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Abstract. Leader election protocols have been intensively studied in distributed
computing, mostly in the static setting. However, it remains a challenge to design
and analyze these protocols in the dynamic setting, due to its high uncertainty,
where typical properties include the average steps of electing a leader eventually,
the scalability etc. In this paper, we propose a novel model-based approach for
analyzing leader election protocols of dynamic systems based on probabilistic
model checking. In particular, we employ a leading probabilistic model checker,
PRISM, to simulate representative protocol executions. We also relax the
assumptions of the original model to cover unreliable channels which requires the
introduction of probability to our model. The experiments confirm the feasibility
of our approach.

Keywords: Dynamic systems � Verification � Leader election � Probabilistic
model checking

1 Introduction

Recent years have witnessed an increasingly booming interest in dynamic systems
[1–4] since they have been widely applied in many fields such as distributed systems
[5, 6], neural networks [4] etc. Accordingly, problems which have been studied in the
traditional distribution computing are revisited in this new setting. For example,
eventual leader election protocols have gradually become a focus in the dynamic
system. However, to the best of our knowledge, most existing works related to leader
election protocol design are based on static systems. Indeed, it is very difficult to design
such a protocol/algorithm and analyze its properties with the presence of uncertainty in
the context of dynamic systems.
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Model checking is a traditional approach to verifying a design artifact against
certain specification. Because the verification is conducted automatically, and a
counter-example can be generated if the specification is unsatisfied to reveal potential
mistakes in the design, model checking has gained wide popularity and thus become
the mainstream verification technique [7, 8]. To cope with the underlying uncertainty,
probabilistic model checking has been proposed. Generally here the transitions are
extended with probabilities. It provides a rigorous methodology for the modeling and
analysis of a wide uncertainty [7, 9].

Motivated by the above considerations, we adopt probabilistic model checking to
analyze some properties, such as scalability and efficiency related issues, of leader
election protocols for dynamic systems featuring a high degree of uncertainty. PRISM
[10], a leading open-source-probabilistic model checker, is used to construct models of
various categories of systems and analyze their random or probabilistic features. It can
be applied in many fields, such as communication protocols, distributed algorithms or
any other systems of specific subjects like biology. PRISM provides a simulator to
generate sample paths through a designed model. Via simulator, one can clearly
observe the executions of the model and the exact time of achieving the target designed
at the beginning of experiment. Such mechanism is very useful for our experiments
which will be introduced in the subsequent part of this paper.

The main contributions of this paper are as follows. Firstly, we construct a model
based on the existing protocol [2]. Through the PRISM simulator, we can analyze the
average cost of steps of electing a leader. Moreover, we also give a scalability analysis
for the protocol which has not been discussed in the original work. Secondly, we
extend the assumptions of the original protocol and consider the unreliable message
transmitting in channels. Particularly, we add the probability to verify the hypothesis
that the value of this probability is related to the efficiency of leader election.

The rest of the paper is structured as follows. In Sect. 2, we briefly describe related
concepts of dynamic systems and give an introduction to the processes in the system
and the way of communication in such systems. In Sect. 3, we propose a modified
eventual leader election algorithm for dynamic systems based on the work proposed in
[2]. Section 4 presents model design and two relevant experiments. We discuss related
work in Sect. 5 and finally conclude the paper in Sect. 6.

2 Dynamic System and Assumptions

The concept of the dynamic systems is described, in a nutshell, as a kind of distributed
system with processes entering and leaving the systems dynamically [3]. Many systems
can be regarded as a particular instance of dynamic systems, for example, peer-2-peer
systems [11], wireless ad hoc networks [12] and etc. In addition, as mentioned in [2], it
is obvious that there are certain similarities between traditional static systems and the
dynamic ones. Hence it is not uncommon that some researchers have been attempting
to adapt the protocol designed for the static system for the dynamic system rather than
to design it from the scratch. In brief, a dynamic system model can be extended from its
static counterpart and the work needs to be done is to provide an adaptation of the
protocol designed for the static model.
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2.1 Processes in a Dynamic System

As defined in [2], the dynamic system consists of infinitely many processes, but the
number of processes of each run is finite. In other words, no matter what the integer
value n is, there are more than n processes for all runs. In contrast, for each run, there is
always a bound on the number of processes. However, despite the bound in each run, a
protocol has no access to that bound since it changes over runs. Because of this, there is
no existing protocol designed for the model with an upper bound on the amount of
processes which can be demonstrated in [5, 13].

Each process has its own unique identity. For example, a process denoted pi means
a process with its identity i. However, a process will be assigned with a new identity as
a new process when it re-enters the system. Below we use some notations as follows:

up(t): at time t 2 N, the set of processes existing in the system. These processes
have joined the system before time t and they have not crashed or left before time t.

STABLE ¼ ij9t : 8t0 � t; pi 2 upðt0Þ
n o

:

STABLE is the set of processes which will never crash or leave since enter the
system. We note that this set is similar to its counterpart in the static model, i.e., the set
of correct processes. Recall that in the static model, if a process does not crash during a
run, it is considered to be a correct one; otherwise, it is considered as faulty. Moreover,
in the static model, there is an integer n-f which denotes the number of correct pro-
cesses and guarantees these processes not to be blocked forever. Similarly, in the
dynamic model, a value a is proposed to define the number of static process and
prevent processes from blocking forever. Therefore, we have the following corre-
spondence between the static model and the dynamic model, i.e., n- f corresponds to a,
and pi corresponds to i 2 STABLE.

2.2 Communication in the Dynamic System

All the processes in the dynamic system communicate with each other via the
query-response primitive. Based on the existing work on the leader election in dynamic
systems [2, 3], we describe such query-response primitive as follows:

(1) Once a process broadcasts a query message, then all the live processes in the
system (including the sending process itself) can receive it.

(2) The process which has sent a query message will keep waiting until it has received
“enough” messages from the other processes. It should be underscored that
“enough” means a specific number a mentioned before.

More specifically, each process broadcasts a query message within the system.
To avoid the condition that process blocks forever, only a responses are waited for the
process which has sent the query message. (The number of a is defined previously.)
During this period, we define a response that arrives among a responses pi is waiting
for as winning response, and similarly, the set of processes from which pi has received
a winning process to its last query terminated before or at time t is considered as
winningi(t).
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In light of the above considerations, the assumption regarding the query response
pattern can be formulated MPdsw:

In the dynamic system, there are time t, process pi that i 2 STABLE, and set Q of
processes such that 8t0 � t, we have:

(1) Q�upðt0 Þ;
(2) i 2 T

j2Q winningj t
0� �
; and

(3) 8x 2 up t
0� �
: Q

T
winningx t

0� � 6¼ null:

Intuitively, after time t, there exist a subset Q of a universal set up(t’) of the
dynamic system, and a stable process denoted by pi. For every process in Q, pi always
belongs to the intersection of their winningj(t

’). And simultaneously, for every process
existing in up(t’), the intersection of Q and winningx(t

’) is always not empty.

3 The Eventual Leader Protocol and PRISM Model Design

The leader election protocol is based on the existing work [2]. In our paper, we borrow
the idea from the software engineering community and re-examine the protocol model
through probabilistic model checking. Particularly, we utilize PRISM model checker to
conduct the analysis which is lacking in [2]. Such an analysis allows us to investigate
the protocol from a different perspective. More importantly, we extend the model by
relaxing crucial assumptions previously made on the environment (i.e., the commu-
nication is reliable), and perform a considerably more detailed quantitative analysis.

3.1 Algorithm Introduction

Generally, the original protocol consists of four tasks. For details, we refer interested
readers to [2]. In this subsection, we give a very brief introduction to these four tasks.

The key function of task1 is to diminish the size of the set of candidate leader
denoted by trust. In task2, it reveals that when the process has received a QUERY
message from other processes (besides itself), it will send a RESPONSE message
immediately. In the original protocol [2], the paper posed a very strong assumption that
the underlying channel is reliable, i.e., no message loss is allowed. However, in many
cases, this is an unrealistic assumption as the underlying network could usually only
provide best-effort delivery. Whether or not the RESPONSE message can reach its
destination (the process which sends a QUERY message) cannot be determined in
advance. Here we use the concept of probability to address this issue. Namely, we
introduce a parameter named ratio_suc to evaluate the probability of sending a
RESPONSE message and making it successfully reach to its destination. In addition,
the responsibility of task3 is to update the trust set by comparing the log_date when a
certain process receives a TRUST message from other processes. And it also supervises
its trust set to ensure it is not empty. On top of it, the duty of task4 is to modify the
value of leader according to its trust set.
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To be more specific, a process pi is always keeping such working cycle as follows.

Firstly, it sends a QUERY message and then it keeps waiting until a RESPONSE
messages have been received. Next it updates RECFROMi by computing the union of
the rec_fromi of all the processes sending RESPONSE. Afterwards the trusti should be
modified by set intersection. Moreover, it updates its rec_fromi set based on the ids of
those processes which have sent RESPONSE messages. If this value has been changed,
then process pi should broadcast another message named TRUST to the system so as
that all processes in the system can adjust their leader accordingly as shown in
Algorithm 3.

The operation of every process is the same as the way of pi introduced above. After
some time, a unique leader will be eventually elected once all trust sets keep stable
(unchanged) and the identity of leader of all processes point to the same value.

In addition, each component of data structure of a process is introduced as below
and its value should be initialized. We use the data structure of process pi as an
example.

Among all variables, rec_fromi is the set of processes where pi receives RESPONSE
messages. RECFROMi is the union set of rec_from. And trusti is the set of candidate-
leaders. Besides, log_datei is a logical time defining the age of trusti. Moreover, leaderi
is the leader of pi.

All variables should be initialized as follows.
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3.2 PRISM Model

Following the above descriptions, we model the protocol in PRISM. In order to
demonstrate the procedure clearly, we assume that the system consists of four processes
and the value of α is set to be three.

Data Structure The data structure in the model consists of global variables and local
variables. For the former, we use four reply counters and a signal counter. Every reply
counter corresponds to a process and its target is to count the number of received
RESPONSE messages. And for the whole system, there is a signal counter aiming to
monitor whether or not the leader has been elected. All variables should be initialized
to be 0.

global reply i : 0::a½ � init 0;

global signal : 0::1½ � init 0;
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For the latter, the local variables of every process are classified into three cate-
gories. In the first category (shown in Listing 1.1), each variable ranges over from 0 to
N and is initialized to be N. It should be noticed that N here is equal to (2n − 1) where n
is the number of the processes in the system. Actually in our example, its value is set to
15 (24 − 1). The reason will be made clear later. In the second category (shown in
Listing 1.2), each variable is of Boolean value and the role is to classify whether or not
the required messages have been received. In the third category (shown in Listing 1.3),
every variable is a counter which is used to increase the values of execution steps or
any other similar information. Therefore, processi in the system has its data structure
as below.

Listing 1.1. First category  

rec_from_i : [0..15] init 15;
RECFROM_i  : [0..15] init 15;
trust_i               : [0..15] init 15;
new_trust_i :  [0..15] init 15;
num_i               :  [0..15] init  15;
a_i                    :  [0..15];
b_i                    :  [0..15];
c_i                    :  [0..15];

Listing 1.2. Second category

query_i             : [0..1] init 0;
response_i1 : [0..1] init 0;
response_i2 : [0..1] init 0;
response_i3 : [0..1] init 0;
response_i4 : [0..1] init 0;

Listing 1.3. Third category

sign_i1              : [0..1]  init 0;
sign_i1              : [0..1]  init 0;
sign_i1              : [0..1]  init 0;
sign_i1              : [0..1]  init 0;
s_i                     :   [0..6]  init 0;
log_date_i         : [0..m] init 0;
leader_i             : [1..4] init i;

In the first category (shown in Listing 1.1), rec_from_i is a decimal number which
in fact should be converted to a binary string. This string represents a set of processes
sending RESPONSE messages. And similarly, RECFROM_i is the union of rec_from
of the processes in rec_from_i, trust_i is a candidate leader set and new_trust_i is a
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temporary trust_i. Moreover, a_i, b_i and c_i are also temporary variables which store
the variables participating in the AND and OR operations.

In the second category (shown in Listing 1.2), query_i denotes whether or not
processi has sent QUERY message. And response_ij represents whether processi has
sent the RESPONSE message to processj.

In the third category (shown in Listing 1.3), sign_ij is used to record the steps,
despite the fact that it has only two choices. s_i is the same as sign_ij which records the
execution steps of every process. And log_date_i is a log variable used to note the
logical time of trust_i. And obviously leader_i is the leader belonging to processi.

Key Procedures. According to the given algorithm, we design PRISM modules for
every process. The algorithm is shown in Sect. 3.1. It should be noticed that we assume
that α here is equal to three for illustration.

We note that since there are no APIs or relevant methods supporting the set
operations in PRISM, we translate two sets to binary strings and then use these two
strings to complete the AND and OR operations. Evidently they are equivalent to the
intersection and union operations of sets respectively.

In brief, Listing 1.4 demonstrates the procedure of calculating rec_from_i. Once the
guard is satisfied, rec_from_i will change its value by means of given formula. The
guard consists of three conditions: (1) whether or not the leader has been elected
(denoted by signal = 0); (2) whether or not reply_i equals to three (denoted by re-
ply_i = 3); (3) processi keeps state1 (denoted by s_i = 1), and then rec_from_i cal-
culates its value. For example, if processi has received RESPONSE messages from
process1, process3 and process4, then rec_from_i will change its value to 13 since
response_1i is 1, response_3i is 4 and response_4i is 8 and consequently the sum of
them is 13. Simultaneously, a_i will change to rec_from_1, b_i will adjust to
rec_from_3 and c_i will be modified by rec_from_4.
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The information modification regarding to RECFROM_i is demonstrated in Listing
1.5. It should be pointed that RECFROM_i compares with every digit of a_i, b_i and
c_i, and then select the maximum of them as the digit. After that, it multiplies the
weight of every digit and sums them. The variable trust_i has the similar solution.

The algorithm regarding to TRUST has three branches (shown in Listing 1.6). Each
time, one of them must be executed. Considering this trait, we use a synchronization
sign to tackle this issue. The above demonstration can successfully fulfill the mission.

The unique leader of the system will be elected once all leader_i points to the same
objects (shown in Listing 1.7). And the time after the unique leader has been elected, it
always keeps the status that “elected”. Therefore, we design the solution above.

4 Model Design and Experiments

Usually, users are interested in whether or not the protocol can elect a unique leader in
the dynamic system as fast as possible, so the efficiency is a crucial concern. Con-
sidering the characteristic of the system and analyzing several possible factors, we
make assumptions that the time of electing a unique leader of the system is related to
the number of processes in the system and also the channel reliability of processes
among the whole system communicating with each other via sending query-response
primitive messages.

4.1 Scalability of the System

Various factors may influence the efficiency of election one of which is the number of
processes in the system. To verify this hypothesis, we attempt to design an experiment
of three systems each of which with different number of processes. Besides, for each
system, any other variables should be fixed, such as the probability of successfully
sending messages.

In our experiments, we consider three systems with three, four and five processes
respectively. For each of them, we repeat the simulation 100 times and then compute
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the average steps of execution they spent on electing a leader. We set that the prob-
ability of sending RESPONSE messages is 1.0 because this time we only concentrate
on the influence of the size of system rather than other factors. Based on the above
setup, we record the results of each system as follows:

In Fig. 1, apparently with the system size increasing, the average number of exe-
cution steps that system spends on electing a leader grows rapidly. From the first
experiment regarding the system consisting of three processes, the number of steps is
around 88 on average. While adding a new process to the system, the average number
grows to 452. When we continue to add another process, the result reaches 2598,
approximately 5 times of the former one. In Fig. 2, we use a box plot to illustrate that
with the increasing size of the system, the variance of the number of execution steps
grows rapidly as well. Therefore we conclude that the size of the system must be
controlled well. Otherwise, leader election in the dynamic system will be too costly to
be affordable.

4.2 Unreliable Channels

As mentioned earlier, processes communicate with each other by query-response
messages, and the probabilities of successfully sending messages, especially sending
RESPONSE messages, are related to the efficiency of electing a leader in the dynamic
system. In order to verify this assumption, we vary our model with three different
probabilities capturing the channel reliability, i.e., the ratio of successfully sending
RESPONSE messages among different processes.

Recall that the probabilities are introduced in task2. And the parameter denoted by
ratio_suc means the ratio of successfully sending messages. We adopt three different
values of ratio_suc - 0.5, 0.7, 0.9 - respectively to demonstrate the fact that the efficiency

Fig. 1. Average steps of execution
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of electing a leader is influenced by the probability of sending messages. This fact can be
revealed by the number of execution steps, and the result is illustrated by Figs. 3 and 4.

In Fig. 3, it is obvious that the average steps of execution decrease smoothly with
the increasing of probability of successfully sending RESPONSE messages. When the
probability is 0.5, the cost of average execution steps equals to 1551 steps. And once
the probability increases to 0.9, the cost diminishes to 914 steps.

Fig. 2. Distribution of execution steps

Fig. 3. Average steps of execution
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In Fig. 4, we can clearly observe that the variance of execution steps decreases with
the rising probability of successfully sending messages. Simultaneously the number of
outliers also reduces with this rising. Because of the conditions demonstrated above, we
can conclude that the ratio of sending RESPONSE messages successfully plays a vital
role in the efficiency of leader election in the dynamic system and thus we should
guarantee the stability of the communication channels in the system in order to improve
the efficiency.

5 Related Work

Most existing leader election algorithms are based on static systems [14–16], while in
contrast, their counterparts relied on dynamic systems have attracted less attention.
However, currently various applications are based on the dynamic system and thus the
status of the dynamic system cannot be neglected any longer. The importance of leader
election, which is one the fundamental building blocks of distributed computing,
should be highlighted in the dynamic system.

Mostefaoui et al. [2] adapted an existing eventual leader election protocol designed
for the static model and then translated it to a similar model suiting in the dynamic
systems by means of comparing those two models’ traits and adapting some specific
features. In the paper, it was also theoretically proved that the resulting protocol was
correct within the proposed dynamic model.

In [3], we also proposed a hierarchy-based eventual leader election model for
dynamic systems. The proposed model was divided into two layers. The main idea in
the lower part was to elect cluster-heads of every cluster while the target in the upper
one was to elect global leader of the whole system from these existing cluster-heads.
The concept of the model was to distinguish the important processes from all processes

Fig. 4. Distribution of execution steps
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and then paid more attention to those selected ones in order to diminish the size of
concerns and then improve the efficiency.

In addition, Larrea et al. [17] has pointed out the details and the keys to elect an
eventual leader. In other words, to achieve the goal of electing an eventual leader, there
are some significant conditions which must be satisfied, such as stability and synchrony
condition-a leader should be elected under the circumstance of no more processes
joining in or leaving out the system. The proposed algorithm relies on entering time
stamp comparing.

Meanwhile, there is another line of work with regard to applying formal methods to
protocol verification, for example [18, 19]. In [18], Havelund et al. employed the
real-time verification tool UPPAAL [20] to perform a formal and automatic verification
of a protocol existing in reality in order to demonstrate how model checking had an
influence on practical software development. Although it is unrelated with eventual
leader election, it demonstrates the feasibility of applying such technique to real world
protocols. In [19], Yue et al. used PRISM to present an analysis of a randomized leader
election where some quantitative properties had been checked and verified by PRISM.
However, the work did not cover the issues for dynamic systems, which is the main
focus of the current paper.

6 Conclusions and Future Work

In this paper, we have investigated and analyzed properties of eventual leader election
protocols for dynamic systems from a formal perspective. Particularly, we employ
PRISM to model an existing protocol, and illustrate the average election round and its
scalability via simulation. Moreover, we relax the assumptions made by the original
protocol and utilize probability to model the reliability of message channel. We also
illustrate relationships between the reliability and the efficiency of election rounds
taken by the revised protocol based on probabilistic model checking. In the future, we
plan to extend our model and cover more performance measure such as the energy
assumption to give a more comprehensive analysis framework.
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