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Abstract
We investigate the complexity of computing entropy of various Markovian models including
Markov Chains (MCs), Interval Markov Chains (IMCs) and Markov Decision Processes (MDPs).
We consider both entropy and entropy rate for general MCs, and study two algorithmic ques-
tions, i.e., entropy approximation problem and entropy threshold problem. The former asks for
an approximation of the entropy/entropy rate within a given precision, whereas the latter aims
to decide whether they exceed a given threshold. We give polynomial-time algorithms for the
approximation problem, and show the threshold problem is in PCH3 (hence in PSPACE) and
in P assuming some number-theoretic conjectures. Furthermore, we study both questions for
IMCs and MDPs where we aim to maximise the entropy/entropy rate among an infinite family
of MCs associated with the given model. We give various conditional decidability results for
the threshold problem, and show the approximation problem is solvable in polynomial-time via
convex programming.

1998 ACM Subject Classification G.3 Probability and Statistics, D.2.4 Software/Program Veri-
fication
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1 Introduction

Entropy is one of the most fundamental notions in information theory which usually refers
to the Shannon entropy in this context [16]. In a nutshell, it is the expected value of the
information contained in a message. Markovian processes and entropy are related since the
introduction of entropy by Shannon. In particular, Shannon defined and studied technically
the entropy rate of a discrete-time Markov chain (henceforth MC in short) with a finite state
space, which is one of the main topics of the current paper.

We identify two types of “entropy” defined in literature for MCs. Essentially entropy
is a measure of uncertainty in random variables, and MCs, as a stochastic process, are a
sequence of random variables. Naturally this view yields two possible definitions, intuitively
the “average” and the “sum” of the entropy of the random variables associated with the MC,
respectively:

the classical definition of entropy, dating back to Shannon, typically known as the entropy
rate. Informally, this is the time density of the average information in a stochastic process.
Henceforth, we refer to this definition as entropy rate.
the definition given by Biondi et al [7], which is the joint entropy of the (infinite) sequence
of random variables in a stochastic process. Although being infinite in general, the
authors argue that this represents, for instance, the information leakage where the states
of the MC are the observables of a deterministic program [7]. Henceforth, we refer to this
definition as entropy.
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Formal accounts are given in Section 3. Definitions of entropy of MCs raise algorithmic
challenges. One natural question is, given an MC, how to “compute” its entropy? Note that
in general, it is not a rational (even not an algebraic) number, which prompts the question
what computing means exactly. Technically there are (at least) two possible interpretations
which we formulate as the entropy approximation problem and the entropy threshold problem,
respectively. Let D be an MC and ~ denote the entropy/entropy rate of D.

The entropy approximation problem aims to compute, given the error bound ε > 0, a
rational number θ such that |~− θ| ≤ ε;
The entropy threshold problem aims to decide, given the rational number θ, whether
~ ./ θ, where ./ ∈ {<,≤,=,≥, >}.

Observe that general speaking the approximation problem is no harder than the threshold
problem, since it can be solved by a simple binary search with the threshold problem as the
oracle. However, the converse does not hold in general.

On top of a purely probabilistic model like MCs, it is probably more interesting to consider
probabilistic models with nondeterminism, typically Interval Markov chains (IMCs) and
Markov Decision Processes (MDPs). MDPs [26] are a well-established model which is widely
used in, for instance, robotics, automated control, economics, and manufacturing. IMCs [22]
are MCs where each transition probability is assumed to be within a range (interval). They
are introduced to faithfully capture the scenario where transition probabilities are usually
estimated by statistical experiments and thus it is not realistic to assume they are exact.

By and large, a probabilistic model with nondeterminism usually denotes an (infinite)
family of pure probabilistic models. Among these models, selecting the one with the
maximum entropy is one of the central questions in information theory [16]. As before, it
raises algorithmic challenges as well, i.e., given an IMC or MDP which denotes an infinite
family of MCs, how to “compute” the maximum entropy? Note the dichotomy of the
approximation and the threshold problem exists here as well, which we shall refer to the
maximum entropy approximation problem and the maximum entropy threshold problem,
respectively.

Entropy of probabilistic models has a wide range of applications, in particular in security
[13, 6, 29]. As a concrete example which is one of the motivations of the current paper, in a
recent paper [7], all possible attacks to a system are encoded as an IMC, and the channel
capacity computation reduces to finding an MC with highest entropy. Note that tool support
has been already available [8].

Contributions. In this paper we are mainly interested in the algorithmic aspects of entropy
for Markovian models. In particular, we carry out a theoretical study on the complexity of
computing (maximum) entropy for MCs, IMCs, and MDPs. The main contributions are
summarised as follows:
1. We consider the definition of entropy rate for general (not ergodic) MCs, and give a

characterisation in terms of local entropy;
2. We identify the complexity of the entropy approximation problem and the entropy

threshold problem for MCs;
3. We identify the complexity of the approximation problem for maximum entropy/entropy

rate for IMCs, and we obtain conditional decidability for the threshold problem. These
results can be adapted to the MDP model as well.

The main results of the paper are summarised in Table 1.
Some remarks are in order:

Regarding 1, in literature entropy rate is defined exclusively over irreducible (sometimes
called ergodic) MCs where the celebrated Shannon-McMillan-Breiman theorem [16]
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Table 1 Complexity of computing entropy/entropy rate

approximation threshold
MC P PCH3 (conditional in P)

IMC/MDP P conditional decidable

actually gives a characterisation in terms of stationary distribution and local entropy.
However, for computer science applications, MC models are seldom irreducible. Hence
we provide a characterisation for general (finite-state) MCs, inspired by the one in [7].
For the “computation” of entropy of MCs, [7] states that it can be done in polynomial
time. Although not stated explicitly, this actually refers to the approximation problem.
The threshold problem is not addressed in [7], nor the corresponding problems wrt. the
entropy rate.
For the “computation” of maximum entropy of IMCs, [7] considers the approximation
problem. The authors reduce the problem to non-linear programming (over a convex
polytope though) to which no complexity result is given. Here, instead, we show, by
reducing to convex programming, the approximation problem can be solved in polynomial
time. Note that the formulation in [7] is not convex in general, so we cannot start from
there straightforwardly.
For maximisation of entropy rate, it is actually a classical topic for MCs and semi-MCs.
A classical result, due to Parry [24], shows how to define a (stationary) MC (called
Shannon-Parry MC) over a given strongly connected graph to achieve the maximum
entropy rate. More recent results focus on finding a (semi-)MC with the maximum
entropy rate when its stationary distribution is constrained in certain ways, see, e.g., [19].
In contrast, here we work on the entropy rate for general IMCs and MDPs. To the best
of our knowledge this is the first work of this type.

Related work. Apart from the work we have discussed before, [29, 13] studied the complexity
of quantitative information flow for boolean and recursive programs, whereas [11] studied the
information-leakage bounding problem (wrt. Shannon entropy) for deterministic transition
systems. [4] studied entropy in process algebra. These models and questions are considerably
different from ours. [14, 27, 15, 25, 3] studied IMCs and their model checking problems.
The technique to solve convex programming is inspired by [25]. We also mention that [2]
generalised Parry’s result to the graph generated by timed automata.

An extended version of the paper [12] contains proofs, detailed expositions, and in
particular, all results for MDPs.

2 Preliminaries

Let N,Q,R denote the set of natural, rational, real numbers, respectively. Given any finite set
S, we write ∆(S) for the set of probabilistic distributions over S, i.e., functions µ : S → [0, 1]
with

∑
s∈S µ(s) = 1. For any vector ~x, we write ~xi for the entry of ~x corresponding to the

index i, and ~x ≥ 0 if ~xi ≥ 0 for each i. Throughout this paper, X,Y, · · · denote discrete
random variables (RVs), usually over a finite set of outcomes. For the RV X, we often denote
the set of outcomes as X = {x1, · · · , xn} which is ranged over by x. In this context, we also
write Pr(X = x) or simply p(x) for the probability mass function.
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2.1 (Interval) DTMCs
I Definition 1 (MC). A (discrete-time) Markov chain (MC) is a tuple D = (S, α,P), where
S is a finite set of states; α ∈ ∆(S) is the initial distribution; and P : S × S → [0, 1] is the
transition probability matrix, satisfying ∀s ∈ S,

∑
s′∈S P(s, s′) = 1.

Alternatively, an MC can be defined as a stochastic process {Xn}n≥0, where each Xn is a
discrete RV over S. The process respects the Markov property, i.e., Pr(Xn = sn|Xn−1 =
sn−1, · · · , X0 = s0) = Pr(Xn = sn|Xn−1 = sn−1) = P(sn−1, sn) for any s0, s1, · · · , sn ∈ S
and n ∈ N. Note that Pr(Xn = s) denotes the probability of being in state s at time n. The
transient distribution of D is denoted by π(n) ∈ ∆(S), which can be computed by π(n) = αPn.
It is known that Pr(Xn = s) = π

(n)
s .

For a finite MC, we often use graph-theoretical notations which refer to the underlying
digraph of D. Essentially the vertices of the digraph are states of D, and there is an edge
from s to t iff P(s, t) > 0. The following notions are standard.

I Definition 2. A subset T ⊆ S is strongly connected if for each pair of states s, t ∈ T , t
is reachable from s. A strongly connected component (SCC) T of an MC D denotes a
strongly connected set of states such that no proper superset of T is strongly connected.
A bottom strongly connected component (BSCC) T is an SCC from which no state outside
T is reachable.

We write E(D) for the set of all SCCs of D and B(D) ⊆ E(D) for the set of all BSCCs of D.

I Definition 3. A state s is absorbing if P(s, s) = 1, i.e. s contains only a self-loop. An
MC is absorbing if every state can reach an absorbing state.
A state s is transient if, starting in state s, there is a non-zero probability that it will
never return to s; otherwise s is recurrent.
A state s is deterministic if the distribution P(s, ·) is Dirac, i.e. there is a unique t such
that P(s, t) = 1; otherwise s is stochastic.
An MC is irreducible if its underlying digraph is strongly connected.

I Definition 4 (IMC). An interval-valued (discrete-time) Markov chain (IMC) is a tuple
I = (S, α,Pl,Pu), where S, α are defined as in Definition 1; Pl,Pu : S × S → [0, 1] are two
transition probability matrices, where Pl(s, s′) (resp. Pu(s, s′)) gives the lower (resp. upper)
bound of the transition probability from state s to s′.

Semantics. There are two semantic interpretations of IMCs [27], i.e., Uncertain Markov
Chains (UMC) and Interval Markov Decision Processes (IMDP). In this paper, following [7],
we mainly focus on the UMC semantics. An IMC I = (S, α,Pl,Pu) represents an infinite set
of MCs, denoted by [I], where for each MC (S, α,P) ∈ [I], Pl(s, s′) ≤ P(s, s′) ≤ Pu(s, s′)
for all pairs of states s, s′ ∈ S. Intuitively, under this semantics we assume that the external
environment nondeterministically selects an MC from the set [I] at the beginning and then
all the transitions take place according to the chosen MC. Without loss of generality, we only
consider IMC I with [I] 6= ∅, i.e., there exists at least one implementation. This condition
can be easily checked.

Similar to MCs, we can also view an IMC as a digraph such that there is an edge from s

to t iff Pu(s, t) > 0. In this way, we can speak of the set of all SCCs and BSCCs of an IMC
I which we denote by E(I) and B(I), respectively.

For complexity consideration, for the introduced probabilistic models, we assume that all
the probabilities are rational numbers. We define the size of D (resp. I), denoted by ]D (resp.
]I), as the size of the representation of D (resp. I). Here rational numbers (probabilities)
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are represented as quotients of integers written in binary. The size of a rational number is
the sum of the bit lengths of its numerator and denominator and the size of a matrix is the
sum of the sizes of its entries. When stating a complexity result, we assume the standard
Turing model.

2.2 Information theory
For a RV X with outcomes {x1, · · · , xn}, the Shannon entropy of X is defined as

H(X) = −
n∑
i=1

p(xi) log p(xi)

(Note that by convention we define 0 log 0 = 0 as limx→0 x log x = 0). All logarithms are to
the base 2; however our results are independent of the base. The definition of Shannon entropy
can be easily generalised to joint entropy, which is the entropy of several RVs computed
jointly. Namely H(X1, · · · , Xn) = −

∑
x1∈X1

· · ·
∑
xn∈Xn

p(x1, · · · , xn) log p(x1, · · · , xn). We
also define conditional entropy which quantifies the amount of information needed to describe
the outcome of a random variable Y given that the value of another random variable X
is known. Namely H(Y |X) =

∑
x∈X ,y∈Y p(x, y) log p(x)

p(x, y) . The chain rule relates the

joint entropy and the conditional entropy, namely, H(Y |X) = H(X,Y )−H(X). It follows
that the joint entropy can be calculated using conditional entropy, i.e., H(X0, · · · , Xn) =
H(X0) + H(X1|X0) + · · ·+ H(Xn|X1, · · · , Xn−1).

3 Entropy of MCs

In this section, we define and characterise the entropy/entropy rate for an MC which we fix
to be D = (S, α,P). D is equipped with a stochastic process as {Xn}n∈N. Let’s start from a
basic property which can be deduced from the memoryless property.

I Lemma 5. H(Xn|X1, · · · , Xn−1) = H(Xn|Xn−1).

It turns out that the notion of local entropy [7] plays a central role in developing a
characterisation of entropy/entropy rate for MCs which are amenable to computation.

I Definition 6 ([7]). For any given MC D and state s ∈ S, the local entropy L(s) is defined
as H(P(s, ·)), i.e, −

∑
t∈S P(s, t) log P(s, t).

3.1 Entropy for absorbing MCs
I Definition 7 ([7]). Given an MC D, the entropy of D, denoted H(D), is defined as
H(D) = H(X0, X1, · · · ).

We note that [7] also provides an elegant characterisation. Define ξ(s) =
∑∞
n=0 π

(n)
s . (It

is called residence time in [7].) Note that basic theory of MCs implies that the state s is
recurrent if ξ(s) =∞, and is transient iff ξ(s) <∞. We write ~ξ for the vector (ξ(s))s∈S .

I Theorem 8. H(D) =
∑
s∈S L(s)ξ(s) + H(α), where H(α) = −

∑
s∈S α(s) logα(s).

I Remark. [7] defines the entropy for general MCs whereas here we assume MCs are absorbing.
This does not lose any generality. Mostly we are only interested in MCs with finite entropy,
and one easily observes: H(D) is finite iff the local entropy of each recurrent state is 0. Note
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that absorbing MCs admits that each recurrent state is made absorbing and thus has local
entropy 0.

We also note there is slight difference on H(α) between our version and that of [7] in
Theorem 8. The paper [7] assumes a unique initial state in MCs (i.e., α is Dirac) where
H(α) = 0; here we assume a (slightly more) general initial distribution α.

3.2 Entropy rate for general MCs
In contrast to the entropy, the entropy rate is defined as

I Definition 9. Given an MC D, the entropy rate of D, denoted ∇H(D) is defined as

∇H(D) = lim
n→∞

1
n
H(X0, · · · , Xn)

As before we characterise ∇H(D) by local entropy. Define ζ(s) = limn→∞
1
n

∑n−1
i=0 π

(i)
s and

write ~ζ for the vector (ζ(s))s∈S . We have the following result:

I Theorem 10. ∇H(D) =
∑
s∈S L(s)ζ(s).

I Remark. Typically in literature (e.g. [16, 19]), the entropy rate is defined only for an ergodic
MC. In that case, one has ∇H ′(D) = limn→∞H(Xn | X1, · · · , Xn−1). For ergodic MCs
(more generally all stationary processes where MCs are a special case), these two quantities
coincide and by Lemma 5, the entropy rate is given by ∇H ′(D) = limn→∞H(Xn | Xn−1).

4 Computing entropy in MCs

In this section, we will focus on the entropy threshold problem which asks: given an MC
D and θ ∈ Q, does H(D) ./ θ hold for ./ ∈ {≤, <,=, >,≥}? We assume some familiarity
with straight-line programs and the counting hierarchy (cf. [1] or [12]). In particular, the
problem PosSLP is to decide, given a straight-line program, whether the integer it represents
is positive. PosSLP belongs to the complexity class PCH3 and thus to the fourth-level of the
counting hierarchy [1]. We note that counting hierarchy is contained in PSPACE, but it is
unlikely to be complete to PSPACE. The following propositions are slight generalisations of
[13] and [18], respectively.
I Proposition 11. Given p1, · · · , pn, q1, · · · , qn, θ ∈ Q, deciding whether

∑n
i=1 pi log qi ./ θ

for ./ ∈ {≤, <,>,≥} reduces to PosSLP in polynomial time.
I Proposition 12. Given p1, · · · , pn, q1, · · · , qn, θ ∈ Q,

∑n
i=1 pi log qi = θ is decidable in

polynomial time.

ABC/Lang-Waldschmidt conjecture implies P. An interesting question is whether one could
obtain a lower-bound. This is left as an open question, but the following result somehow
discourages such efforts. Indeed, the following proposition can be easily obtained by essentially
[18, Proposition 3.7(1)].
I Proposition 13. Assume p1, · · · , pn, q1, · · · , qn, θ ∈ Q. If the ABC conjecture holds, or
if the Lang-Waldschmidt conjecture holds, then

∑n
i=1 pi log qi ./ θ for ./ ∈ {≤, <,>,≥} is

decidable in polynomial time.
Note that the ABC and the Lang-Waldschmidt conjecture (cf. [18] for precise formulations
and reference therein) are conjectures in transcendence theory which are widely believed to
be true. (For instance, in 2012 there was an announced proof of the ABC conjecture by S.
Mochizuki.)

Below we apply these results to the entropy threshold problem of MCs.
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4.1 Entropy
Owing to Theorem 8, computing H(D) reduces to computing ~ξ. In [7] it is stated that ξ can
be computed in polynomial time. Here we need to elaborate this claim to obtain complexity
results. This is rather straightforward. For a given absorbing MC which has t transient states

and r absorbing states, the transition probability matrix P can be written as P =
[
Q R

0 Ir

]
,

where Q is a t× t matrix, R is a nonzero t× r matrix, and Ir is an r × r identity matrix. A
basic property of absorbing MCs is that the fundamental matrix I−Q is invertible [21], and
we have the following:
I Proposition 14 ([21]). For absorbing MC, ~ξ = α′(I−Q)−1 where α′ is the restriction of α
to the t transient states.

Basic linear algebra reveals that ~ξ can be computed in cubic-time via, e.g., Gauss
elimination, and the size of ~ξ is polynomially bounded by ]D (see, e.g., [20]). It then follows
from Proposition 11 and Proposition 12 that:

I Theorem 15. Given an MC D,
Deciding H(D) ./ θ for ./ ∈ {<,≤,≥, >} is in PCH3 , and is in P assuming the ABC or
the Lang-Waldschmidt conjecture.
Deciding H(D) = θ is in P.

4.2 Entropy rate
Owing to Theorem 10, computing ∇H(D) reduces to computing ~ζ. For (finite) irreducible
MC, ~ζ coincides to the stationary distribution π which is unique and independent of the
initial distribution. In this case, Theorem 10 yields that ∇H(D) =

∑
s∈S L(s)π(s), which is

exactly the classical result, see, e.g., [16]. For general MCs, the transition probability matrix
P has the form

P =


Q R1 R2 · · · Rh
0 B1 0 · · · 0
0 0 B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Bh


where Q corresponds to transient states, and Bi (1 ≤ i ≤ h) corresponds to the BSCCs
(recurrent states).
I Proposition 16. For any MC,

~ζ = α ·


0 (I−Q)−1R11T~y1 (I−Q)−1R21T~y2 · · · (I−Q)−1Rh1T~yh
0 1T~y1 0 · · · 0
0 0 1T~y2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1T~yh


where ~yi is the solution of the system of linear equations:

~yiBi = ~yi and 1~y = 1

and 1 = (1, · · · , 1).
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Similar to the previous section, the size of ~ζ is polynomially bounded by ]D. It then
follows from Proposition 11 and Proposition 12 that:

I Theorem 17. Given an MC D,
Deciding ∇H(D) ./ θ for ./ ∈ {<,≤,≥, >} is in PCH3 , and is in P assuming the ABC
or the Lang-Waldschmidt conjecture.
Deciding ∇H(D) = θ is in P.

4.3 Approximation problems
To complete the picture, we show that one can easily approximate

∑n
i=1 pi log qi up to a

given error bound ε in polynomial time.
Let N = n ·max1≤i≤n |pi|. For each 1 ≤ i ≤ n, we can compute θi ∈ Q in polynomial-time

[9, 18] such that | log qi − θi| < ε
N (note that the size of N is bounded polynomially by the

size of the input). Observe that

|
n∑
i=1

pi log qi −
n∑
i=1

piθi| ≤ |
n∑
i=1

pi(log qi − θi)| ≤
n∑
i=1
|pi|

ε

N
≤ ε.

Hence
∑n
i=1 piθi, which can be computed in polynomial-time, is an approximation of∑n

i=1 pi log qi up to ε. Note that, however, unfortunately this does not yield an efficient
decision procedure for

∑n
i=1 pi log qi ./ θ. It follows that

I Theorem 18. Given an MC D and ε > 0, both H(D) and ∇H(D) can be approximated
up to ε in polynomial-time in ]D and log( 1

ε ).

(Note that this result for entropy is implied in [7] without proof.)

5 Computing the maximum entropy in IMCs

In this section, we turn our attention to IMCs. Recall that an IMC I represents a set of MCs
[I]. We are interested in maximising the entropy/entropy rate of I. The formal definitions
are given as follows:

I Definition 19. Given an IMC I,

the maximum entropy of I, H(I), is defined as H(I) = sup{H(D) | D ∈ [I]};
the maximum entropy rate of I, ∇H(I), is defined as ∇H(I) = sup {∇H(D) | D ∈ [I]}.

Below we focus on the computation of maximum entropy/entropy rate. In contrast to the
previous section, we mainly concentrate on the approximation problem. Results regarding
the threshold problem are presented in Section 5.3, though. Throughout this section, we fix
an IMC I = (S, α,Pl,Pu).

5.1 Entropy
As pointed out by [7], it could be the case that H(I) =∞ even if for all D ∈ [I], H(D) <∞.
To tackle this issue, an algorithm is given there to determine whether H(I) =∞. In light
of this, we assume that H(I) <∞. One sufficient condition to guarantee finite maximum
entropy is to impose that for any states s and t, Pu(s, t) > 0 implies Pl(s, t) > 0. This is
actually a mild assumption in practice (for instance, see [7], Fig. 5). Note that it is also a
(lightweight) syntactic way to impose the Positive UMC semantics [14].
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For I with H(I) <∞, it cannot be the case that a state is recurrent in some implement-
ation and stochastic in another implementation [7]. Namely, if a state is recurrent in some
implementation, it must be deterministic in all implementations, and thus is made absorbing.
We denote by G ⊆ S the set of states which are recurrent in some implementation of I; G is
easily identified by the algorithm in [7].

For each state s ∈ S \G, we introduce a vector of variables ~xs = (xs,t)t∈S , and a vector
of variables ~y = (ys)s∈S . We define Ω(s) to be a set of vectors as:

~xs ∈ Ω(s) iff
{∑

t∈S xs,t = 1
Pl(s, t) ≤ xs,t ≤ Pu(s, t), for each t ∈ S

(1)

(Note that here we abuse the notation slightly by identifying variables and valuations of the
variables.) For simplicity, we define, for ~xs and ~y,

Γ(~xs, ~y) =
∑
t∈S

xs,tyt −
∑
t∈S

xs,t log xs,t . (2)

We then consider the following non-linear program over ~xs for all s ∈ S \G and ~y:

minimise
∑
s∈S\G

α(s)ys

subject to ys ≥ max
~xs∈Ω(s)

Γ(~xs, ~y) s /∈ G

ys = 0 s ∈ G

(3)

I Proposition 20. The optimal value of (3) is equal to H(I)−H(α).

We remark that (3) is reminiscent of the expected total reward objective (or the stochastic
shortest path problem) for MDPs [26, 17, 5]. This does not come in surprise in light of
Theorem 8, which might give some intuition underlying (3); cf. [12].

Nevertheless it remains to solve (3). This is rather involved and we only give a rough
sketch here. Observe that we have a nested optimisation problem because of the presence of
an inner optimisation max~xs∈Ω(s) Γ(~xs, ~y) in (3). The main strategy is to apply the Lagrange
duality to replace it by some "min" (see Γ̃ below). We introduce, apart from ~y, variables
~λls = (λls,t)t∈S , ~λus = (λus,t)t∈S and νs for each s ∈ S \G.

It can be shown that (3) is equivalent to

minimise
∑
s∈S\G

α(s)ys

subject to ys ≥ Γ̃(~λs, νs, ~y) s /∈ G
ys = 0 s ∈ G
λls,t ≥ 0, λus,t, νs ≥ 0 s /∈ G, t ∈ S

(4)

where Γ̃(~λs, νs, ~y) = −~bTs ~λus + ~aT
s
~λls − νs + e−1 log e · 2νs · (

∑
t∈S 2~λ

u
s,t−~λ

l
s,t+yt) and ~as =

(Pl(s, t))t∈S and ~bs = (Pu(s, t))t∈S . (Note that log is to base 2.)
It turns out that (4) is a convex program which can be solved by, e.g., the ellipsoid

algorithm or interior-point methods in polynomial time [10, 20]. We obtain

I Theorem 21. Given an IMC I and ε > 0, H(I) can be approximated upper to ε in
polynomial-time in ]I and log( 1

ε ).
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5.2 Entropy rate

In this section, we study the approximation problem for ∇H(I). Firstly we assert that
∇H(I) <∞ (cf. [12]).

Recall E(I) is the set of SCCs of I. For each SCC B ∈ E(I), we introduce a variable r,
a vector of variables ~y = (ys)s∈B, and for each s ∈ B, a vector of variables ~xs = (xs,t)t∈S .
Recall that Ω(s) and Γ(~xs, ~y) are defined as in (1) and (2), respectively. We consider the
following non-linear program:

minimise r

subject to r + ys ≥ max
~xs∈Ω(s)

Γ(~xs, ~y) s ∈ B (5)

For each B, we obtain rB as the optimal value of (5). Note that each state s must belong to a
unique B ∈ E(I). For simplicity, we define, for a given vector (zs)s∈S , Λ(~xs, ~z) =

∑
t∈S xs,t ·zt.

We then consider the following non-linear program

minimise
∑
s∈S

α(s)zs

subject to zs ≥ max
~xs∈Ω(s)

Λ(~xs, ~z) s ∈ S

zs ≥ rB s ∈ S and s ∈ B

(6)

I Proposition 22. ∇H(I) is equal to the optimal value of (6) (which depends on (5)).

As before, we remark that (6) and (5) are reminiscent of the limiting average reward
objective for MDPs [26, 5]. This does not come in surprise in light of Theorem 10, which
might give some intuition; cf. also [12].

It remains to solve (5) and (6). In the same vein as in Section 5.1, for each B we can
approximate rB by some θB ∈ Q upper to the given ε > 0. We then substitute (6) for each
θB , and solve the resulting program. It remains to show that (6) does not “propagate” the
error introduced in θB as it is merely an approximation of the real value rB. To this end,
observe that the optimal value of (6) can be regarded as a function g over ~r = (rB)B∈E(I).
We have the following result showing the value of (6) is bounded by the “perturbation” of
its parameters rB ’s. (Note that ‖ · ‖ denotes the ∞-norm for vectors.)

I Proposition 23. If ‖~r − ~r′‖ ≤ ε, then |g(~r)− g(~r′)| ≤ ε.

We conclude that

I Theorem 24. Given an IMC I and ε > 0, ∇H(I) can be approximated upper to ε in
polynomial-time in ]I and log( 1

ε ).

5.3 Threshold problem

In this section, we focus on the maximum entropy/entropy rate threshold problem, namely,
to decide whether H(I) ./ θ or ∇H(I) ./ θ for a given θ ∈ Q. Recall that we assume
H(I) <∞ otherwise the problem is trivial. Below we present two conditional decidability
results; the unconditional decidability is left as an open problem. We mainly present the
results for H(I) and the case ./=≥. Other cases can be derived in a similar way and can be
found in the full version [12].
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By first-order theory. It turns out deciding H(I) ≥ θ amounts to checking

∃~x, ~y.
∧


∑
s∈S\G α(s)ys ≥ θ

ys =
∑
t∈S xs,tyt −

∑
t∈S xs,t log xs,t ∀s ∈ S \G

ys = 0 ∀s ∈ G
Pl(s, t) ≤ xs,t ≤ Pu(s, t) ∀s ∈ S \G, t ∈ S∑
t∈S xs,t = 1 ∀s ∈ S \G

where ~x is the concatenation of ~xs = (xs,t)t∈S for s ∈ S \G and ~y = (ys)s∈S . Recall that
G is the set of states which are recurrent in some implementation of I. Evidently this is a
formula in the first-order theory of ordered real fields extended with exponential functions
(R,+,−, ·, ex, 0, 1,≤). The theory is known to be o-minimal by the celebrated Wilkie’s
theorem [28]. However, its decidability is a long-standing open problem in model theory,
known as Tarski’s exponential function problem. A notable result by Macintyre and Wilkie
[23] asserts that it is decidable provided the Schanuel’s conjecture in transcendence theory
is true (which is widely believed to be the case; in fact only a (weaker) real version of the
conjecture is needed.) Hence, we obtain a conditional decidability for the maximum entropy
threshold problem of IMCs. Note that it is high unlikely that the problem is undecidable,
because it would refute the Schanuel’s conjecture.

By non-singularity assumption. We can obtain the decidability of the maximum entropy
threshold problem by assuming thatH(I) 6= θ. To see this, one can simply compute a sequence
of approximations of H(I) by the approach in Section 5.1, i.e., ~n with |H(I)− ~n| ≤ 1

2n .
The procedure stops when ~n − 1

2n − θ and ~n + 1
2n − θ have the same sign. Then H(I) > θ

iff ~n − 1
2n > θ (or equivalently ~n + 1

2n > θ). Note that we assume H(I) 6= θ, so n must
exist as one can take n = dlog( 1

|H(I)−θ|
)e although n is not bounded a priori.

We conclude this section by the following theorem:

I Theorem 25. Given an IMC I. We have that
if the first-order theory of (R,+,−, ·, ex, 0, 1,≤) is decidable (which is implied by the
Schanuel’s conjecture), then H(I) ./ θ and ∇H(I) ./ θ are decidable for ./ ∈ {≤, <,=, >,≥};
if H(I) 6= θ (resp. ∇H(I) 6= θ), then H(I) ./ θ (resp. ∇H(I) ./ θ) is decidable for
./ ∈ {≤, <,>,≥}.

6 Conclusion

We have studied the complexity of computing (maximum) entropy/entropy rate of Markovian
models including MCs, IMCs and MDPs. We obtained a characterisation of entropy rate for
general MCs based on which the entropy approximation problem and threshold problem can
be solved efficiently assuming number-theoretic conjectures. For IMCs/MDPs, we obtained
polynomial-time algorithms to approximate the maximum entropy/entropy rate via convex
programming, which improved a result in [7]. We also obtained conditional decidability for
the threshold problem.

Open problems include unconditional polynomial-time algorithms for the entropy threshold
problem for MCs and unconditional decidability for maximum entropy threshold problem for
IMCs/MDPs. Furthermore, we believe it would be promising to explore more algorithmic
aspects of information theory along the line of the current work, for instance, for timed
automata [2].
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A Proof of Theorem 8 and Theorem 10

Proof. It follows from the definition of H(Y |X) that

H(Xn | Xn−1) =
∑
s,t∈S

Pr(Xn = t,Xn−1 = s) log Pr(Xn−1 = s)
Pr(Xn = t,Xn−1 = s)

= −
∑
s,t∈S

Pr(Xn = t,Xn−1 = s) log Pr(Xn = t|Xn−1 = s)

= −
∑
s∈S

Pr(Xn−1 = s)
∑
t∈S

Pr(Xn = t|Xn−1 = s) log Pr(Xn = t|Xn−1 = s)

=
∑
s∈S

Pr(Xn−1 = s)L(s)

and thus

H(X0, · · · , Xn) =
n∑
i=1

H(Xi|X0, · · · , Xi−1) + H(X0)

=
n∑
i=1

H(Xi|Xi−1) + H(X0)

=
n∑
i=1

(∑
s∈S

Pr(Xi−1 = s)L(s)
)

+ H(X0)

=
∑
s∈S

L(s)
n−1∑
i=0

Pr(Xi = s) + H(X0)

It follows that

H(D) = H(X0, X1, · · · ) =
∑
s∈S

L(s)
∞∑
i=0

Pr(Xi = s) + H(X0)

=
∑
s∈S

L(s)
∞∑
i=0

π(i)
s + H(α) =

∑
s∈S

L(s)ξ(s) + H(α),

and

∇H(D) = lim
n→∞

1
n
H(X0, · · · , Xn)

= lim
n→∞

1
n

(∑
s∈S

L(s)
n−1∑
i=0

Pr(Xi = s) + H(X0)
)

=
∑
s∈S

L(s) lim
n→∞

1
n

n−1∑
i=0

Pr(Xi = s)

=
∑
s∈S

L(s) lim
n→∞

1
n

n−1∑
i=0

π(i)
s

=
∑
s∈S

L(s)ζ(s).

This completes the proof for Theorem 8 and Theorem 10. J
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B Proofs for Section 4

We start from some general introduction of complexity theory, regarding straight-line programs
and the counting hierarchy; see [1] for details.

We assume a countable set of variables ranged over by x, y, z, · · · . A (division-free)
straight-line program is a finite list of instructions of the form x ← c or x ← y ∗ z, where
c ∈ {0, 1}, ∗ ∈ {+,−, ·}. Such a program is closed if all variables that appear on the
right-hand side of an instruction also appear on the left-hand side of a preceding instruction.
Clearly a closed straight-line program represents an integer which is the value of the last
variable that is assigned to. The problem PosSLP is to decide, given a closed straight-line
program, whether the corresponding integer is positive.

The counting hierarchy consists of the classes CHi where CH0 = P and CHi+1 = PPCHi for
all i ∈ N. Here PP refers to probabilistic polynomial time, i.e. the class of decision problems
solvable by a probabilistic Turing machine in polynomial time, with an error probability
of less than 1

2 for all instances. Allender et al. [1] showed that PosSLP belongs to the
complexity class PCH3 and thus to the fourth-level of the counting hierarchy. We note that
counting hierarchy is contained in PSPACE, but it unlikely to be complete to PSPACE.

B.1 Proof of Proposition 11
Proof. We write, for each i, pi = mi

ni
and qi = m′

i

n′
i
where mi, ni,m

′
i, n
′
i ∈ N. Let N = gcd{ni |

1 ≤ i ≤ n}. Note that the size of N is polynomial in the size of pi’s as N ≤
∏

1≤i≤n pi.
Furthermore

∑n
i=1 pi log qi = 1

N

∑n
i=1mi(Nni

)(logm′i − logn′i). The conclusion follows from
the same argument of [13, Lemma 4]. J

B.2 Proof of Proposition 12
Proof. We write, for each i, pi = mi

ni
and qi = m′

i

n′
i
where mi, ni,m

′
i, n
′
i ∈ N and θ = θ1

θ2
where

θ1, θ2 ∈ N. Let N = gcd{ni | 1 ≤ i ≤ n, θ2}. Note that the size of N is polynomial in the
size of pi’s and θ2 as N ≤

∏
1≤i≤n pi · θ2 . Evidently,

∑n
i=1 pi log qi = θ can be rearranged

into the form of equality of product of exponentials and the conclusion follows from [18,
Propoositon 2.1]. J

B.3 Proof of Proposition 16
This result is a “folklore" result in MC theory. However, we are not aware of a documented
proof. It can be derived from the ergodic theorem without much difficulty. Instead, here we
provide a purely algebraic proof which might be of independent interests.

Proof. Recall that by definition, ζ(s) = limn→∞
1
n

∑n−1
i=0 π

(i)
s = limn→∞

1
n

∑n−1
i=0 (αPi)s.

Namely,

~ζ = α · lim
n→∞

1
n

(I + P + · · ·+ Pn−1)

For general MCs, the transition probability matrix P has the form

P =


Q R1 R2 · · · Rh
0 B1 0 · · · 0
0 0 B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Bh





T.Chen and T.Han 15

As P is a stochastic matrix, the Cesaro sum limn→∞
1
n (I + P + · · ·+ Pn−1) exists and must

be the case that

lim
n→∞

1
n

(I + P + · · ·+ Pn−1) = G,

where G satisfies

(I−P)G = 0.

Firstly note that P is an upper-triangular(block) matrix, hence so is G. Together with
G = PG, we can further write

G =


G00 G01 G02 · · · G0h
0 G1 0 · · · 0
0 0 G2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Gh


Consider BiGi = 0 for 1 ≤ i ≤ h. Note that Gi is an irreducible nonnegative matrix, by

the Perron–Frobenius theorem, or by the fundamental matrix in MCs ([21]), we have that
Gi = 1T~yi where ~yi is the solution of the following system of linear equations:

~yiBi = ~yi and 1T~y = 1

and 1 = (1, · · · , 1)T.
Furthermore, QG00 = G00 and for each 1 ≤ i ≤ h,

QG0i +RiGi = G0i.

As I−Q is invertible [21], we have that G00 = 0, and for each 1 ≤ i ≤ h,

G0i = (I−Q)−1RiGi = (I−Q)−1Ri1T~yi.

Concluding,

G =


0 (I−Q)−1R11~y1 (I−Q)−1R21~y2 · · · (I−Q)−1Rh1~yh
0 1T~y1 0 · · · 0
0 0 1T~y2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1T~yh


We are done.

J

C Proofs for Section 5

C.1 Proof of Proposition 20
As remarked before, (3) is the analogy of the linear program for the expected total reward
objective in MDPs. The proof also follows this line.
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Proof. We start by considering the following Bellman equation:

ys =
{

max~xs∈Ω(s) Γ(~xs, ~y) s /∈ G
0 s ∈ G

(7)

(7) can be written as a functional F : [0, 1]|S| → [0, 1]|S| such that [F(~y)]s = max~xs∈Ω(s) Γ(~xs, ~y)
if s /∈ G and 0 otherwise. One can easily verify that F is monotonic over the complete lattice
([0, 1]|S|,≤), and hence F admits a least fixpoint lfx(F). We shall prove that the lfx(F)
captures H(I)−H(α), namely α · lfx(F) = H(I)−H(α).

On the one hand, for any fixpoint of F , say ~y, we can obtain vectors ~xs = (xst)t∈S
for each state s ∈ S \ G such that ~xs = arg max~xs∈Ω(s) Γ(~xs, ~y) and thus ~ys = Γ(~xs, ~y).
Clearly by the definition of the constraints of Ω(s), we can construct an MC D where for
s ∈ S \ G, transition probabilities are entries ~xs and for s ∈ G, it is absorbing. Clearly
D ∈ [I]. Furthermore, by Proposition 14 and Theorem 8,∑

s∈S
α(s)~ys =

∑
s∈S\G

α(s)~ys = H(D)−H(α).

It follows that

α · lfx(F) ≤ H(I)−H(α).

On the other hand, for any MC D ∈ [I], we can take its transition probabilities to form
~xs for each s ∈ S \G (note that states in G are absorbing). By definition of (7), it must be
the case that

[lfx(F)]s ≥ Γ(~xs, lfx(F))

for s ∈ S \G. It follows from Proposition 14 and Theorem 8 that

α · [lfx(F)] ≥ H(D)−H(α),

which implies that

α · [lfx(F)] ≥ H(I)−H(α).

Concluding,

α · [lfx(F)] = H(I)−H(α).

By a standard argument [26, 5], the least solution of F in terms of (7) can be computed by
solving the following non-linear program

minimise
∑
s∈S\G

α(s)ys

subject to ys ≥ max
~xs∈Ω(s)

Γ(~xs, ~y) s /∈ G

ys = 0 s ∈ G

which is exactly (3). J
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C.2 Solving (3) from Section 5.1
Recall the non-linear program (3).

minimise
∑
s∈S\G

α(s)ys

subject to ys ≥ max
~xs∈Ω(s)

Γ(~xs, ~y) s /∈ G

ys = 0 s ∈ G

In this section, we give details on how to solve it, elaborating the sketch in the main text.
Observe that here we have a nested optimisation problem because of the presence of an inner
optimisation max~xs∈Ω(s) Γ(~xs, ~y) which we shall handle firstly. For simplicity, we rewrite it
in a more explicit form as

maximise
n∑
i=1

cixi −
n∑
i=1

xi log xi (8)

subject to
n∑
i=1

xi = 1 (9)

ai ≤ xi ≤ bi ∀i.1 ≤ i ≤ n (10)

Here n = |S|, ~c = (ci)ni=1 = (yt)t∈S ≥ 0, ~a = (ai)ni=1 = (Pl(s, t))t∈S and ~b = (bi)ni=1 =
(Pu(s, t))t∈S .

Observe that the objective function (8) is a concave function and is to be maximised, and
all the constraints are linear. Hence (8)-(10) is a convex program [2]. The main strategy is
to apply the Lagrange duality. To this end, for each 1 ≤ i ≤ n, we introduce a single variable
ν and two vectors of variables ~λu and ~λl corresponding to (9) and (10), respectively. For
simplicity we write ~λ as the concatenation of ~λl and ~λu.

We now aim to derive the Lagrange dual function. For this purpose, we consider the
conjugate function. Let f : Rn → R. In a nutshell, the function f? : Rn → R, defined as

f?(~y) = sup
~x

(~yT~x− f(~x))

is called the conjugate of the function f .

I Lemma 26. For the function

f(~x) =
n∑
i=1

cixi −
n∑
i=1

xi log xi

with domain Rn≥0, the conjugate function is

f?(~y) = −e−1 log e
n∑
i=1

2−yi+ci .

Proof. By definition, we compute the conjugate as

f?(~y) = sup
~x
{
n∑
i=1

yixi −
n∑
i=1

(ci − log xi)xi}.
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By setting the partial derivatives wrt.xi (1 ≤ i ≤ n) to be 0, we have that for each i,
yi − ci + log xi + log e = 0, i.e., log xi = −yi − log e+ ci and thus xi = e−12−yi+ci . It follows
that

f?(~y) = −e−1 log e
n∑
i=1

2−yi+ci

(Note that we are of base 2.) J

It is known that [2, Chapter 5] the conjugate function and Lagrange dual function are
closely related. Indeed, consider an optimisation problem with linear inequality and equality
constraints,

minimise h(x)

subject to F~x � ~f

G~x = ~g.

We have that the Lagrangian dual function as

h̃(λ, ν) = −~fTλ− ~gTν − h?(−FTλ−GTν).

Applying this result to Γ with F = (I
... − I)T, ~f = (~b,−~a)T, G = (1, · · · , 1)T and ~g = 1

(note that F is of 2n× n, ~f is of 2n× 1, G is of n× 1 and ~g is of 1× 1), we obtain

Γ̃(~λ, ν,~c) = −~fTλ− ν + e−1 log e
n∑
i=1

2f
T
i λ+ν+ci = −fTλ− ν + e−1 log e·2ν ·

n∑
i=1

2f
T
i λ+ci

where fi is the i-th column of F . To simplify further we obtain

Γ̃(~λ, ν,~c) = −~bT~λu + ~aT~λl − ν + e−1 log e2ν
n∑
i=1

2~λ
u
i −~λ

l
i+ci

under ~λ ≥ 0 and ν ≥ 0.
The Slater’s condition [2] is a sufficient condition for strong duality to hold for a convex

optimization problem, which states, informally, that the feasible region must have an interior
point. In our case, the Slater condition is easy to verify, as all the constraints are linear.
Hence we have the strong duality:
I Proposition 27.

max
~x∈Ω(s)

Γ(~x, ~y) = min
~λ≥0,ν≥0

Γ̃(~λ, ν, ~y)

It follows that (3) can be rewritten as a non-linear program over ~y and ~λls which is the
concatenation of ~λls = (λls,t)t∈S and ~λus = (λus,t)t∈S , and νs for each s ∈ S \G.

minimise
∑
s∈S\G

α(s)ys

subject to ys ≥ min
~λs,νs

Γ̃(~λs, νs, ~y) s /∈ G

ys = 0 s ∈ G
λls,t ≥ 0, λus,t, νs ≥ 0 s /∈ G, t ∈ S
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which is equivalent to (4)

minimise
∑
s∈S\G

α(s)ys

subject to ys ≥ Γ̃(~λs, νs, ~y) s /∈ G
ys = 0 s ∈ G
λls,t ≥ 0, λus,t, νs ≥ 0 s /∈ G, t ∈ S

It remains to check (4) is a convex program. For this purpose, it suffices to check the
constraints are jointly convex. This is indeed the case:
I Proposition 28. (4) is a convex program.

Proof. It suffices to show that

Γ̃(~λ, ν, ~y) = −~bT~λu + ~aT~λl − ν + e−1 log e·2ν ·
n∑
i=1

2~λ
u
i −~λ

l
i+~yi

in the constraint of (4) is convex. Note that linear and exponential functions are convex,
and convexity is invariant under affine maps and is closed under addition [2]. The conclusion
follows. J

The following proposition is a standard result, see e.g. [10].
I Proposition 29. Given the convex program

minimise f(~x)
subject to fi(~x) ≤ 0

(11)

with ~x ∈ Rn and fi are convex functions. The optimum can be found within ε > 0 in time
complexity that is polynomial in the size of the problem and log( 1

ε ).
The main result, Theorem 21 hence follows.

C.3 Finiteness of maximum entropy rate
I Proposition 30. For any IMC I, ∇H(I) is finite.

Proof. For each D ∈ [I], note that L(s) ≤ |S| log |S|, hence by Theorem 10, ∇H(D) ≤
|S| log |S|. Note that

∑
s∈S ζ(s) = 1. It follows that ∇H(I) ≤ |S| log |S|. J

C.4 Proof of Proposition 22
As remarked before, (6) and (5) are the analogy of the linear program for the limiting average
reward objective in MDPs. The proof also follows this line.

Proof. We first show that (5) captures the maximum entropy rate for an SCC B ∈ E(I),
i.e., ∇H(B). This corresponds to the “unichain MDP" (cf. [26, Chapter 8]). There are two
different ways to view this problem leading to different proofs. For completeness we give
both sketches. Similar to Proposition 20, we consider the following Bellman equation:

ys + r = max
~xs∈Ω(s)

Γ(~xs, ~y) (12)

which can rewrite as a functional F . Following a similar argument as in Proposition 20, one
can show the least fixpoint of F , lfx(F) captures ∇H(B).
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Alternatively, we consider the following non-linear program:

maximise
∑
s∈S

ys(−
∑
t∈S

xs,t log xs,t)

subject to ys =
∑
t∈S

xs,tyt ∀s ∈ B∑
s∈B

ys = 1

Pl(s, t) ≤ xs,t ≤ Pu(s, t) s, t ∈ B∑
t∈S

xs,t = 1 s ∈ B

(13)

It is rather straightforward to verify that the optimal solution of (13) captures ∇H(I) by
Proposition 16 and Theorem 10, noting that intuitively ~y = (ys)s∈S encodes the stationary
distribution and (−

∑
t∈B xs,t log xs,t) in the objective function is the local entropy of s.

Now, simply observe that (5) and (13) are the primal and the dual problem. The conclusion
follows.

We then turn to (6), which is for the general IMC (instead of an SCC). As in Proposition 20,
we consider the Bellman equation

zs = max{ max
~xs∈Ω(s)

Λ(~xs, ~z), rB} (14)

which can be written as a functional F : [0, 1]|S| → [0, 1]|S| such that

[F(~z)]s = max{ max
~xs∈Ω(s)

Λ(~xs, ~z), rB}.

Recall that for each s there is a unique SCC B to which s belongs. One can easily verify that
F is monotonic over the complete lattice ([0, 1]|S|,≤), and hence F admits a least fixpoint
lfx(F). We shall prove that the lfx(F) captures ∇H(I), namely α · lfx(F) = ∇H(I).

On the one hand, for any fixpoint of F , say ~z, we have two cases:
zs = max~xs∈Ω(s) Λ(~xs, ~z). In this case we obtain vectors ~xs such that ~zs = Λ(~xs, ~z).
zs = rB. In this case, we resort to (5) or equally (13), and obtain vectors ~xs from their
solution as well.

Clearly by the definition of the constraints in Ω(s), we can construct an MC D consisting
of entries ~xs as its transition probabilities such that D ∈ [I]. Furthermore, by Proposition 16
and Theorem 10

∑
s∈S α(s)~zs = ∇H(D). It follows that

α · lfx(F) ≤ ∇H(I).

On the other hand, for any MC D ∈ [I], we can take its transition probabilities to form
~xs for each s ∈ S. Furthermore, by definition of (14), it must be the case that

[lfx(F)]s ≥ Λ(~xs, lfx(F)) and [lfx(F)]s ≥ rB .

It follows from Proposition 16 and Theorem 10 that α · [lfx(F)] ≥ ∇H(D) which implies that
α · [lfx(F)] ≥ ∇H(I).

By a standard argument [5], the least solution of F in terms of (14) can be computed by
the non-linear program (6). This completes the proof. J
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C.5 Proof of Proposition 23
Proof. Observe that g(~r) can be write as P · ~r for some P consisting of the optimum ~xs as
entries. Recall that ‖ · ‖ denotes the ∞-norm. It follows that

‖max
P

P~r −max
P′

P′~r′‖ ≤ ‖P~r −P~r′‖ = ‖P‖ · ‖~r − ~r′‖ ≤ ‖P‖ · ε ≤ ε.

Hence

|g(~r)− g(~r′)| = |α ·max
P

P~r − α ·max
P′

P′~r′| ≤ ε.

J

C.6 Threshold problem
Entropy. We start to give more details for the entropy. By Theorem 8 and Proposition 14,
it is easy to see that H(I) is equal to the optimal solution of

maximise
∑
s∈S\G

α(s)~ys

subject to ys =
∑
t∈S

xs,tyt −
∑
t∈S

xs,t log xs,t ∀s ∈ S \G

ys = 0 ∀s ∈ G
Pl(s, t) ≤ xs,t ≤ Pu(s, t)∑
t∈S

xs,t = 1

(15)

I Remark. It can be shown that (15) gives an alternative way to compute H(I) which is
actually used in [7] and is arguably more elegant. However, it per se is not a convex program
(for instance, note the bilinear form

∑
t∈S xs,tyt), so does not lead to polynomial-time bound

for the approximation problem outright. Nevertheless they are sufficient to derive the results
in this section.

(15) can be encoded into the first-order theory. Indeed deciding H(I) ≥ θ amounts to
checking

∃~x, ~y.
∧


∑
s∈S\G α(s)~ys ≥ θ

ys =
∑
t∈S xs,tyt −

∑
t∈S xs,t log xs,t ∀s ∈ S \G

ys = 0 ∀s ∈ G
Pl(s, t) ≤ xs,t ≤ Pu(s, t) ∀s ∈ S \G, t ∈ S∑
t∈S xs,t = 1 ∀s ∈ S \G

where ~x is the concatenation of ~xs = (xs,t)t∈S for s ∈ S \G and ~y = (ys)s∈S . We are done.

Entropy rate. For the entropy rate, we take (5) which we expand as

minimise rB

subject to rB + ys =
∑
t∈S

xs,tyt −
∑
t∈S

xs,t log xs,t

Pl(s, t) ≤ xs,t ≤ Pu(s, t)∑
t∈S

xs,t = 1
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together with (6) which we expand as

minimise
∑
s∈S\G

α(s)~zs

subject to zs ≥
∑
t∈S

xs,tzt ∀s ∈ S

zs ≥ rB ∀s ∈ G
Pl(s, t) ≤ xs,t ≤ Pu(s, t)∑
t∈S

xs,t = 1

Deciding ∇H(I) ≥ θ amounts to checking

∀~z∃~x, ~y, ~r.
∧


∑
s∈S α(s) · ~zs ≥ θ

zs ≥
∑
t∈S xs,tzt ∀s ∈ S

zs ≥ rB ∀B ∈ E(I)
rB + zs =

∑
t∈S xs,tzt −

∑
t∈S xs,t log xs,t ∀B ∈ E(I) ∧ s ∈ B

Pl(s, t) ≤ xs,t ≤ Pu(s, t) ∀s ∈ S∑
t∈S xs,t = 1 ∀s ∈ S

where ~x is the concatenation of ~xs = (xs,t)t∈S for s ∈ S, ~y = (ys)s∈S , ~z = (zs)s∈S and
~r = (rB)B∈E(I).

D Computing the maximum entropy of MDPs

In this section, we turn our attention to MDPs, which substantiates the results claimed in
Section 1, in particular, Table 1. We start from definitions.

I Definition 31. A Markov Decision Process (MDP) is a tupleM = (S, α,Act,A, τ), where
S and α are defined the same as in Definition 1,
Act is a finite set of actions;
A : S → Act such that for each state s ∈ S, A(s) is a set of actions which are enabled in s.
τ : S ×Act ↪→ ∆(S) is a partial function s.t. for each s and a ∈ A(s),

∑
t∈S τ(t|s, a) = 1.

Without loss of generality, we assume that A(s) 6= ∅ for each s ∈ S. Intuitively at each
state s ofM, an action a is chosen nondeterministically from the set A(s). A successor state
s′ is then chosen according to the distribution τ(·|s, a) with probability τ(s′|s, a).

A path π inM is a sequence of the form s0
a1→ s1

a2→ · · · where si ∈ S, ai+1 ∈ A(si) and
τ(si+1|si, ai+1) > 0 for each i ≥ 0. A finite path is a prefix of an infinite path ending in a
state. Let Paths? be the set of finite paths. A scheduler σ : Paths? → ∆(Act) maps a finite
path ρ = s0

a1→ · · · an→ sn (the history) to a distribution over Act with the constraint that the
support of σ(ρ) is contained by A(sn). In particular, a simple scheduler σ chooses an action
(instead of a distribution) only based on the current state and σ(s) ∈ A(s) for each state s.
A memoryless randomised scheduler σ prescribes, for each state s, a distribution ν over A(s),
which induces a distribution over S as

∑
a∈A(s) ν(a) · τ(s′|s, a) for each s′ ∈ S. Note that we

may obtain a DTMC by resolving all the nondeterminism in an MDP using a scheduler σ
in a standard way (see, e.g., [1, 26]). In the sequel, we writeMσ for such an MC given an
MDPM and a scheduler σ.

The following notions are standard which play a similar role as SCCs for MCs, cf. [3].
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s1

s2 s3

ba

Figure 1 Example
MDP1

s1

s2 s3

a

c
b

Figure 2 Example
MDP2

I Definition 32 (End component). A pair (T,B) with T ⊆ S and B ⊆ Act is an end
component (EC) of M if (1) for all a ∈ B, whenever τ(t|s, a) > 0, t ∈ T ; and (2) for all
s, t ∈ T , t is reachable from s.

An EC is a maximal end component (MEC) if it is maximal wrt. pointwise subset ordering.
We write E(M) for the set of MECs ofM.

We sometimes relax the definition of MDPs by allowing A(s) to be infinite. In literature,
this is often called semi-infinite MDPs. As long as A(s) is compact (for instance in the paper,
A(s) ⊆ R|S| with respect to the Euclidean topology), most interesting properties for MDPs
are carried over.

We are interested in maximising the entropy/entropy rate ofM under schedulers. Note
that, in general, for a given scheduler σ, Mσ as an MC is of a (countably) infinite state
space [1]. However, in our setting, the associated stochastic process is still over the original
state space S. So the definitions of entropy/entropy rate forMσ apply. Nevertheless, the
formal definition is given as follows:

I Definition 33. Given an IMCM,

the maximum entropy ofM, denoted by H(M) is defined as

H(M) = sup
σ
H(Mσ)

the maximum entropy rate of I, denoted by ∇H(M) is defined as

∇H(M) = sup
σ
∇H(Mσ)

Our task is to compute the quantities H(M) and ∇H(M), in the sense of the approximation
problem and the threshold problem. Let’s start from some observations.

I Example 34. Randomised schedulers are better. A simple example is depicted in
Figure 1; note all the probabilistic distributions are Dirac and s2, s3 are absorbing states
and s1 is the initial state. For any simple scheduler σ, H(Mσ) = 0. However, for the
(memoryless) randomised scheduler σ = [a 7→ 0.5, b 7→ 0.5], H(Mσ) = 1.
The maximum entropy might be unbounded, as in IMCs. Again a simple example is
depicted in Figure 2. Suppose the scheduler σ = [a 7→ x, b 7→ 1 − x, c 7→ 1]. One can
easily calculate that

H(Mσ) = −x log(x) + (1− x) log(1− x)
1− x = − log(1− x)− x log(x)

1− x

The limit is ∞ when x→ 1, which implies that H(M) =∞.
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We are now in a position to tackle the approximation problem. For a given MDP
M = (S, α,Act,A, τ), we can associate a semi-infinite MDPM′ = (S, α,Act′,A′, τ ′) where

A′(s) = {(xt)t∈S | xt =
∑
a∈A(s) xs,a · τ(t|s, a), 0 ≤ xs,a ≤ 1, and

∑
a∈A(s) xs,a = 1},

Act′ =
⋃
s∈S A

′(s), and
τ ′(t|s, (xt)t∈S) = xt.

Note that the idea is simply to encode all the memoryless randomised schedulers into the
model (specifically into the actions). Formally one can show easily that
I Proposition 35.

H(M) = H(M′) and ∇H(M) = ∇H(M′)

We then equip the semi-infinite MDPM′ with a reward structure, i.e., to define r : S×Act′ →
R as r(s, (xt)t∈S) = −

∑
t∈S xt log xt. Note that r is bounded. A simple but crucial

observation is:
by Proposition 14 and Theorem 8, the maximum entropy ofM′ is equal to the maximal
expected total reward to reach G wrt. r (note that r(s) = 0 for s ∈ G); and similarly
by Proposition 16 and Theorem 10, the maximum entropy rate of M′ is equal to the
maximal limiting average reward wrt. r;

This elegant link enables us to deduce that simple schedulers are sufficient forM′ (which
is a well-known fact, see, e.g., [26], Chapter 9 and Chapter 8-9 respectively), and furthermore,
translating back to M, memoryless randomised schedulers are sufficient to achieve the
maximum entropy/entropy rate. We include a proof sketch for completeness.
I Proposition 36. Memoryless randomised schedulers suffice for MDPs to achieve maximum
entropy/entropy rate.

Proof sketch. We shall follow standard argument in [26, 3] by considering the state-action
frequency associated with the schedulers. For any state-action pair (s, a) such that a ∈ A(s),

for entropy, the frequency is a RV Xs,a denoting the number of times the MC has taken
(s, a) before reaching G under the scheduler σ;
for entropy rate, the frequency is a RV Xs,a denoting the limiting average of the number
of times the MC has taken (s, a) in the long-run under the scheduler σ.

By Proposition 14 and Theorem 8 for entropy, and Proposition 16 and Theorem 10 for
entropy rate, it is easy to observe that the entropy ofMσ depends only on the expectation
of the corresponding state-action frequency and local entropy. The conclusion follows. J

I Remark. The maximum entropy problem for MDPs bears an interesting resemblance to
the problem for IMCs. Indeed there is a link between IMCs and semi-infinite MDPs as well.
Namely, we can associate an IMC I = (S, α,Pl,Pu) withM = (S, α,Act,A, τ), where for
each state s ∈ S,

A(s) = {µ ∈ ∆(S) | Pl(s, s′) ≤ µ(s′) ≤ Pu(s, s′) for any s′ ∈ S}

Act =
⋃
s∈S A(s), and τ(t|s, µ) = µ(t). We remark this is the interval MDP semantics of

IMCs [14].
To start the link, we note that, for an IMC I, the set of SCCs of I coincides to the set

of MECs of the IMDP of I, i.e. M defined above; this can be easily seen by inspecting
Definition 32 and Definition 2.

Furthermore, it is rather straightforward to observe that the two semantics of IMCs, i.e.,
the UMC semantics and the IMDP semantics coincide for the maximum entropy/entropy
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rate problem. (The crucial observation is that for IMDPs, simple schedulers are sufficient.)
Hence essentially we establish the following link:

IMC with UMC semantics⇔ IMC with IMDP semantics⇔ semi-infinite MDP

In Section 5, we tackle the UMC semantics and indeed, most of the results/method will be
carried over to MDPs readily.

Entropy. Again we assume that H(M) <∞. Hence we can identify a set of G ⊆ S as in
the IMC case. The link to the expected total reward objective to M′ gives the following
non-linear program, which can be seen as the counterpart of (3).

minimise
∑
s∈S

α(s)ys + H(α)

subject to ys ≥ max
~xs∈Ω(s)

Γ(~xs, ~y) s /∈ G

ys = 0 s ∈ G

(16)

where Ω(s) is defined as ~xs = (xs,a)a∈A(s)

~xs ∈ Ω(s) iff
∑

a∈A(s)

xs,a = 1 and xs,a ≥ 0

and Γ(~xs, ~y) =
∑
t∈S p(s, t)yt − p(s, t) log p(s, t) where p(s, t) =

∑
a∈A(s) xs,a · τ(t|s, a).

Entropy rate. As in the IMC, we start by identifying all the MECs ofM. The link to the
limiting average reward objective toM′ gives the following non-linear programs, which can
be seen as the counterparts of (6) and (11). For each B ∈ E(M), we consider the following
non-linear program. We introduce a variable r, a vector of variables ~y = (ys)s∈B, and for
each s ∈ B, a vector of variables ~xs = (xs,t)t∈S .

minimise r

subject to r + ys ≥ max
~xs∈Ω(s)

Γ(~xs, ~y) s ∈ B (17)

For each B, we obtain that rB is the optimal value of (5). For simplicity, we define, for
a given vector ~z = (zs)s∈S , Λ(~xs, ~z) =

∑
t∈S

∑
a∈A(s) xs,aτ(t|s, a)zt. We then consider the

following non-linear program

minimise
∑
s∈S

α(s)zs

subject to zs ≥ max
~xs∈Ω(s)

Λ(~xs, ~z) ∀s ∈ S

zs ≥ rB ∀s ∈ S and s ∈ B

(18)

Threshold problem. The threshold problem can also be solved by slight adaptation alongside
of Section 5.3. In particular, by the first-order theory, it sufffices to consider

∃~x, ~y.
∧


∑
s∈S\G α(s)~ys ≥ θ

ys =
∑
t∈S

∑
a∈A(s) xs,aτ(t|s, a)yt

−
∑
t∈S

∑
a∈A(s) xs,aτ(t|s, a) log(

∑
a∈A(s) xs,aτ(t|s, a)) ∀s ∈ S \G

xs,a ≥ 0 ∀s ∈ S∑
a∈A(s) xs,a = 1 ∀s ∈ S
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where ~x is the concatenation of ~xs = (xs,a)a∈A(s) for s ∈ S \G and ~y = (ys)s∈S .
And

∀~z∃~x, ~y, ~r.
∧



∑
s∈S α(s)~zs ≥ θ

zs ≥
∑
t∈S

∑
a∈A(s) xs,aτ(t|s, a)zt ∀s ∈ S

zs ≥ rB ∀B ∈ E(I)
rB + zs =

∑
t∈S

∑
a∈A(s) xs,aτ(t|s, a)zt

−
∑
t∈S

∑
a∈A(s) xs,aτ(t|s, a) log(

∑
a∈A(s) xs,aτ(t|s, a)) ∀B ∈ E(M) ∧ s ∈ B

xs,a ≥ 0 ∀s ∈ S∑
a∈A(s) xs,a = 1 ∀s ∈ S

where ~x is the concatenation of ~xs = (xs,a)t∈S for s ∈ S, ~y = (ys)s∈S , ~z = (zs)s∈S and
~r = (rB)B∈E(I).

With the same methods to solve (16), (18) and (17), and the same argument as in
Section 5.3, we conclude:

I Theorem 37. Given the MDPM and ε > 0,
1. H(M) and ∇H(M) can be approximated upper to ε in polynomial time in ]M and

log( 1
ε ).

2. if the first-order theory of (R,+,−, ·, ex, 0, 1,≤) is decidable, or if H(M) 6= θ (resp.
∇H(M) 6= θ), then H(M) ./ θ and ∇H(M) ./ θ are decidable for ./∈ {≤, <,=, >,≥}.
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