follows that there must exist some SCC such that, for any index i in this SCC,
we have vi > 0. Let � be the maximum index for such an SCC. Consider the principal
submatrix corresponding to B�. For each index i ∈ B�, we have that

(P1v)i =
∑

1≤ j≤n

pijv j

=
∑

1≤ j≤n,
j∈B�

pijv j +
∑

1≤ j≤n,
j /∈B�

pijv j

=
∑

1≤ j≤n,
j∈B�

pijv j

= ρ(P1)vi.

It follows that ρ(P1[B�]) ≥ ρ(P1). However, we also have ρ(P1[B�]) ≤ ρ(P1) as P1[B�]
is a principal submatrix. Hence ρ(P1[B�]) = ρ(P1). Therefore, ρ(P1) < 1 by Eq. (11).

Now note that by Lemma 3.20 if ρ(P1) < 1 then μ(P1) < 1. Moreover, μ(Q1) =
μ(�(P1 − I1)) which in turn yields that μ(Q1) ≤ �(μ(P1) − 1) since μ(I1) = 1. Thus,
μ(P1) < 1 implies that μ(Q1) < 0, which concludes the proof.

PROPOSITION 3.22. For any T ∈ R≥0 it holds that

PrC({ρ ∈ PathsC | ρ |= ♦G ∧ TG(ρ) > T }) = α̂ · eQ1T e,

where α̂ = α[1, . . . .|S>0| − m] and e is a vector assigning 1’s to the goal states and 0’s to
all the other states.

PROOF. Proof in Nielsen et al. [2010].

Now we are in a position to state the main result of this section.

THEOREM 3.23. Given 0 < ε < 1 and T >
ln(ε/

√
|G|)

μ(Q1) ,

Prob(C |=G ϕ) − Prob
(
C |=G

T ϕ
) ≤ ε.
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PROOF. We have

Prob(C |=G ϕ) − Prob
(
C |=G

T ϕ
)

≤ PrC({ρ ∈ PathsC | ρ |= ♦G ∧ TG(ρ) ≥ T })
= α̂ · eQ1T e = ||α̂ · eQ1T e|| (by Proposition 3.22)

≤ ||α̂|| · eμ(Q1)T · ||e|| (by Proposition 3.16)
≤ ε

The correctness of the bound is guaranteed by Proposition 3.21.

Due to this theorem, given an error bound ε and a set of goal states G, we can pick

a time bound T such that T ≥ ln(ε/
√

|G|)
μ(Q1) and compute Prob(C |=G

T ϕ). For computing
μ(Q1), we note that it only requires computing eigenvalues of the symmetrisation of
Q1 for which efficient numerical algorithms exist.

Remark 3.24. This significantly improves a bound obtained in Chen et al. [2012,
Theorem 7, page 272] through the Markov inequality, that is,

∑
s∈S α(s)Es[TG]

ε
. For suf-

ficiently small ε, this is an exponential improvement.

4. VERIFICATION OF IDP

In this section, we tackle the problem of verification of IDP. Again, we fix a CTMC
C = (S, AP, L, α, P, E) and an LDF

� =
∫

1 ≤ T →
∧
j∈J

⎛⎝∑
k∈Kj

c jk

∫
sf jk ≤ Mj

⎞⎠
︸ ︷︷ ︸

ϕ

.

As highlighted in Section 2, we shall distinguish two cases according to whether T is
finite or infinite. We firstly give some definitions and algorithms that are common to
both cases.

Given ϕ, a discrete finite path ς of length k and a time bound T < ∞, we define the
set of linear constraints S as generated in Algorithm 3. Note that this is different from
the constraints obtained from Algorithm 1 in the previous section.

ALGORITHM 3: Generate a set of linear constraints S induced by ϕ, ς and T
Input: LDF ϕ, a path ς of length k and a time-bound T
Output: A set of linear constraints S

1 S = ∅;
2 for z = 0; z < k; z++ do
3 for j ∈ J do

4 S = S ∪

⎧⎪⎨⎪⎩∑
i∈Kj

c ji · ∑
0≤�≤z,

ς[�]|=sf ji

x� ≤ Mj

⎫⎪⎬⎪⎭;

5 end
6 end

7 S = S ∪
{

k−1∑
i=0

xi ≤ T
}

∪
{

k∑
i=0

xi ≥ T
}

8 ; S = S ∪ {xi > 0} for all xi ;
9 return S;
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Example 4.1. Let ϕ = ∫
Busy−∫

Idle ≤ 0 be an LDF and ς = s0 → s1 → s0 → s1 →
s3. The set of linear constraints S induced by ς and ϕ is

S =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x00 ≤ 0
x00 − x01 ≤ 0
x00 − x01 + x02 ≤ 0
x00 − x01 + x02 − x03 ≤ 0
x00, x01, x02, x03 > 0.

LEMMA 4.2. Let ς be a finite path of the CTMC C, ϕ be an LDF, and T be a time
bound. Moreover, let S be the set of linear constraints obtained by Algorithm 3. Then

ς [x0, . . . , xn−1] |=

(
ϕ ∧

∫
1 ≤ T

)
iff (x0, . . . , xn−1) ∈ S.

PROOF. Let ϕ j be the j-th conjunct of ϕ. From Definition 2.7 we have that

ς [x0, . . . , xn−1] |= ϕ j iff (x0, . . . , xn−1) ∈ S =
n−1⋃
z=0

⎧⎪⎪⎨⎪⎪⎩
∑
i∈Kj

c ji ·
∑

0≤�≤z,
ς[�]|=sf ji

x� ≤ Mj

⎫⎪⎪⎬⎪⎪⎭ .

Note that ς [x0, . . . , xn−1] |= ∫
1 ≤ t iff

∑n−1
i=0 xi ≤ t (see Definition 2.7), which proves the

lemma.

We define Prob(ς [S]) to be

PrC({ρ ∈ PathsC | ∃ (x0, . . . , xn−1) ∈ S. ρ[0..n] ∈ ς [x0, . . . , xn−1] ∧ ρ[0..n] |= ϕ}),
which can be computed by the function V olume int(α, ς,S) (refer to Eq. (9)), where S
is the set of constraints generated from Algorithm 3. We now introduce an auxiliary
definition for paths of CTMCs.

Definition 4.3. Given an infinite timed path ρ, an absorbing set of states G of the
CTMC C, and a time bound T < ∞, we write ρ |=

G,T ϕ if there exists some n ∈ N such
that:

—ρ[n] ∈ G and
∑n

i=0 ρ〈i〉 ≤ T , and
—for each 0 ≤ i ≤ n, ρ[0..i] |= ϕ.

Remark 4.4. Note that, as we assume that G is absorbing, the only difference
between ρ |=

G,T ϕ and ρ |=G
T ϕ given in Definition 2.7 lies in that, here, we require that,

for each 0 ≤ i ≤ n, ρ[0..i] |= ϕ, whereas in Definition 2.7 we require that ρ[0..n] |= ϕ.
This reflects the distinction between EDP and IDP.

Our task now is to approximate the probability Prob(C |=
G,T ϕ). For this purpose, we

present Algorithm 4 which computes an approximation P̃robN(C |=
G,T ϕ) of Prob(C |=

G,T
ϕ) for a given N.

4.1. Verification of Unbounded IDP

This section is devoted to computing Prob(C |= ϕ). For this purpose, we need to perform
graph analysis of C. We start with some standard definitions. Note that some of the
notions on graphs are essentially the same as in Section 3.2; for readability we present
them here in terms of CTMCs.

Definition 4.5 (BSCC). Assume a CTMC C. A set of states B ⊆ S is a Strongly
Connected Component (SCC) of C if, for any two states s, s′ ∈ B, there exists a discrete
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ALGORITHM 4: Compute P̃robN(C |=
G,T ϕ)

Input: A CTMC C, an LDF formula ϕ, set of goal states G, time-bound T , and N
1 Prob = 0;
2 for ς ∈ PathsD s.t. ∃i.ς [i] ∈ G and |ς | ≤ N do
3 Generate S from ϕ, ς and T , by Algorithm 3;
4 Prob+ = V olume int(α, ς,S);
5 end
6 return Prob;

path ς = s0 → s1 → · · · → sn such that si ∈ B for 0 ≤ i ≤ n, s0 = s and sn = s′. An SCC
B is a Bottom Strongly Connected Component (BSCC) if no state outside B is reachable
from any state in B.

Definition 4.6. Given a BSCC B of the CTMC C and an LDF ϕ, we say

—B is bad with respect to the j-th conjunct in ϕ, ϕ j , if

∃s ∈ B. ∃i ∈ Kj . s |= sf ji ∧ c ji > 0

and otherwise B is good with respect to ϕ j .
—B is good with respect to ϕ (written B |= ϕ) if B is good for each conjunct of ϕ;

otherwise B is bad (written B �|= ϕ).

LEMMA 4.7. Given a CTMC C = (S, AP, L, α, P, E), an LDF ϕ, and a BSCC B, we
have that, if B is bad, then PrC ({ρ | ρ |= ϕ} | ♦B) = 0.

PROOF. We have the following basic facts, which follow from ergodicity theorems
related to stochastic processes (see Meyn and Tweedie [1996]):

(1) Given a BSCC B, every state s ∈ B is visited infinitely often with probability 1.
(2) Any path ρ ∈ PathsC eventually reaches one of the BSCCs of C.

Given the second fact we only need to prove that for a bad BSCC B it holds that
PrC ({ρ | ρ |= ϕ} | ♦B) = 0. We note that

PrC({ρ | ρ |= ϕ} | ♦B) = PrC({ρ | ρ |= ϕ} ∩ ♦B)

PrC(♦B)
.

Therefore, in order to prove that PrC({ρ | ρ |= ϕ} | ♦B) = 0, it is enough to show that
{ρ | ρ |= ϕ} ∩ ♦B = ∅. We prove it by contradiction. First, observe that

{ρ | ρ |= ϕ} ∩ ♦B =
⋂
j∈J

({ρ | ρ |= ϕ j} ∩ ♦B),

where ϕ j is the j-th conjunct of ϕ. Therefore, we will only show that {ρ | ρ |= ϕ j}∩♦B =
∅ for some j ∈ J. Let ρ ∈ {ρ | ρ |= ϕ j} ∩ ♦B. Then ρ ∈ ♦B. Given that B is bad it holds
that ∃s ∈ B. ∃i ∈ Kj . sf ji ∈ L(s) ∧ c ji > 0. From the first fact we know that there exist
infinitely many n such that ρ[n] = s. Therefore, we have that c ji

∫
sf ji → ∞. We also

know that ρ |= ϕ j iff ∀n.ρ[0 . . . n] |= ϕ or

∀n.
∑
k∈Kj

c jk

∑
0≤i′<n,

ρ[0...n]|=sf jk

ρ[0 . . . n]〈i′〉 ≤ Mj . (12)

Given that i ∈ Kj and c ji
∫

sf ji → ∞, Eq. (12) does not hold. Therefore, we have that
ρ �|= ϕ j , which is a contradiction.
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Fig. 2. Example of BSCC decomposition to demonstrate CTMC conversion in Definition 4.8.

Let BSCC be the set of all BSCCs in C and B̃SCC be the set of all good BSCCs.

Definition 4.8. Given a CTMC C = (S, AP, L, α, P, E) and an LDF ϕ, we define a
new CTMC Ca = (S, APa, La, α, Pa, E) as follows:

—APa = AP ∪ {⊥}, where ⊥ is fresh;
—for all s ∈ B and B ∈ B̃SCC make s absorbing and let La(s) = L(s) ∪ {⊥}; and
—for all other states s /∈ B, B ∈ B̃SCC and s′ ∈ S, let Pa(s, s′) = P(s, s′), La(s) = L(s).

Example 4.9. As an example consider the left CTMC C from Figure 2, in which
there are two BSCCs B1 = {s4, s5} and B2 = {s1, s2, s3}. Moreover, assume that B1 �|= ϕ
and B2 |= ϕ for a given LDF ϕ. After applying Definition 4.8 to C we get Ca shown on
the right, where the labels of the states s1, s2, and s3 are augmented with the label {⊥}
and all the other labels are left unchanged.

We now introduce an auxiliary definition, which, roughly, is the counterpart of (the
unbounded version of) Definition 4.3.

Definition 4.10. Given an infinite timed path ρ and G ⊂ S, we write ρ |=
G ϕ if

there exists some n ∈ N such that:

—ρ[n] ∈ G, and
—for each 0 ≤ i ≤ n, ρ[0..i] |= ϕ.

The following proposition states that, in order to compute Prob(C |= ϕ), one can first
make good BSCCs absorbing while removing bad BSCCs, and then reduce to computing
Prob(C |=

G ϕ) for a suitable G, which, in turn, uses Algorithm 4.

PROPOSITION 4.11. Given a CTMC C = (S, AP, L, α, P, E) and an LDF ϕ, we have
that

Prob(C |= ϕ) = PrC
a
({ρ | ρ |=

G ϕ}),
where G = {s ∈ S |⊥∈ L(s)}.

PROOF. Applying the law of total probability we have that

PrC({ρ | ρ |= ϕ})
=

∑
B∈BSCC

PrC({ρ | ρ |= ϕ} | ♦B) · PrC(♦B)

=
∑

B∈B̃SCC

PrC({ρ | ρ |= ϕ} | ♦B) · PrC(♦B) (by Lemma 4.7)

=
∑

B∈B̃SCC

PrC({ρ |ρ |= ϕ ∧ ({ρ[0 . . . n − 1] �|= ϕ} ∪ {ρ[0 . . . n − 1] |= ϕ})} |♦B) · PrC(♦B),
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where for all i < n, ρ[i] /∈ B. We have

PrC({ρ | ρ |= ϕ})
=

∑
B∈B̃SCC

PrC({ρ | ρ |= ϕ ∧ ρ[0 . . . n − 1] �|= ϕ} | ♦B) · PrC(♦B)

+
∑

B∈B̃SCC

PrC({ρ | ρ |= ϕ ∧ ρ[0 . . . n − 1] |= ϕ} | ♦B) · PrC(♦B).

By definition of |=∗, PrC ({ρ | ρ |= ϕ ∧ ρ[0 . . . n − 1] �|= ϕ} | ♦B) = 0. Using similar rea-
soning as in Lemma 4.7, one can show that PrC ({ρ | ρ |= ϕ ∧ ρ[0 . . . n − 1] |= ϕ} | ♦B) =
1, for any B ∈ B̃SCC. Therefore, we obtain that

PrC({ρ | ρ |= ϕ})
=

∑
B∈B̃SCC

PrC(♦B) =
∑

B∈B̃SCC

PrC({ρ | ρ |=
B ϕ})

= PrC

⎛⎝ ⋃
B∈B̃SCC

{ρ | ρ |=
B ϕ}

⎞⎠
= PrC

a
({ρ | ρ |=

G ϕ}),
where G = ⋃

B∈B̃SCC
{s ∈ B} = {s ∈ S |⊥∈ L(s)} by Definition 4.8.

4.1.1. Algorithm. Algorithm 5 computes P̃rob(C |= ϕ) which is an approximation of
Prob(C |= ϕ). Lines 4–9 obtain Ca and the goal states G, according to Definition 4.8,
and then the algorithm calls the function P̃robN(C |=

G,T ϕ), given by Algorithm 4 by
choosing T and N according to the specified error bounds ε1 and ε2, respectively.

Error bound. Intuitively there are two factors that contribute to the error introduced
by Algorithm 5:

ALGORITHM 5: Compute P̃rob(C |= ϕ)
Input: A CTMC C, an LDF formula ϕ, ε1 and ε2

1 Identify all BSCCs B in C;
2 G = ∅;
3 Prob = 0;
4 for each BSCC B do
5 if B |= ϕ then
6 Make every state in B absorbing;
7 G = G ∪ B;
8 end
9 end

10 Choose T ≥ ln(ε1)
μ(Q1) and N ≥ �T e2 + ln

(
1
ε2

)
;

11 Prob = P̃robN(C |=
G,T ϕ);

12 return Prob;

13 Recall that μ(Q1) denotes the logarithmic norm of Q1 (cf. Definition 3.14).
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—the error introduced by approximating PrC
a
({ρ | ρ |=

G ϕ}) with Prob(Ca |=
G,T ϕ),

which can be obtained in a similar way as for Theorem 3.23, denoted by ε1; and
—the error introduced by approximating Prob(Ca |=

G,T ϕ) with P̃robN(Ca |=
G,T ϕ),

denoted by ε2.

THEOREM 4.12. Given ε1 and ε2, we have that

Prob(C |= ϕ) − P̃rob(C |= ϕ) ≤ ε1 + ε2,

where P̃rob(C |= ϕ) can be computed by Algorithm 5.

PROOF. The claim follows from Theorems 3.12 and 3.23, and Proposition 4.11.

Remark 4.13. Given ε a priori, one possibility is to let ε1 = ε2 = ε

2
√

|G| , and hence

T =
ln
(

ε

2
√

|G|

)
μ(Q1) and N =

�e2 ln
(

ε

2
√

|G|

)
μ(Q1) + ln

(
2
√

|G|
ε

)
suffice.

4.2. Verification of Time-Bounded IDP

In this section we show how to deal with the time-bounded variant of IDP. A well-known
fact regarding CTMCs is that the set of Zeno paths is of probability 0, that is, we have
the following

LEMMA 4.14. Given a CTMC C and a time bound T < ∞, we have that

PrC
({

ρ | ρ |=

∫
1 ≤ T

})
= 0.

We refer the readers to Baier et al. [2003] for a proof.
For a CTMC C, we write C[s] for the CTMC obtained from C by making the state s

absorbing. The following theorem plays a pivotal role.

THEOREM 4.15. Given a CTMC C and an LDF � it holds that

Prob(C |= �) =
∑
s∈S

Prob
(
C[s] |=

{s},T ϕ
)
.

PROOF. By the law of total probability we have that

PrC({ρ | ρ |= �}) =
∑
s∈S

PrC({ρ | ρ |= �} | {ρ | ρ@T = s}) · PrC({ρ | ρ@T = s}),

since
∑

s∈S PrC({ρ | ρ@T = s}) = 1. Observe that

PrC({ρ | ρ |= �} | {ρ | ρ@T = s})

= PrC({ρ | ρ |= �}⋂{ρ | ρ@T = s})
PrC({ρ | ρ@T = s})

= PrC{{ρ | ∀i.ρ[0..i] |= ∫
1 ≤ T → ϕ and ρ@T = s}}

PrC({ρ | ρ@T = s})

= PrC[s]({ρ | ρ |=
{s},T ϕ)

PrC({ρ | ρ@T = s}) .
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ALGORITHM 6: Compute P̃rob(C |= �)
Input: A CTMC C, an LDF � and ε

1 Prob = 0 ;

2 Chose N ≥ �T e2 + ln
(

|S|·|√G|
ε

)
;

3 for s ∈ S do
4 Prob+ = P̃robN(C[s] |=

{s},T ϕ);
5 end
6 return Prob;

Note that, for the last step, we use Lemma 4.14 and Definition 4.3. It follows that

PrC({ρ | ρ |= �})

=
∑
s∈S

PrC[s]({ρ | ρ |=
{s},T ϕ)

PrC({ρ | ρ@T = s}) · PrC({ρ | ρ@T = s})

=
∑
s∈S

Prob(C[s] |=
{s},T ϕ).

This completes the proof.

The solution boils down to the computation of Prob(C[s] |=
{s},T ϕ) for each state s, for

which we can apply Algorithm 4 for approximations. A detailed description is given in
Algorithm 6.

We also have the following error bound.

THEOREM 4.16. Given ε and N ∈ N, it holds that

Prob(C |= �) − P̃rob(C |= �) < ε.

PROOF. For each s, we compute Prob(C[s] |=
{s},T ϕ) up to ε

|S|·
√

|G| . Namely, we choose

N such that N ≥ �T e2 + ln
(

|S|·
√

|G|
ε

)
. It follows that

Prob(C |= �) − P̃rob(C |= �) ≤ |S| · ε

|S| ≤ ε.

This completes the proof.

5. EXTENSIONS TO PREFIX-ACCUMULATION ASSERTIONS

In this section, we show how to extend our results to the prefix-accumulation assertions
studied in Boker et al. [2011]. Three prefix-accumulation assertions, namely Sum (sum-
mation), Avg (average), and cAvg (controlled accumulation) are introduced in Boker
et al. [2011] in the setting of Quantitative Kripke Structures (QKS). The idea is to
adapt the construction used on QKSs to the settings of CTMCs. We first recall some
definitions.

Definition 5.1 (Quantitative Kripke Structure). A quantitative Kripke structure is
a tuple K = (P, V, S, sin, R, L) where:

—P is a finite set of Boolean variables;
—V is a finite set of numeric variables;
—S is a finite set of states, with initial state sin ∈ S;
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—R ⊆ S × S is a total transition relation; and
—L : S → 2P × QV is a labelling function.

For the rest of this section, we fix a QKS K = (P, V, S, sin, R, L). A computation of K
is an infinite sequence of states π = s0, s1, . . . such that s0 = sin and (si, si+1) ∈ R for
every i ≥ 0. In the sequel, 〚p〛s ∈ {T, F} and 〚v〛s ∈ Q respectively denote the value of a
Boolean variable p ∈ P and a numeric variable v ∈ V in a state s of K.

Definition 5.2 (D-Tree). Given a finite set D of directions, a D-tree is a set T ⊆ D∗
such that, if x · d ∈ T where x ∈ D∗ and d ∈ D, then also x ∈ T . The elements of T are
called nodes, and the empty word ε is the root of T . Thus, given two nodes x and y, we
say that x ≤ y iff there is some z ∈ D∗ such that y = x · z. For every x ∈ T , the nodes
x · d, for d ∈ D, are the successors of x. A node is a leaf if it has no successors. A path
of T is a minimal set π ⊆ T such that ε ∈ π and for every y ∈ π , either y is a leaf or
there exists a unique d ∈ D such that y · d ∈ π . For a set Z, a Z-labelled D-tree is a pair
(T , τ ) where T is a D-tree and τ : T → Z maps each node of T to an element in Z.

The QKS K induces the computation tree (TK, τK) which corresponds to the computa-
tions of K. Formally, (TK, τK) is a (2P × QV )-labelled S-tree, where state(x) denotes the
rightmost state in a node of x of TK and τK(x) = L(state(x)). The prefix-accumulation
values (Sum and Avg) of a numeric variable v at a node x of (TK, τK) are

—〚Sum(v)〛x = ∑
y≤x 〚v〛y, and

—〚Avg(v)〛x = 〚Sum(v)〛x
|x|+1 .

The same definition applies for Boolean variables by viewing them as numerical vari-
ables with F = 0 and T = 1.

The prefix-accumulation values Sum and Avg are fairly simple. In practice, one may
wish to control and decide when the accumulation is done in order to take into account
more complex behaviors. For this reason, Boker et al. [2011] introduce the controlled
accumulation cAvg(u, r1, v, r2), where u, v are numeric variables and r1, r2 are regular
expressions over 2P . The value of a controlled accumulation expression at a node x of
the computation tree is defined as follows (we use r(y) to indicate that the prefix y is a
member in the language of the regular expression r):

�cAvg(u, r1, v, r2)�x =
∑

y≤x|r1(y)�u�y∑
y≤x|r2(y)�v�y

.

Intuitively, cAvg(u, r1, v, r2) considers the value of u accumulated only over the points
in time where the regular expression r1 is valid and it averages u against v, where v
is the accumulated value of the variable v over the points in time where the regular
expression r2 is valid.

Example 5.3. Following the example in Boker et al. [2011], we can express the
average waiting time between a request (denote r) and a grant (denote g) over the
alphabet � as cAvg(1, r1, 1, r2), where r1 = �∗r(�\g)∗ describes all the prefixes with a
request that is not yet granted, and r2 = (ε + �∗g)(�\r)∗r describes all the prefixes in
which a request that needs a grant has been issued. Thus, cAvg(1, r1, 1, r2) is the sum
of the waiting durations divided by the number of requests.

Next we show that prefix-accumulation assertions can be encoded by LDF in a precise
sense. Hence, the elegant framework of Boker et al. [2011] can also be adapted to our
setting. For the two prefix-accumulation assertions Sum(v) and Avg(v) the translation is
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immediate. In fact, the term Sum(v) can be written as∑
s∈S

v(s)
∫

@s,

where @s is an atomic proposition (state formula) which holds exactly at state s. Simi-
larly, the assertion Avg(v)≥ c can be encoded as∑

s∈S

v(s)
∫

@s ≥ c ·
∫

1,

which is again an LDF after rearrangement.
The most interesting case is the controlled-average expression cAvg(u, r1, v, r2) for

two numeric variables u, v and two regular expressions r1, r2. The idea is that we want
to sum the value of u over all the points in time where r1 is true and average this with
v constrained to r2.

First of all we construct two deterministic finite automata A1 and A2 out of r1 and
r2, respectively. Then we build the product C ′ = C × A1 × A2. The product of a CTMC
with a deterministic finite automaton is defined as follows.

Definition 5.4 (Product C × A). Given a CTMC C = (S, AP, L, s0, P, E) and a
DFA A = (Q, 2AP, δ, q0, F) we define the product C × A to be the CTMC C ′ =
(Loc, AP′, L′, l0, P′, E′) where:

—Loc = S × Q;
—AP′ = AP ∪ {p};
—l0 = 〈s0, q0〉;
—given l = 〈s, q〉:

—L′(l) = L(s) if q /∈ F;
—L′(l) = L(s) ∪ {p} if q ∈ F;

—given l1 = 〈s1, q1〉 and l2 = 〈s2, q2〉, P′(l1, l2) = P(s1, s2) iff:

P(s1, s2) > 0 ∧ q1
L(s1)−→ q2,

and P′(l1, l2) = 0 otherwise;
—given l1 = 〈s1, q1〉 and l2 = 〈s2, q2〉, E′(l1, l2) = E(s1, s2)

where the label p indicates that the regular expression is true in the state labelled
with it.

We focus on cAvg(u, p, v, q) ≥ c instead of cAvg(u, r1, v, r2) ≥ c, where p = T in the
states of C ′ where r1 is true (F otherwise) and q = T in the states of C ′ where r2 is true
(F otherwise). We define a new reward structure, v′, in C ′ as follows.

v′ =

⎧⎪⎨⎪⎩
0 if p = false and q = false
−cv if p = false and q = true
u if p = true and q = false
u − cv if p = true and q = true

Similarly to Boker et al. [2011, Proposition 7], we have the following.

PROPOSITION 5.5. For any CTMC C, reward structures u, v and regular expressions
r1, r2, the computation of cAvg(u, r1, v, r2) ≥ c is reduced to the computation of Sum (v′)≥ 0
in C ′.
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6. CONCLUSION

We have studied the problem of verifying CTMCs against linear durational properties.
We focused on two classes of LDPs, namely, eventuality duration properties and invari-
ance duration properties. The central question we solved is, what is the probability of
the set of infinite timed paths of the CTMC which satisfy the given LDP? We presented
different algorithms to approximate these probabilities up to a given precision, stating
their complexity and error bounds.

As future work, we plan to study algorithmic verification of more complex duration
properties, for instance response and persistence, as in Bouajjani et al. [1993]. It is also
interesting to study specifications combining duration properties and temporal proper-
ties (in traditional real-time logics, e.g., MTL). The verification of these specifications
would be challenging. Extending the current work to continuous-time Markov decision
processes is another possible direction.
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