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Abstract—Implantable medical devices, such as cardiac pace-
makers, must be designed and programmed to the highest levels
of safety and reliability. Recently, errors in embedded software
have led to a substantial increase in safety alerts, costly device
recalls or even patient death. To address such issues, we propose
a model-based framework for quantitative, automated verifica-
tion of pacemaker software. We adapt the electrocardiogram
model of Clifford et al, which generates realistic normal and
abnormal heart beat behaviours, with probabilistic transitions
between them, to produce a timed sequence of action potential
signals that serve as pacemaker input. Working with the timed
automata model of the pacemaker by Jiang et al, we develop
a methodology for deriving the composition of the heart and
the pacemaker, based on discretisation. The main correctness
properties we consider include checking that the pacemaker
corrects Bradycardia (slow heart beat) and does not induce
Tachycardia (fast heart beat), for a range of realistic heart
behaviours. We also analyse undersensing, through considering
noise on sensor readings, and energy usage. We implement the
framework using the probabilistic model checker PRISM and
MATLAB and demonstrate encouraging experimental results.
Our approach can be adapted to individual patients and is
applicable to other pacemaker models.

Keywords-Verification; Timed Automata; Probabilistic and
Hybrid Models; Implantable Pacemakers

I. INTRODUCTION

Implantable cardiac pacemakers (pacemakers for short)
are the most commonly used cardiac rhythm management
devices. The primary purpose of a pacemaker is to maintain
an adequate heart rate through electrical impulses delivered
to the heart. Nowadays, millions of implantable pacemakers
are used worldwide. Because of safety-critical implications,
they must be designed and programmed to the highest levels
of safety and reliability. Unfortunately, according to the
US Food and Drug Administration (FDA) [1], errors in
embedded software have led to a substantial increase in
safety alerts, costly device recalls or even patient death.
Combined with the relative lack of standardisation in the
field of medical devices, there is an urgent need to develop
methodologies for ensuring correct behaviour of embedded
pacemaker software.

Recently, Jiang et al [8] developed a model-based frame-
work for automatically verifying cardiac pacemakers in the
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real-time setting. Working from descriptions by Boston Sci-
entific, a leading manufacturer, [8] develop a detailed model
of a basic dual chamber pacemaker as a network of timed
automata ([2], TAs). They also provide a model of the heart
behaviour as a TA, and perform verification of the composi-
tion in UPPAAL [10]. While the pacemaker model of [8] is
rather extensive, their (random) heart model is arguably too
simplistic, since it generates signals non-deterministically
within a real-time interval. As a consequence, the model
admits unrealistic and extremely irregular heart behaviours,
which would hinder the verification of certain correctness
properties. Indeed, it is explicitly mentioned in [8] that
a more physiologically-relevant heart model is needed for
more complex properties.

In this paper we contribute to the effort initiated in [8],
aimed at developing a model-based verification methodology
for cardiac pacemakers, and specifically address the issue
of a realistic heart model, as well as their suggestion
that incorporating costs and probabilities could lead to a
more realistic and detailed quantitative analysis. We adapt
a sophisticated heart model based on nonlinear ordinary
differential equations (ODEs) from medical engineering due
to Clifford et al [4]. Developed for different purposes, this
is an artificial model for generating multi-channel electro-
cardiogram (ECG) to provide simulations of normal and
abnormal cardiac rhythms. The electrical activity of the heart
can be monitored externally by an ECG, which measures
the voltage difference between two leads placed on the skin
of the torso and provides a general view of the electrical
activities of the heart. The heart model from [4] uses a
three dimensional vectorcardiogram (VCG) formulation to
generate the normal and/or abnormal cardiac dipole for
a patient using a sum of Gaussian kernels, fitted to real
VCG recordings. Switching between normal and abnormal
beat types is achieved using a Markov chain. Transition
probabilities of the Markov chain can be learned from patient
data, and hence adapted to an individual.

The main idea is to convert the ECG signals to action
potential signals used as input to the pacemaker, which can
then be composed with the pacemaker model for analy-
sis, similarly to the approach of [8]. However, since the
heart model can probabilistically switch to different mode
behaviours, we need to develop quantitative, probabilistic
analysis methods. A typical correctness requirement for the
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pacemaker is that it maintains the rate of 60-100 beats per
minute (BPM), which is checked against the signals gener-
ated from the realistic heart model. We target two main types
of properties: (i) whether the pacemaker corrects faulty heart
beats, and (ii) that the pacemaker does not induce erroneous
heart behaviours (that is, it does not overpace the heart
unless necessary). We utilise the pacemaker model presented
in [8], to demonstrate the working of the framework. The
use of probabilities also allows us to carry out performance
evaluation of the pacemaker in terms of energy consumption
during its life time.

Contributions: In this paper, we develop a methodol-
ogy for quantitative, automated verification of pacemaker
software models composed with a physiologically-relevant
model of the heart based on [4], enhancing the results of
[8]. We apply discretisation techniques in order to obtain
the composed heart and pacemaker behaviour. We formu-
late and implement algorithms for quantitative, probabilistic
analysis, for properties such as whether the pacemaker
corrects Bradycardia (slow heart beat) and does not in-
duce Tachycardia (fast heart beat), and analyse the effect
of undersensing (due to noise on sensor readings) and
energy consumption. We implement the framework using
the probabilistic model checker PRISM [9] and MATLAB.
PRISM, which supports probabilistic TA, is used for the
discretisation of the pacemaker model. The complex heart
model of [4] is implemented instead using MATLAB. We
develop functions to export PRISM models into MATLAB,
and to combine the pacemaker specification with the heart
model, and hence carry out the verification in MATLAB.
We provide experimental results which are encouraging.

Related work: Jiang et al [8] formulate a model for a
basic dual chamber pacemaker in terms of a network of TAs.
The pacemaker is verified using UPPAAL against a simple
random heart model. [6], [7] develop a real-time Virtual
Heart Model (VHM) which can be used for simulation and
testing, whereas [7] devise a framework for testing and
validation of implantable cardiac devices. In all these works,
probabilities are not considered. Tuan et al [11] propose a
real-time formal model for a pacemaker and its environment.
A number of time constraints are verified using the PAT
model checker. However, even though they have modelled
all the operating modes described in Boston Scientific,
they do not take into account probabilities and complex
behaviours of the pacemaker, e.g. mode switching. Macedo
et al [12] develop a concurrent and distributed real-time
model for cardiac pacemakers through a pragmatic incre-
mental approach. The models are expressed in VDM (Vienna
Development Method) and checked using a scenario-based
approach. Gomes et al [5] present a formal specification
of the pacemaker using the Z notation. Theorem proving
approaches are employed to validate some informal require-
ments defined by Boston Scientific. However, no validation
experiments regarding safety conditions were performed.

Mert et al [14] formally design all the operational modes
of a single electrode pacemaker system using Event-B and
prove them. They use the ProB tool to validate their models
in different situations, such as the absence of input pulses.

Organization: This paper is organized as follows.
Sect. II presents the necessary background on human heart
beats, their model and a pacemaker model. Sect. III shows
how we discretise and compose the (continuous) heart and
pacemaker models. Sect. IV demonstrates the verification
process and the experimental results. The paper is concluded
with Sect. V, where possible future work is also discussed.

II. PRELIMINARIES

In this section, inspired by [6], we first briefly describe
the electrical system of the heart. The human heart maintains
blood circulation of the body by contraction of the atria and
ventricles. A special tissue in the Sinus node (see Fig. 1)

Figure 1. Electrical conduction system of the heart.

generates the electrical signal which is the primary pace-
maker of the heart. The Sinus node spontaneously produces
an electrical signal, which is conducted through Internodal
pathways into the atrium causing its contraction. The signal
then passes through the slow conducting atrioventricular (A-
V) node, allowing the blood to empty out the atria and fill the
ventricles. The fast conducting His-Purkinje system spreads
the electricity through the ventricles, causing all tissues
in both ventricles to contract simultaneously and to force
blood out of the heart. This electrical system is the natural
pacemaker of the heart. Abnormalities in the electrical signal
generation and propagation can cause different types of
arrhythmias such as Tachycardia and Bradycardia, which
require medical intervention in the form of medication,
surgery or implantable pacemakers. The heart normally has
around 60-100 beats per minute (BPM) and a heart beat is
essentially a contraction of the ventricle.

The electrical signal that passes through the heart is
known as action potential. This is the signal that an im-
plantable pacemaker will receive or generate. A typical
ventricular action potential is shown in Fig. 2. The action
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potential is triggered by a voltage spike from the action po-
tential of its neighbouring tissue or from an artificial pacing
signal (pacemaker signal). The upstroke indicates the depo-
larization of the cell and the time when the muscle contracts.
This is followed by the plateau, which allows the muscle
to hold its contraction and fully eject blood. The down-
stroke is repolarisation, when the muscle relaxes and refills.

Figure 2. Action potential.

A more gradual upstroke of
depolarization will slow the
conduction velocity of the tis-
sue, as it will take more
time to reach the voltage
threshold necessary to trigger
a neighbour tissues to depo-
larise. Thus, the shape and tim-
ing of the action potential determines the conduction velocity
and refractoriness of the heart.

A. Basic models

We introduce two basic models that will be used later in
the paper.

Definition 1 [Labelled Transition System] A labelled tran-
sition system (LTS) 𝒮 is a tuple 𝒮 = (𝑆, 𝑠0, 𝐴, 𝐿,Act,⇝)
where: 𝑆 is a finite set of states, 𝑠0 ∈ 𝑆 is the initial state, 𝐴
is the set of atomic propositions, 𝐿 : 𝑆 → 2𝐴 is the labelling
function which assigns to each state 𝑠 ∈ 𝑆 a set of atomic
propositions, Act is a set of actions and ⇝: 𝑆 × Act × 𝑆 is
the transition relation.

A (discrete) path 𝜎 of an LTS is defined as a finite
sequence 𝜎 = 𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑎𝑛−1, 𝑠𝑛 of states and
actions such that (𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1) ∈⇝ for any 0 ≤ 𝑖 < 𝑛.
We define 𝜎[𝑖] to be the 𝑖-th state in 𝜎, ∣𝜎∣ to be the length
of the path, i.e., the number of states 𝑠𝑖 ∈ 𝜎, and 𝜎[𝑖 . . . 𝑗]
for any 𝑖 ≤ 𝑗 < ∣𝜎∣ to be the sub-path of 𝜎 starting in 𝜎[𝑖]
and ending in 𝜎[𝑗].

Definition 2 [Markov Chains] A (time-inhomogeneous)
Markov chain 𝒟 is a tuple 𝒟 = (𝑆, 𝛼,𝐴, 𝐿,P) where: 𝑆,
𝐴 and 𝐿 : 𝑆 → 2𝐴 are defined as in Def. 1, 𝛼 : 𝑆 → [0, 1]
is the initial distribution, and P : 𝑆 × 𝑆 ×ℕ → [0, 1] is the
step-dependent transition probability matrix.

The definition of paths carries over from LTSs to Markov
chains. We also define the probabilistic distribution over
the set of paths in a standard way (by considering
the topology generated from the cylinder sets, cf., e.g.,
[3]). Given a finite path 𝜎, its probability is given as

Pr(𝜎)=𝛼(𝜎[0])
∣𝜎∣−1∏
𝑖=0

P(𝜎[𝑖], 𝜎[𝑖+1], 𝑖).

B. The heart model

We present the artificial vector model for generating ECG
rhythms developed by Clifford et al [4]. An ECG is a

Figure 3. Example electrocardiogram [13].

signal recorded from the surface of the human chest, which
describes the activity of the heart. An example ECG is given
in Fig. 3. Typically, an ECG signal describes a cardiac cycle,
which is of three main waves, P, QRS and T. The P wave
denotes the atrial depolarization. The QRS wave reflects the
rapid depolarization of the right and left ventricles. The T
wave denotes the repolarisation of the ventricle. [4] presents
a mathematical model given as a system of nonlinear ODEs.
The model is the following:

�̇� = 𝜔, �̇� = −
∑
𝑖

𝛼𝑥
𝑖 𝜔

(𝑏𝑥𝑖 )
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𝑥
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− (Δ𝜃
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2
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2

]
(1)

where 𝜃 ∈ [−𝜋, 𝜋] is the cardiac phase, Δ𝜃𝑥𝑖 = (𝜃 −
𝜃𝑥𝑖 )mod 2𝜋, 𝜔 = 2𝜋ℎ

60
√
ℎ𝑎𝑣

, where ℎ is the instantaneous
(beat-to-beat) heart rate in BPM and ℎ𝑎𝑣 is the mean of
the last 𝑛 heart rates (typically with 𝑛 = 6) normalized
by 60 BPM. The model generates an ECG signal for each
cartesian coordinate x, y and z. In this paper we only need
to consider the x coordinate, since the signal x is sufficient
to generate the action potential.

To use Eq. (1) one has to define the instantaneous (beat-
to-beat) heart rate function ℎ(𝑡) (𝑡 ∈ ℝ≥0), which specifies
the distance between two consecutive R-events (highest peak
in Fig. 3). Technically, it is equivalent to the so called
RR-series, which can be generated by first constructing the
power spectrum 𝑆(𝑓) as a sum of two Gaussian distributions

𝑆(𝑓) =
𝜎2
1√

2𝜋𝑐21
𝑒

(
(𝑓−𝑓1)2

2𝑐21

)
+

𝜎2
2√

2𝜋𝑐22
𝑒

(
(𝑓−𝑓2)2

2𝑐22

)
, which have

means 𝑓1, 𝑓2 and standard deviation 𝑐1, 𝑐2. By multiplying
this time series by an appropriate scaling constant and
adding an offset value, the resulting time series can give
any required mean and standard deviation. More details on
the construction of the RR-series are given in [13].

The system of ODEs from Eq. (1) models a single mode
of heart behaviour, such as Bradycardia or Tachycardia, but
not both. In order to model the case when the heart changes
its behaviour, [4] introduce a probabilistic framework in
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terms of Markov chains. The state space of the Markov
chain denotes different modes of the functioning of the heart,
and the transition from one state to another is given by the
transition probability matrix P. The state switch is made at
the point when the cardiac phase 𝜃 jumps from 𝜋 to −𝜋. The
probabilistic nature of the model hinges on our probabilistic
analysis, provided in Sect. IV-C1. We refer the reader to [4]
for more details.

C. The pacemaker model

The pacemaker is implanted under the chest skin and it
sends impulses to the heart at specific time intervals. It has
two leads: one for the atrium and one for the ventricle. Each
lead has the ability to sense or deliver an electrical signal.
As mentioned, the authors in [8] develop a pacemaker model
based on TAs [2]. For completeness, below we present this
model and its variants.

Let 𝒳 = {𝑥1, . . ., 𝑥𝑛} be a set of nonnegative real-valued
variables, called clocks. An 𝒳 -valuation is a function 𝜂 :
𝒳 → ℝ⩾0 assigning to each variable 𝑥 a nonnegative real
value 𝜂(𝑥). Let 𝒱(𝒳 ) denote the set of all valuations over 𝒳 .
A clock constraint on 𝒳 , denoted by 𝑔, is a conjunction of
expressions of the form 𝑥 ⊳⊲ 𝑐 for clock 𝑥 ∈ 𝒳 , comparison
operator ⊳⊲ ∈ {<,≤, >,≥} and 𝑐 ∈ ℕ. Let ℬ(𝒳 ) denote the
set of clock constraints over 𝒳 . An 𝒳 -valuation 𝜂 satisfies
a constraint 𝑥 ⊳⊲ 𝑐, denoted 𝜂 ∣= 𝑥 ⊳⊲ 𝑐, if and only if
𝜂(𝑥) ⊳⊲ 𝑐; it satisfies a conjunction of such expressions if
and only if 𝜂 satisfies all of them. Let 0 denote the valuation
that assigns 0 to all clocks. For a subset 𝑋 ⊆ 𝒳 , the reset
of 𝑋 , denoted 𝜂[𝑋 := 0], is the valuation 𝜂′ such that ∀𝑥 ∈
𝑋. 𝜂′(𝑥) := 0 and ∀𝑥 /∈ 𝑋. 𝜂′(𝑥) := 𝜂(𝑥). For 𝛿 ∈ ℝ≥0 and
𝒳 -valuation 𝜂, 𝜂+𝛿 is the 𝒳 -valuation 𝜂′′ such that ∀𝑥 ∈ 𝒳 .
𝜂′′(𝑥) := 𝜂(𝑥)+𝛿, which implies that all clocks proceed at
the same speed.

Definition 3 [Timed I/O Automata] A timed I/O automaton
(TA) is a tuple 𝒜 = (Σ,𝒳 , 𝑄, 𝐼, 𝑞0,→), where:

∙ Σ = Σin ∪ Σout ∪ {𝜏} is the union of the set of input
actions Σin, the set of output actions Σout and the
internal action {𝜏};

∙ 𝒳 is a finite set of clocks;
∙ 𝑄 is a nonempty, finite set of locations;
∙ 𝐼 : 𝑄 → ℬ(𝑋) assigns invariants to locations;
∙ 𝑞0 ∈ 𝑄 is the initial location;
∙ →⊆ 𝑄× Σ× ℬ(𝒳 )× 2𝒳 ×𝑄 is the edge relation.

Semantics: Given a TA 𝒜 = (Σ,𝒳 , 𝑄, 𝐼, 𝑞0,→), a
location 𝑞 ∈ 𝑄 and a valuation 𝜂, the semantics of TA is
given as a transition system where states are pairs ⟨𝑞, 𝜂⟩ and
transitions are defined by the rules:

∙ ⟨𝑞, 𝜂⟩ 𝑑−→⟨𝑞, 𝜂 + 𝑑⟩ if 𝜂 ∈ 𝐼(𝑞) and (𝜂 + 𝑑) ∈
𝐼(𝑞) for a non-negative real 𝑑;

∙ ⟨𝑞, 𝜂⟩ 𝑎−→⟨𝑞′, 𝜂′⟩ if 𝑞 𝑔,𝑎,𝑋−−−−→ 𝑞′, 𝜂 ∈ 𝑔, 𝜂′ = 𝜂[𝑋 :=
0] and 𝜂′ ∈ 𝐼(𝑞′).

We use a network of timed (I/O) automata for the com-
position of more than one TA. The semantics of a network
of TAs is given as for a single TA in terms of transition
systems. A state of the network is a pair ⟨q, 𝜂⟩, where q
denotes a vector of current locations of the network, one
for each TA, and 𝜂 is as usual a clock assignment storing
the current values of the clocks in the system. A network
may perform two types of transitions, delay transitions and
discrete transitions. The rule for delay transitions is similar
to the case of a single TA, where the invariant of a location
vector is the conjunction of the location invariants of the
TAs. There are two rules for discrete transitions, defining
local actions where one of the TAs makes a move on its own,
and synchronising actions where two processes synchronise
on a channel and move simultaneously. Let 𝑞𝑖 stand for the
𝑖’th element of a location vector q and q[𝑞′𝑖/𝑞𝑖] for the vector
q with 𝑞𝑖 being substituted by 𝑞′𝑖. The transition rules are as
follows:

∙ ⟨q, 𝜂⟩ 𝑑−→⟨q, 𝜂 + 𝑑⟩ if 𝜂 ∈ 𝐼(q) and (𝜂 + 𝑑) ∈
𝐼(q), where 𝐼(q) =

⋀
𝐼(𝑞𝑖);

∙ ⟨q, 𝜂⟩ 𝜏−−→⟨q[𝑞′𝑖/𝑞𝑖], 𝜂′⟩ if 𝑞𝑖
𝑔,𝜏,𝑋−−−−→ 𝑞′𝑖, 𝜂 ∈ 𝑔, 𝜂′ =

𝜂[𝑋 := 0], 𝜂′ = 𝐼(q[𝑞𝑖/𝑞
′
𝑖]);

∙ ⟨q, 𝜂⟩ 𝜏−−→⟨q[𝑞′𝑖/𝑞𝑖][𝑞𝑗/𝑞′𝑗 ], 𝜂′⟩ if 𝑞𝑖
𝑔𝑖,𝑎,𝑋𝑖−−−−−→ 𝑞′𝑖,

𝑞𝑗
𝑔𝑗 ,𝑏,𝑋𝑗−−−−−→ 𝑞′𝑗 , 𝑎 ∈ Σ𝑜𝑢𝑡 ∧ 𝑏 ∈ Σ𝑖𝑛, 𝑖 ∕= 𝑗, 𝜂 ∈ 𝑔𝑖 ∧

𝑔𝑗 , 𝜂
′ = 𝜂[𝑋𝑖 ∪𝑋𝑗 := 0] and 𝜂′ = 𝐼(q[𝑞′𝑖/𝑞𝑖][𝑞𝑗/𝑞

′
𝑗 ]).

The pacemaker model in [8] consists of five TA compo-
nents: the lower rate interval (LRI) component, the atrio-
ventricular interval (AVI) component, the upper rate inter-
val (URI) component, the post ventricular atrial refractory
period (PVARP) component and the ventricular refractory
period (VRP) component. The LRI component (see Fig. 4)

Figure 4. LRI component [8].

has the function to keep the heart rate above a given mini-
mum value. The AVI component (see Fig. 5) has the purpose
to maintain the synchronisation between the atrial and the
ventricular events. An event is when the pacemaker senses
or generates an action. The AVI component also defines the
longest interval between an atrial event and a ventricular
event. The PVARP component (see Fig. 6) notifies all other
components that an atrial event has occurred. Notice that
there is no AR signal as we are not using the advanced
algorithms given in [8].

The URI component (see Fig. 7(a)) sets a lower bound
on the times between consecutive ventricular events. The
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Figure 5. AVI component [8].

Figure 6. PVARP component [8].

VRP component (see Fig. 7(b)) filters noise and early events
that may cause undesired behaviour. There are four actions
in the pacemaker model that will be considered in the rest
of the paper. The input actions Aget and Vget will notify
the pacemaker when there is an action potential from the
atrium or from the ventricle, respectively. The output actions
AP and VP are responsible for pacing the atrium and the
ventricle, respectively. Notice that in a real pacemaker device
the input will be a signal. The pacemaker will have a voltage
threshold that will be used to decide whether the signal
yields an Aget or a Vget action. It is important to remark
that all transitions from the pacemaker model that are not
labelled with an input or output action are assumed to be
labelled with the internal action 𝜏 . The locations that have
transitions labelled with 𝜏 as well as the locations labelled
with C do not allow the time to elapse.

III. DISCRETISATION

As can be seen from Sect. II-C, to verify the pacemaker
model we need to provide a sequence of actions consisting
of Aget and Vget. Moreover, the pacemaker should be able
to output actions AP and VP when needed. It is crucial
to know when these actions happen, i.e., timed sequences
are required. As stated earlier, the heart model consists
of a system of nonlinear ODEs. To extract the (timed)
sequence of Aget and Vget actions the system of ODEs in
Eq. (1) needs to be solved, for which we use discretisation,
resulting in an LTS. Accordingly, we also discretise the
pacemaker model in order to obtain another LTS such that
they can be composed and verified together. We now present
two discretisation algorithms for the heart model and the
pacemaker model, respectively. For the rest of the section,

(a) URI component [8] (b) VRP component [8]
Figure 7.

Figure 8. Mapping from ECG to action potential.

let 𝑇 ∈ ℕ be a time-bound, e.g. the life time of the battery
of the pacemaker, let 𝛿 ∈ ℕ be a discretisation step (usually
𝛿 = 2ms in our examples) and let 𝑁 = ⌊𝑇𝛿 ⌋, the integral
part of 𝑇

𝛿 ∈ ℝ≥0, be the number of discretisation steps.

A. Discretisation of the heart model

The first step of the discretisation algorithm for the heart
model is to generate the instantaneous (beat-to-beat) heart
rate ℎ(𝑡), 𝑡 ∈ ℝ>0, described in Sect. II-B. Then we use
numerical techniques such as Runge-Kutta [15] to obtain the
set of voltages 𝑥(𝑡𝑖) at times 𝑡𝑖 = 𝑖𝛿 for 𝑖 ≤ 𝑁 . The values
𝑥(𝑡𝑖) will be used to generate the sequence of actions Aget
and Vget, which are given as inputs to the pacemaker. In
order to obtain the Aget or Vget action we use the mapping
from Fig. 8. The Aget action is generated at the start of the
P-event, and the Vget action is generated at the start of the
Q-event. In a normal heart, there is usually a difference of
200 ms between consecutive Aget and Vget actions.

The mapping from Fig. 8 is used to generate the LTS
from Fig. 9. The important characteristic of the LTS is that
every transition corresponds to 𝛿 ms. Therefore, in order

Figure 9. LTS modelling the action potentials of the heart.
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to estimate the time difference between an Aget and a Vget
event, one can count the number of states between these two
events and then multiply it by 𝛿. (For instance, to generate 5
min of heart behaviour using the discretisation step of 2 ms
one would require to generate an LTS with 150, 000 states.)
The last state from the generated LTS (not shown in Fig. 9)
has a transition to the initial state labelled with 0. Note
that, for the sake of simplicity, the LTS in Fig. 9 contains
only one Aget and one Vget event, which corresponds to a
single ECG cycle. A 5 min heart behaviour contains several
hundreds of ECG cycles. Between the Aget and Vget actions
there are time actions, which denote the passage of time.
Fig. 9 also shows two input actions, AP and VP, enabled
in all states except for the ones that have the output actions
Aget and Vget. The purpose of these actions is to allow the
pacemaker to pace the heart. A more detailed explanation
of these actions will be given in Sect. III-C.

B. Discretisation of the pacemaker model

In this section, we provide a discretisation of the pace-
maker model given as a network of TAs. The discretisation
is based on the well-known region techniques for TA which
can be regarded as the discretisation with step size 1. Here,
to comply with the discretisation of the heart model, we will
adapt to step size 𝛿 = 2 ms.

A region [2] is an equivalence class under ∼=, an equiv-
alence relation on clock valuations, which can be charac-
terised by a specific form of a clock constraint. Let 𝑐𝑥𝑖

be
the largest constant with which 𝑥𝑖 ∈ 𝒳 is compared in some
guard in the TA. Clock valuations 𝜂, 𝜂′ ∈ 𝒱(𝒳 ) are clock-
equivalent, denoted 𝜂 ∼= 𝜂′, if and only if either

1) for any 𝑥 ∈ 𝒳 it holds: 𝜂(𝑥) > 𝑐𝑥 and 𝜂′(𝑥) > 𝑐𝑥, or
2) for any 𝑥𝑖, 𝑥𝑗 ∈ 𝒳 with 𝜂(𝑥𝑖), 𝜂

′(𝑥𝑖) ≤ 𝑐𝑥𝑖
and 𝜂(𝑥𝑗),

𝜂′(𝑥𝑗) ≤ 𝑐𝑥𝑗
it holds: 𝜂(𝑥𝑗) ≤ 𝜂′(𝑥𝑗) iff ⌊𝜂(𝑥𝑖)⌋ =

⌊𝜂′(𝑥𝑖)⌋ and {𝜂(𝑥𝑖)}≤{𝜂′(𝑥𝑖)}.
Let ℛ𝑒(𝒳 ) be the set of regions over the set 𝒳 of clocks.

For Θ,Θ′ ∈ ℛ𝑒(𝒳 ), Θ′ is the successor region of Θ if for
all 𝜂 ∣= Θ there exists 𝛿 ∈ ℝ>0 such that 𝜂+𝛿 ∣= Θ′ and
∀𝛿′ < 𝛿. 𝜂+𝛿′ ∣= Θ ∨ Θ′. The region Θ satisfies the guard
𝑔, denoted Θ ∣= 𝑔, iff ∀𝜂 ∣= Θ. 𝜂 ∣= 𝑔. The reset operation
on region Θ is defined as Θ[𝑋 := 0] :=

{
𝜂[𝑋 := 0] ∣ 𝜂 ∣=

Θ
}

. Let Θ be the closure of Θ, Θ̊ the interior of Θ, and
∂Θ = Θ ∖ Θ̊ the boundary of Θ.

Given a tuple 𝑣 = (𝑣1, ⋅ ⋅ ⋅ , 𝑣𝑛) with 𝑛 components, we
denote by 𝑣⇂𝑘 the 𝑘-th component of 𝑣.

Definition 4 [Region graph of TAs] The region graph
of a TA 𝒜 = (Σ,𝒳 , 𝑄, 𝐼, 𝑞0,→) is 𝒢(𝒜) = (Σ ∪
{time}, 𝑉, 𝑣0, ↪→), where
∙ 𝑉 = 𝑄×ℛ𝑒(𝒳 ) is a finite set of vertices with initial

vertex 𝑣0 = (𝑞0,Θ0), where Θ0 is the initial region
such that 0 ∈ Θ0;

∙ ↪→⊆ 𝑉 × ((Σ × 2𝒳 ) ∪ {time}) × 𝑉 is the transition
relation defined as follows:

– 𝑣
time
↪→ 𝑣′ if 𝑣⇂1 = 𝑣′⇂1, and 𝑣′⇂2 is the successor

region of 𝑣⇂2;

– 𝑣
𝑎,𝑋
↪→ 𝑣′ if 𝑣⇂1 𝑔,𝑎,𝑋−−−−→ 𝑣⇂1′ with 𝑣⇂2 ∣= 𝑔, and

𝑣⇂2[𝑋 := 0] = 𝑣′⇂2, 𝑎 ∈ Σ.

Any vertex in the region graph is a pair consisting of a
location and a region. For a vertex 𝑣 ∈ 𝑉 and clock valuation
𝜂 ∈ 𝒱(𝒳 ) we define the boundary function ♭(𝑣, 𝜂) = inf{𝑡 ∣
𝜂 + 𝑡 ∈ ∂𝑣⇂2}, which is the minimum time (if it exists) to
“hit” the boundary of the region corresponding to vertex 𝑣
starting from a clock valuation 𝜂. Given a time bound 𝑇 , we
usually introduce a “global” clock 𝑦 which is never reset,
and thus also define ♭(𝑣, 𝜂, 𝑦) to be min{♭(𝑣, 𝜂), 𝑇−𝑦}, i.e.,
the minimum time to hit the boundary ∂𝑣⇂2 at time 𝑦 ≤ 𝑇 .

We proceed to define a discretised region graph, given
the discretisation step 𝛿 and a time bound 𝑇 , as follows.

Definition 5 Given a region graph 𝒢(𝒜) = (Σ ∪ {time},
𝑉, 𝑣0, ↪→), a discretisation step 𝛿 and a time-bound 𝑇 , the
discretised region graph 𝒢𝛿(𝒜) = (Σ ∪ {time}, 𝑆, 𝑠0, ↪→𝛿)
is defined as follows:
∙ 𝑆 = {(𝑣, 𝜂, 𝑦) ∣ 𝑣 ∈ 𝑉 ∧ 𝜂 ∈ ∂𝑣⇂2 ∧ 𝑦 ≤ 𝑇} is the set

of states with initial state 𝑠0 = (𝑣0,0, 0);
∙ ↪→𝛿⊆ 𝑆 × (Σ ∪ {time}) × 𝑆 is the transition relation

defined for every (𝑣, 𝜂, 𝑦) ∈ 𝑆 as follows:

– if 𝛿 < ♭(𝑣, 𝜂, 𝑦) and 𝑣
𝑎,𝑋
↪→ 𝑣′ then

(𝑣, 𝜂, 𝑦)
𝑎

↪→𝛿 (𝑣
′, (𝜂 + 𝛿)[𝑋 := 0], 𝑦 + 𝛿), and

(𝑣, 𝜂, 𝑦)
time
↪→𝛿 (𝑣, 𝜂 + 𝛿, 𝑦 + 𝛿) .

– if 𝛿 ≥ ♭(𝑣, 𝜂, 𝑦) and 𝑣
time
↪→ 𝑣′ then

(𝑣, 𝜂, 𝑦)
time
↪→𝛿 (𝑣

′, 𝜂 + 𝛿, 𝑦 + 𝛿) .

Remark 1 In Def. 5, the reachable part of 𝒢𝛿(𝒜) is an
LTS and it is finite if one sets 𝛿 = ⌊ 𝑇

𝑀 ⌋ for some natural
number 𝑀 . In the verification, we always conform to this
convention.

C. Composition between the heart and the pacemaker

Alg. 1 describes the composition between the LTS ℋ of
the heart and the LTS 𝒫 of the pacemaker. This results in
the composed LTS 𝒞. The number of states of the composed
LTS is 𝑁 . As input the algorithm takes the initial state of
the heart ℐ𝐻 and the initial state of the pacemaker ℐ𝑃 .
𝒞 has the same structure as ℋ, i.e., there is a transition
from the last state to the initial state, and also has the same
number of transitions. Notice that the composed LTS has
two additional actions AP and VP, which correspond to the
case when the pacemaker is pacing the heart. The algorithm
starts from the initial states ℐ𝐻 and ℐ𝑃 . As the heart has a
single transition from the initial state in line 3 the algorithm
retrieves the action 𝑎𝑐𝑡 to the next state. This action is used
as a synchronisation action. If the action is Aget or Vget the
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Algorithm 1 Composition algorithm
Require: LTS of the heart ℋ, LTS of the pacemaker 𝒫 ,

initial state of the heart ℐ𝐻 , initial state of the pacemaker
ℐ𝑃 and number of states 𝑁 of the composition LTS

Ensure: Return the composition LTS 𝒞
1: 𝑛𝐶 := 0; 𝑛𝑒𝑥𝑡𝑃 := ℐ𝑃 ;
2: while 𝑛𝐶 < 𝑁 do
3: 𝑎𝑐𝑡 := 𝑔𝑒𝑡𝑎𝑐𝑡(ℋ, ℐ𝐻);
4: if 𝑎𝑐𝑡 == Aget or 𝑎𝑐𝑡 == Vget then
5: 𝑛𝑒𝑥𝑡𝑃 := 𝑔𝑒𝑡𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒(𝒫 , ℐ𝑃 , 𝑎𝑐𝑡);
6: if 𝑛𝑒𝑥𝑡𝑃 == ∅ then 𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘();
7: 𝒞 := 𝑐𝑙𝑡𝑠(𝒞, 𝑛𝐶 , 𝑎𝑐𝑡);
8: 𝑛𝐶 := 𝑛𝐶 + 1; ℐ𝑃 := 𝑛𝑒𝑥𝑡𝑃 ;
9: ℐ𝐻 := 𝑔𝑒𝑡𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒(ℋ, ℐ𝐻 , 𝑎𝑐𝑡);

10: continue;
11: endif
12: 𝑛𝑒𝑥𝑡𝑃 := 𝑔𝑒𝑡𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒(𝒫 , ℐ𝑃 ,AP);
13: if 𝑛𝑒𝑥𝑡𝑃 != ∅ then
14: 𝒞 := 𝑐𝑙𝑡𝑠(𝒞, 𝑛𝐶 ,AP);
15: 𝑛𝐶 := 𝑛𝐶 + 1; ℐ𝑃 := 𝑛𝑒𝑥𝑡𝑃 ;
16: ℐ𝐻 := 𝑔𝑒𝑡𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒(ℋ, ℐ𝐻 ,AP);
17: continue;
18: endif
19: 𝑛𝑒𝑥𝑡𝑃 := 𝑔𝑒𝑡𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒(𝒫 , ℐ𝑃 ,VP);
20: if 𝑛𝑒𝑥𝑡𝑃 != ∅ then
21: 𝒞 := 𝑐𝑙𝑡𝑠(𝒞, 𝑛𝐶 ,VP);
22: 𝑛𝐶 := 𝑛𝐶 + 1; ℐ𝑃 := 𝑛𝑒𝑥𝑡𝑃 ;
23: ℐ𝐻 := 𝑔𝑒𝑡𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒(ℋ, ℐ𝐻 ,VP);
24: continue;
25: endif
26: if 𝑎𝑐𝑡 == time then
27: 𝑛𝑒𝑥𝑡𝑃 := 𝑔𝑒𝑡𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒(𝒫 , ℐ𝑃 , 𝑎𝑐𝑡);
28: if 𝑛𝑒𝑥𝑡𝑃 == ∅ then 𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘();
29: 𝒞 := 𝑐𝑙𝑡𝑠(𝒞, 𝑛𝐶 , 𝑎𝑐𝑡);
30: 𝑛𝐶 := 𝑛𝐶 + 1;
31: ℐ𝐻 := 𝑔𝑒𝑡𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒(ℋ, ℐ𝐻 , 𝑎𝑐𝑡);
32: endif
33: ℐ𝑃 := 𝑛𝑒𝑥𝑡𝑃 ;
34: endwhile
35: return 𝒞

pacemaker tries to synchronise on it by calling the function
𝑔𝑒𝑡𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒(𝒫 , ℐ𝑃 , 𝑎𝑐𝑡) (line 5). If the pacemaker cannot
synchronise, i.e., there is no transition ℐ𝑃 𝑎𝑐𝑡⇝ 𝑛𝑒𝑥𝑡𝑃 , then
there is a deadlock and the whole process stops (line 6).
If the pacemaker can synchronise with the heart then the
function 𝑐𝑙𝑡𝑠 creates a transition in the composed LTS 𝒞
labelled with 𝑎𝑐𝑡. The function 𝑔𝑒𝑡𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒(ℋ, ℐ𝐻 , 𝑎𝑐𝑡)
(line 9) assigns to the current state of the heart the next
state and the loop (line 2) starts again. If the pacemaker
cannot synchronise on Aget or Vget, then the algorithm
checks whether the pacemaker wants to pace the heart by

synchronising on the actions AP or VP. If the pacemaker
can pace the heart (lines 12 − 25) then the function 𝑐𝑙𝑡𝑠
creates a transition in the composed LTS 𝒞 labelled with
AP or VP. The next state of the heart will become the state
after the first Aget or the first Vget if the AP or VP action is
triggered, respectively. When there is no pacing required the
heart and the pacemaker will try to synchronise on the time
action (line 26). If no synchronisation is possible there is a
deadlock and the whole loop stops. The loop will continue
until there is a deadlock or the number of transitions in the
composed LTS 𝒞 is 𝑁 .

IV. VERIFICATION AND EXPERIMENTAL RESULTS

In this section, we demonstrate how the verification is
performed and show the experimental results. The imple-
mentation is available at http://www.veriware.org/.

A. Model construction

Typically the verification takes the following steps. First,
the pacemaker model described in Sect. II is encoded into
PRISM, i.e., each input-output TA in Fig. 4-7 is translated
into a PRISM “timed automaton module” and synchronisa-
tion actions are used to simulate the inputs and outputs of
the original pacemaker.

Second, we build the discretisation of the heart model
and the pacemaker model (as a network of TAs), using
the approaches described in Sect. III-A and Sect. III-B
respectively. For the network of TAs, we use the PRISM
digital clock engine. The discretisation step is chosen as
𝛿 = 2 ms. Note that the theory behind the digital clock
engine is given in Def. 5. As result, a MATLAB script
containing all the necessary information is generated, which
is later used for the composition of the heart and the
discretised pacemaker model.

B. Property specification

Given a sequence of action potentials we need to specify
a property that checks whether the sequence corresponds
to a normal heart behaviour. Intuitively, this means that
“there are between 60 and 100 heart beats (ventricular
events) in any interval of window time”. For this purpose, we
introduce a monitor in MATLAB to check that the constraint
is satisfied.

Definition 6 [Duration of a path] Given a discrete path 𝜎
and a discretisation step 𝛿, we define the duration of 𝜎 in
milliseconds as: Dur(𝜎) = 𝛿 ⋅ ∣𝜎∣. The definition extends
naturally to any sub-path of 𝜎.

Definition 7 [Heart beats] Given a discrete path 𝜎 we define
the number of heart beats of 𝜎 as: Heart beats(𝜎) =
∣𝜎∣−1∑
𝑖=0

1(𝜎, 𝑖), where 1(𝜎, 𝑖) is the characteristic function of

transitions 𝜎[𝑖]
𝑎𝑖⇝ 𝜎[𝑖 + 1] with respect to a ventricular
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event, which means that 1(𝜎, 𝑖) = 1 if 𝑎𝑖 ∈ {Vget,VP}, and
0 otherwise. We also define in the same way the function
Pacemaker beats(𝜎) except that 𝑎𝑖 ∈ {AP,VP}.

We are now ready to define “good paths”, namely, paths
corresponding to good heart behaviours.

Definition 8 [Good path] Given a discrete path 𝜎 we say
that 𝜎 is good, if ∀𝑖, 𝑗. (Dur(𝜎[𝑖..𝑗]) = 1 minute) ⇒
(Heart beats(𝜎[i..j]) ∈ [60, 100]) .
C. Verification and results

We present experiments for the quantitative verification
of the pacemaker. All of them are run in MATLAB on a
2.83GHz 4 Core(TM)2 Quad CPU with 3.7Gb of memory.
In general, the purpose of the verification is twofold: (1) to
check that the pacemaker corrects the slow beating of the
heart; and (2) to check that the pacemaker does not induce
bad behaviours of the heart.

For (1), Fig. 10 shows a graph of Bradycardia. The blue
lines represent the behaviour of the faulty heart without
introducing the pacemaker. The green lines instead represent
the behaviour of the faulty heart when equipped with the
pacemaker. The x-axis shows the time at which events
(beats) occur, whereas the y-axis shows the beat type. There
are four kinds of beat type: 1 which corresponds to Aget
events, 2 which corresponds to Vget events, 3 for AP events
and, finally, 4 for VP events (not shown in the graph). The
normal beats of the heart (blue lines) are slow, approximately
one every two seconds. However, once the pacemaker is
introduced, it will induce an AP beat (atrium beat) after
the first second of non-sensing heart beats. This will in turn
produce a normal ventricular beat (Vget event) slightly after
correcting the Bradycardia.
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Figure 10. Correction of faulty heart with Bradycardia.

For (2), the idea is to give, as input, a perfect model
of the heart to the pacemaker, i.e. a model that always
produces between 60 and 100 BPM. We then check that,
after the composition, the resulting behaviour is still normal.
In Fig. 11 it is shown how the corrected heart behaviour
(blue lines) has been corrupted by a pacemaker (green lines)

for which the waiting time before pacing is too low. In this
scenario, the pacemaker is inducing Tachycardia, in a heart
which is functioning perfectly.
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Figure 11. Faulty pacemaker inducing Tachycardia.

Based on this general picture, we summarise our results
below. We separate the analysis into two parts: basic analysis
and advanced analysis. The former concerns the basic func-
tion of the pacemaker (does it work properly?), while the
latter concerns further aspects: here we consider the energy
usage and undersensing.

1) Basic analysis:
Non-probabilistic analysis: The first set of experi-

ments, presented in Tab. I, considers the heart model work-
ing in three different modes: Normal (N), Tachycardia (T)
and Bradycardia (B). Here we do not consider the prob-
abilistic transitions between different modes. We run four
different experiments for each mode, the first one simulating
one minute of heart beats, the second with two minutes of
heart beats, the third with four minutes, and the fourth with
eight minutes. For each experiment, we compute the state
space of the model (#N), the verification time (V T), the
number of heart beats without the pacemaker (#H B) and
the number of beats induced by the pacemaker (#P B).

In the case of normal heart behaviour the pacemaker
produces 0 beats. The same happens during Tachycardia
since the pacemaker cannot correct it. A more interesting
case is when the heart is operating in Bradycardia mode. In
this case the pacemaker will intervene, pacing the heart at
normal rate. This is highlighted in Tab. I (fourth column)
where the pacemaker forces the heart to beat at 69 BPM
instead of 43 which was the original number of BPM of the
slow heart without the pacemaker.

Probabilistic analysis: One advantage of the heart
model in [4] is that it introduces probabilistic transitions
between different “beat types” (in terms of modes) which
can mimic the real heart by learning from the patient data.
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Minutes #N V T #H B #P B

N:

1 33017 2.063 86 0
2 65644 4.078 171 0
4 131289 8.136 342 0
8 262187 16.271 683 0

T:

1 32938 2.512 193 0
2 65692 4.937 385 0
4 131216 9.879 769 0
8 262260 19.711 1537 0

B:

1 33023 1.688 43 69
2 65997 3.330 86 137
4 131258 6.603 171 274
8 262504 13.196 342 548

Table I
EXPERIMENTAL RESULTS IN THE NON-PROBABILISTIC CASE.

This characteristic yields a much more precise heart model
which might be disease-dependent, or even patient-specific,
which in turn has the potential to improve the analysis
and validation of the pacemaker. Below we demonstrate
how to perform the verification using probabilistic model
checking techniques. We construct a time-inhomogeneous
Markov chain with three states 𝑆 = {𝑠0, 𝑠1, 𝑠2}. The states
are labelled as 𝐿(𝑠0) = N, 𝐿(𝑠1) = T and 𝐿(𝑠2) = B.
Every fixed Δ = 30 sec, probabilistically, the heart changes
its state. The probability to switch between states can, in
principle, be learned from the patient data. We use the
following transition probability matrix P(𝑠, 𝑠0, 𝑖) = 0.9 and
P(𝑠, 𝑆∖{𝑠0}, 𝑖) = 0.05, ∀𝑠 ∈ 𝑆 and 𝑖 = 1, . . . , ⌊ 𝑇

Δ⌋. The
initial distribution is 𝛼(𝑠0) = 0.4, 𝛼(𝑠1) = 𝛼(𝑠2) = 0.3.
For the probabilistic analysis, we enumerate all paths and
form the set Paths , where ∣Paths∣ = ∣𝑆∣⌊ 𝑇

Δ ⌋. Considering
the high complexity of the heart model given by nonlin-
ear ODEs and time-inhomogeneous Markov chains, path
exploration offers a feasible solution. Finally, for each path
𝜎 ∈ Paths we compute the probability Pr(𝜎).

We run seven experiments by considering different values
for ⌊ 𝑇

Δ⌋. Tab. II shows the probability of good paths, i.e. the
paths returned by the monitor of good paths. The first proba-
bility value (Pr before) refers to the heart model without the
pacemaker, whereas the second (Pr after) refers to the heart
equipped with the pacemaker. Tab. II matches our intuitions.
First, the probability of good paths increases when the heart
and the pacemaker work together. This is due to the fact that
the pacemaker can correct some Bradycardia behaviours.
However, the heart is not perfect, which means that there
are still “bad paths” even with the pacemaker. In fact, the
pacemaker cannot correct Tachycardia. Thus, some paths
will still be affected by such erroneous behaviour. Second,
the probability of good paths decreases when increasing
the length of the heart beats considered. This is because
the monitor considers as “bad paths” any two consecutive
cycles of time spent in Bradycardia or Tachycardia mode.
Thus, increasing the length of the heart beats is equivalent
to an increase in the number of switches between modes and

the chance of getting two consecutive “faulty” (Bradycardia
or Tachycardia) modes one after the other. Notice that for
⌊ 𝑇
Δ⌋ = 1 the initial energy consumption is approximately
20 whereas for ⌊ 𝑇

Δ⌋ = 2, 3, . . . the energy increases linearly
with a factor of 2.4. This is due to the fact that in the first
minute the heart induces Bradycardia with probability 0.3,
i.e., 𝛼(𝑠2) = 0.3, and the pacemaker beats around 69 times.
For longer time periods the probability that the heart induces
Bradycardia is smaller (0.05).

⌊ 𝑇
Δ
⌋ #N V T [s] Pr before Pr after Energy

3 99030 27.283 0.324 0.632 25.637
4 132040 109.246 0.292 0.600 28.037
5 165050 409.065 0.262 0.570 30.426
6 198060 1161.823 0.2361 0.5416 32.804
7 231070 5208.8 0.213 0.514 35.173
8 264080 14280.94 0.1913 0.4888 37.531
9 297090 59935 0.172 0.464 39.886

Table II
EXPERIMENTAL RESULTS IN THE PROBABILISTIC CASE.

2) Advanced analysis:
Energy: Pacemaker’s life time is limited and is cru-

cially dependent on the battery embedded into the devices.
The pacemaker must be re-implanted when the battery
depletes, and hence energy analysis is indispensable. In
the probabilistic experiments presented in Tab. II we also
calculate the expected energy consumption of the pacemaker
expressed as units of energy per experiment. Formally,
we define the expected energy as ℰ =

∑
𝜎∈Paths

Pr(𝜎) ×
Pacemaker beats(𝜎). The consumption grows approxi-
mately linearly with time. This matches our intuition, as
during all the experiments we did not change the switching
probabilities between different modes. Changing those prob-
abilities yields different results. For example, increasing the
probability of switching to Bradycardia mode would increase
the expected energy consumption since the pacemaker would
then be expected to pace more often.

The reader should be aware that, in all the experiments,
for simplicity (and also because of the lack of real data) we
assume that the pacemaker consumes one unit of energy
every time it paces the atrium or the ventricle. This is
by no means a genuine shortcoming of our analysis, as
real data can be fed to our framework once the users
have collected them from the pacemaker manufacturer. The
analysis remains the same.

Undersensing: In previous analysis, we assume that the
pacemaker can sense the action-potential perfectly. This can
simplify the modelling considerably, but is not a realistic
assumption. Indeed, sensing is usually subject to certain
noise, which means that the obtained action-potential of the
pacemaker deviates from its real value. This might generate
undersensing. It means that, when the heart generates an
Aget or a Vget, the pacemaker may not sense it. In fact,
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when there is noise present, the pacemaker might have
problems in detecting these events. In order to make the
verification of pacemakers more realistic we enhance the
model of the pacemaker with undersensing. The under-
sensing results in the real action potential signal having
an additive noise. The additive noise follows a Gaussian
distribution 𝒩 (0, 𝜎2), where 0 is the mean and 𝜎2 is the
variance. The pacemaker has a threshold value 𝑈 to decide
when the action potential signal results in an Aget or a
Vget. The real signal sensed by the pacemaker can be
expressed as 𝑠(𝑡) + 𝑤(𝑡), where 𝑠(𝑡) is the signal without
noise and 𝑤(𝑡) is the noise. We are interested in computing
𝑝 = Prob(𝑠(𝑡) + 𝑤(𝑡) ≥ 𝑈), which is the probability of
the pacemaker sensing an Aget or a Vget generated by
the heart. Using standard probability theory we obtain that

𝑝 = 1 − 1√
2𝜋𝜎2

∫ 𝑈

−∞ 𝑒−
𝜏2

2𝜎2 𝑑𝜏 . In Fig. 12, we depict the
probability of not inducing Tachycardia (i.e., 1 − 𝑝) in a
normal heart by varying the value 1 − 𝑝 in the pacemaker
from 0 to 0.5. As the intuition suggests, the probability of
inducing Tachycardia is high when the pacemaker fails to
sense many events, i.e., 1− 𝑝 = 0.5.
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Figure 12. Probability of not inducing Tachycardia by undersensing.

V. CONCLUSION

In this paper we formulated quantitative verification algo-
rithms for implantable pacemakers. We adapted the realistic
heart model of Clifford et al [4] and utilised the network
of TAs model of the pacemaker by Jiang et al [8]. A
methodology for deriving the composition of the heart and
the pacemaker, based on discretisation, was developed. We
considered the main correctness properties, including that
the pacemaker corrects Bradycardia and does not induce
Tachycardia, for a range of realistic heart behaviours. We
also analysed undersensing and energy usage. We imple-
mented the framework using the probabilistic model checker
PRISM and MATLAB, and demonstrated encouraging ex-
perimental results.

There are several interesting directions for future work.
For instance, we plan to explore the parameter synthesis
problem of the pacemaker. We also plan to perform more

advanced energy analysis. Moreover, considering a failure
model for the pacemaker seems to be a promising direction.
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