
Satisfiability of Compositional Separation Logic
with Tree Predicates and Data Constraints

Zhaowei Xu1,2, Taolue Chen3,4, and Zhilin Wu1(B)

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

wuzl@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Department of Computer Science, Middlesex University, London, UK
4 State Key Laboratory of Novel Software Technology,

Nanjing University, Nanjing, China

Abstract. In this paper, we propose compositional separation logic with
tree predicates (CSLTP), where properties such as sortedness and height-
balancedness of complex data structures (for instance, AVL trees and
red-black trees) can be fully specified. We show that the satisfiability
problem of CSLTP is decidable. The main technical ingredient of the
decision procedure is to compute the least fixed point of a class of induc-
tively defined predicates that are non-linear and involve dense-order and
difference-bound constraints, which are of independent interests.

1 Introduction

Program verification requires reasoning about complex, size-unbounded data
structures that may carry data ranging over an infinite domain. Examples include
multi-linked lists, nested lists, trees, etc. Programs manipulating these data struc-
tures may modify their shape as well as the data attached to their elements. Sep-
aration Logic (SL) is a well-established approach for deductive verification of pro-
grams that manipulate dynamic data structures [22,30]. Typically, SL is defined
in combination with inductive definitions (SLID in short), which supports user-
defined specifications of the data structures manipulated by a program.

Satisfiability is arguably one of the most fundamental questions for logic, and
has certainly been a main focus in the study of SL. The satisfiability of SLID with
data constraints is evidently undecidable in their most general forms. However,
it is important—both in theory and practice—to identify subclasses which are
sufficiently expressive while still being decidable. Within this context, our pre-
vious work [14] gave complete decision procedures for both the satisfiability and
the entailment problem of linearly compositional SLID. This fragment is able

Taolue Chen is supported by UK EPSRC grant (EP/P00430X/1), European CHIST-
ERA project SUCCESS, NSFC grant (61662035). He is also affiliated with Centre for
Research and Innovation in Software Engineering, Southwest University. Zhilin Wu
is supported by the NSFC grants (61572478, 61472474, 61100062, and 61272135).

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 509–527, 2017.
DOI: 10.1007/978-3-319-63046-5 31

510 Z. Xu et al.

to specify typical shape properties and data/size constraints of data structures,
but is restricted to linear ones such as singly and doubly linked lists.

An obvious question left over is to handle non-linear structures such as trees.
Notice that most tree-shaped data structures in programming require data/size
constraints of one or another. They together, however, impose great challenges.
For satisfiability, the main difficulty roots at the computation of the least fixed
point of the inductively defined predicates derived from SL formulae. These
predicates are non-linear, meaning that the defined predicate may occur more
than once in the body of the inductive rule. They may also involve data/size
constraints to capture, for instance, sortedness and height-balancedness of trees.

Contributions. We define CSLTP, a compositional fragment of SL with tree pred-
icates, where typical tree structures involving data and size constraints (e.g.,
binary search trees, AVL trees, and red-black trees) can be expressed. The basic
rationale of CSLTP is to focus on the compositional predicates introduced in
[12,13] while restricting to dense-order data constraints and difference-bound
size constraints. We remark that compositionality is vital for (deductive) pro-
gram verification without which the entailment checking, an indispensable pro-
cedure for checking assertions in the style of Hoare logic, would otherwise be
exceedingly difficult. (The price is that, instead of trees, one has to consider
trees with one hole to guarantee the compositionality; cf. Sect. 3.) Our main
contribution is summarised as follows:

(i) We provide algorithms to compute the least fixed point of the inductively
defined predicates involving data/size constraints derived from CSLTP for-
mulae (see Theorem 2). To this end, we employ a wide range of techniques
from closed-form evaluation of Datalog programs with integer gap-order
constraints [28], computation of reachability sets of alternating one-counter
systems [4], and the decision procedure for the reachability problem of one-
counter automata [15]. In addition, we show that computation of the least
fixed point of the inductively defined predicates beyond CSLTP may be dif-
ficult in general. More specifically, we prove that, for the predicate corre-
sponding to AVL trees with one hole where all parameters are of the natural
number type, its least fixed point is inexpressible in Presburger arithmetic
(see Theorem 1).

(ii) We propose a complete decision procedure for the satisfiability problem of
CSLTP. Namely, from each CSLTP formula ϕ we define Abs(ϕ) as an abstrac-
tion of ϕ such that ϕ and Abs(ϕ) are equisatisfiable. Roughly speaking,
Abs(ϕ) introduces Boolean variables to encode the spatial part of ϕ and
encompasses computed least fixed points from (i) to address the data and
size constraints. We then can resort to the state-of-the-art SMT solvers (e.g.,
Z3 [34]). We remark that most decision procedures for satisfiability of SL
with inductive definitions and data/size constraints are incomplete (see the
related work for more details).

Satisfiability checking serves as a cornerstone towards a complete procedure
for entailment checking, which requires a separate paper to solve. It can also be

Satisfiability of Compositional Separation Logic with Tree Predicates 511

widely used in, e.g., consistency checking of specifications written in SL, symbolic
execution of programs manipulating dynamic data structures (see [2,20]), etc.
Related work. For SLID without data constraints, [6] provides a complete decision
procedure, setting the satisfiability problem (almost) completely. We also men-
tion some earlier results [2,17] which focus on the symbolic heap fragments for
list segments and binary trees, providing complete proof systems. [12] proposes
a compositional fragment of SLID equipped with an incomplete decision proce-
dure. In addition, [18,19] provide complete decision procedures for the entailment
problem of SLID (without data/size constraints) by reducing to the language
inclusion problem of tree automata.

Towards adding data/size constraints, [29] presents a complete decision pro-
cedure for the quantifier-free fragment of SL (without inductive definitions) inter-
preted over heaplets with data elements ranging over a parametric multi-sorted
(possibly infinite) domain. For SLID with data constraints, [8] provides an incom-
plete decision procedure based on invariants of inductive definitions. These invari-
ants are essentially the fixed points of the inductively defined predicates involv-
ing data/size constraints, and are supposed to be provided by the users. [3] spec-
ifies the data/size constraints by universal quantifiers over the index variables
(and thus is able to express set/multiset constraints), but restricts to the singly
linked lists only. [23,27] reduces the entailment problem of SLID with data/size
constraints to the satisfiability problem in the theory of uninterpreted functions,
though the procedure therein is incomplete and not fully automatic since it relies
on the users to provide lemmas. [24–26] encode SLID into a fragment of first-order
logic with reachability predicates (whose satisfiability is decidable in NP). How-
ever, this fragment cannot accommodate the size or multiset constraints. More
recently, [20] considers the data constraints expressible in Presburger arithmetic.
The decision procedure therein is based on cyclic proofs [5,9] and is incomplete in
general and is complete for a syntactic fragment defined with a specialized well-
founded notion, which is incomparable to CSLTP.

With respect to data/size constraints, [33] is closest to our work, where the
data/size constraints are expressed in Presburger arithmetic, and a complete
decision procedure is given for the satisfiability problem. CSLTP differs from
the fragment in [33] in both the shape properties and the data/size constraints:
1) For the shape properties, CSLTP addresses trees with one hole (which is crucial
for the compositionality), while [33] does not. 2) For the data/size constraints,
the class of data constraints in [33] is incomparable to that of CSLTP: On the
one hand, CSLTP allows only one integer parameter, while [33] may have mul-
tiple ones, although there must be a dominating one. On the other hand, the
order constraints (e.g. sortedness), which require comparing different data para-
meters and are covered by CSLTP, are inexpressible in [33]. In addition, even
when restricted to size constraints, CSLTP goes beyond the fragment in [33].
For instance, the height-balancedness of red-black trees can be easily expressed
in CSLTP, whereas it is inexpressible in [33]. This is because the inductive def-
inition in [33] essentially allows only one inductive rule, with the aid of the
max and min functions and (a form of) disjunctions in the data/size constraint.

512 Z. Xu et al.

Nevertheless, the height-balancedness of red-black trees requires multiple induc-
tive rules to specify, even when max, min and disjunctions are present in the
data/size constraint. Furthermore, we employ an automata-theoretic approach
to compute the least fixed point of data predicates, which is quite different from
the arguments ([33]) which are purely based on induction.

There are methods outside of the SL framework to tackle verification of tree
structures and data constraints. Some of them are based on different extensions
of tree automata, such as forest automata [1], tree automata with size constraints
[16], ree automata with height constraints [11], and visibly tree automata with
memory and constraints [10]. Interestingly, our approach to compute the least
fixed point of data predicates is partially inspired by this line of work, especially
[16]. Even further, [21] takes a logic-based approach to verify balanced trees.
Finally, [31] proposes practical approaches for solving Horn-clause constraints,
which are related to, albeit easier than, computing the least fixed point of data
predicates in this paper. The method therein is based on the construction of
disjunctive interpolants, which are used within an abstraction-refinement loop.
The method therein is incomplete in general.

2 Preliminaries

Throughout the paper, Z and N denote the set of integers and natural numbers
respectively. For each n ∈ N, [n] := {1, . . . , n}. For each vector α = (a1, . . . , an),
|α| denotes the length of α (i.e. n) and α(i) denotes ai for i ∈ [n].

Definition 1 (A1CS and N1CS). An alternating one-counter system (A1CS)
is a pair A = (Q,Θ), where Q is a finite set of states, and Θ ⊆ Q×2(Inst×Q) is a
finite set of transition rules, where Inst = {o n,+n,−n, reset(n)} with o ∈ {=,�,
�} and n ∈ N. A transition (p, {(�1, q1), · · · , (�k, qk)}) ∈ Θ is usually written
as p ↪→ {(�1, q1), · · · , (�k, qk)} for readability. A nondeterministic one-counter
system (N1CS) is an A1CS where for each p ↪→ {(�1, q1), · · · , (�k, qk)}, k = 1.

A configuration of an A1CS A is (p, n) where p ∈ Q and n ∈ N is the value of
the counter. The transition rules induce a transition relation on configurations in
an expected way: for p ↪→ {(�1, q1), · · · , (�k, qk)} ∈ Θ, we have a hyper-transition
(p, n) → {(q1, n1), · · · , (qk, nk)} if for each 1 � i � k, (1) �i = o n′ implies that
n o n′ and ni = n, (2) �i = +n′ implies that ni = n+n′, (3) �i = −n′ implies that
n − n′ � 0 and ni = n − n′, and (4) �i = reset(n′) implies that ni = n′. In this
case, we say that (p, n) is the immediate predecessor of {(q1, n1), · · · , (qk, nk)}.

A computation tree of A is a directed tree whose nodes are labelled by con-
figurations, and where every node is either a leaf or an internal node which is
labelled by a configuration c and has k children labelled by c1, . . . , ck respec-
tively, satisfying that c → {c1, . . . , ck} is a hyper-transition of A. We define the
reachability relation ⇒A as c ⇒A C if there exists a computation tree such that
c labels the root and C is the set of labels of the leaves. If c ⇒A C, then we say
that C is reachable from c in A. For q ∈ Q and a set of configurations C, we use
Pre∗A(q, C) to denote the set of n ∈ N such that (q, n) ⇒A C ′ for some C ′ ⊆ C.

Satisfiability of Compositional Separation Logic with Tree Predicates 513

The transition relation for an N1CS can be defined similarly, and is simpler
in that the computation tree degenerates to a single path of configurations.

Proposition 1 ([4,7,15,32]). The following facts hold for A1CS and N1CS.

1. Let A = (Q,Θ) be an A1CS, q ∈ Q be a state, C be a finite set of configu-
rations of A. Then a quantifier-free Presburger formula ϕq,C(x) in disjunc-
tive normal form can be computed in doubly exponential time to represent
Pre∗A(q, C). In addition, if the constants in A and C are encoded in unary,
then the computation is in exponential time.

2. Let A = (Q,Θ) be an N1CS, and p, q ∈ Q. Then a quantifier-free Presburger
formula ϕp,q(x, y) can be computed in triply exponential time to represent the
relation {(m,n) ∈ N

2 | (p,m) ⇒A (q, n)}. In addition, if the constants in A
are encoded in unary, then the computation is in doubly exponential time.

3 Compositional Separation Logic with Tree Predicates

In this section, we introduce the compositional separation logic with tree pred-
icates, denoted by CSLTP[P], where P is an inductive predicate. We consider
three data types, i.e., location type L, value type D, and size type N. Intu-
itively, D represents the data values stored in the nodes of tree structures, and
N represents the size of tree structures (e.g. height of trees), which we assume
to be natural numbers. As a convention, we use l, l′, · · · ∈ L to denote locations,
d, d′, · · · ∈ D to denote values, and n, n′, · · · ∈ N to denote sizes. Accordingly,
variables in CSLTP[P] comprise location variables LVars ranged over by upper-
case letters E,F,X, Y, · · · , value variables DVars ranged over by x, y, · · · , and
size variables IVars ranged over by h, i, j, · · · .

We consider two kinds of fields, i.e., location fields from F and data fields
from D. Each field f ∈ F (resp. d ∈ D) is associated with L (resp. D). We assume
D is an ordered, countably infinite, dense set. That is, D is equipped with < such
that for each d < d′ ∈ D, d′′ ∈ D exists with d < d′′ < d′. Examples of D include
the set of rationals with the natural order relation, and the set of strings with the
lexicographical order relation. Note that any arithmetic over D is disregarded.

CSLTP[P] formulae may contain tree predicates, each of which is of the form
P (E,α;F,β) and has an associated inductive definition. The parameters of a
tree predicate are classified into two groups: source parameters E,α and des-
tination parameters F,β. We require that the source parameters E,α and the
destination parameters F,β are matched in types, namely, E and F are of the
location type, and two tuples α,β have the same length � > 0 and for each
i : 1 � i � �, both αi and βi have the natural number type or the value type. The
parameters E,F are called the location parameters of P and α,β are called the
data parameters of P . Intuitively, a tree predicate P (E,α;F,β) defines binary
trees with one hole and data constraints.

The CSLTP[P] formulae comprise three types of formulae: pure formulae Π,
data formulae Δ, and spatial formulae Σ, which are defined as follows,

514 Z. Xu et al.

Π :: = E = F | E �= F | Π ∧ Π (pure formulae)
Δ :: = ΔD ∧ ΔN (data formulae)

ΔD :: = true | x o d | x o x′ | ΔD ∧ ΔD (value formulae)
ΔN :: = true | h o n | h o h′ + n | ΔN ∧ ΔN (size formulae)
Σ :: = emp | E �→ ρ | P (E, α; F, β) | Σ ∗ Σ (spatial formulae)
ρ :: = ρf , ρd (field-variable sequences)
ρf :: = (f, X) | ρf , ρf (location field-variable sequences)
ρd :: = (d, x) | ρd, ρd (data field-variable sequences)

where o ∈ {=, <,>,�,�}, f ∈ F , and d ∈ D. For spatial formulae Σ, formulae
of the form emp, E �→ ρ, or P (E,α;F,β) are called spatial atoms. In particular,
formulae of the form E �→ ρ and P (E,α;F,β) are called points-to atoms and
predicate atoms respectively.

A tree predicate P (with one hole) is defined by one base rule, and at least
one inductive rule of the form R1 or R2:

– base rule R0: P (E,α;F,β):: = E = F ∧ α = β ∧ emp,

– left-hole inductive rule R1:
P (E,α;F,β) :: = ∃X∃Y ∃x∃h. Δ ∧ E �→ ((left,X), (right, Y), ρd)∗

P (X, δ;F,β) ∗ P (Y,γ; nil, ε),
where Δ is a data formula and ρd is a data field-variable sequence.

– right-hole inductive rule R2:
P (E,α;F,β) :: = ∃X∃Y ∃x∃h. Δ ∧ E �→ ((left,X), (right, Y), ρd)∗

P (X,γ; nil, ε) ∗ P (Y, δ;F,β),
where Δ is a data formula and ρd is a data field-variable sequence.

The left-hand (resp. right-hand) side of a rule is called the head (resp. body)
of the rule. We note that the bodies of R1 and R2 do not contain pure formulae.

In the sequel, we specify some constraints on the inductive rules.
The first constraint C1 guarantees that P (E,α;F,β) enjoys the composition

lemma P (E1,α1;E2,α2)∗P (E2,α2;E3,α3) ⇒ P (E1,α1;E3,α3), which is vital
for compositionality (cf. [13]). Note that the destination parameter F does not
occur elsewhere in the body of the inductive rules by definition, since X,Y are
two existentially quantified location variables.
C1 Variables from β do not occur elsewhere in the body of the inductive rules.

The second constraint C2 forbids the repeated occurrences of the variables
in γ, δ and requires that no existentially quantified variables occur in the static
parameters ε.
C2 γ, δ ⊆ α ∪ x ∪ h ∪ D ∪ N, each variable occurs at most once in γ (resp. δ),
and ε ⊆ α ∪ D ∪ N.

The third constraint C3 forbids the situation that an existentially quantified
variable occurs only in Δ, but not in spatial atoms.
C3 All existentially quantified variables x,h occur in some spatial atom.

The fourth constraint C4 is to avoid the difficulty of dealing with inductive
predicates with more than one size source parameter (cf. Theorem 1).

Satisfiability of Compositional Separation Logic with Tree Predicates 515

C4 α contains at most one parameter of the size type, in addition, if α(i) is of
size type, then it must hold that, (i) δ(i),γ(i) ∈ h and ε(i) ∈ N, and (ii) the
size-formula part of Δ is of the form α(i) = δ(i)+n∧ΔN or α(i) = γ(i)+n∧ΔN

such that α(i) does not occur in ΔN.
For a tree predicate P , let Flds(P) (resp. LFlds(P)) denote the set of

fields (resp. location fields) occurring in the inductive rules of P . Evidently,
LFlds(P) = {left, right}. For a spatial atom a, let Flds(a) denote the set of
fields that a refers to: if a = E �→ ρ, then Flds(a) is the set of fields occurring in
ρ; if a = P (−), then Flds(a) = Flds(P).

We write CSLTP[P] for the collection of separation logic formulae ϕ = Π ∧
Δ ∧ Σ such that P is the only tree predicate allowed to appear in Σ, and for
each points-to atom occurring in Σ, the set of fields of this atom is Flds(P). For
a CSLTP[P] formula ϕ, let Vars(ϕ) (resp. LVars(ϕ), DVars(ϕ), IVars(ϕ)) denote
the set of (resp. location, value, size) variables occurring in ϕ. Moreover, we use
ϕ[μ/α] to denote the simultaneous replacement of the variables αj by μj in ϕ.

For the semantics of CSLTP[P], each formula is interpreted on states. For-
mally, a state is a pair (s, h), where

– s is an assignment function which is a partial function from LVars∪ DVars ∪
IVars to L ∪ D ∪ N such that dom(s) is finite and s respects the data type,

– h is a heap which is a partial function from L × (F ∪ D) to L ∪ D such that
• h respects the data type of fields, that is, for each l ∈ L and f ∈ F (resp.

l ∈ L and d ∈ D), if h(l, f) (resp. h(l, d)) is defined, then h(l, f) ∈ L (resp.
h(l, d) ∈ D); and

• h is field-consistent, i.e. every location in h possess the same set of fields.

For a heap h, we use ldom(h) to denote the set of locations l ∈ L such that
h(l, f) or h(l, d) is defined for some f ∈ F and d ∈ D. Moreover, we use Flds(h)
to denote the set of fields f ∈ F or d ∈ D such that h(l, f) or h(l, d) is defined for
some l ∈ L.

Two heaps h1 and h2 are said to be field-compatible if Flds(h1) = Flds(h2).
We write h1#h2 if ldom(h1) ∩ ldom(h2) = ∅. Moreover, we write h1 � h2 for the
disjoint union of two field-compatible fields h1 and h2 (this implies that h1#h2).

Let (s, h) be a state and ϕ be an CSLTP[P] formula. The semantics of
CSLTP[P] formulae is defined as follows,

– (s, h) � E = F (resp. (s, h) � E
= F) if s(E) = s(F) (resp. s(E)
= s(F)),
– (s, h) � Π1 ∧ Π2 if (s, h) � Π1 and (s, h) � Π2,
– (s, h) � x o c (resp. (s, h) � x o x′) if s(x) o c (resp. s(x) o s(x′)),
– (s, h) � h o c (resp. (s, h) � h o h′ + c) if s(h) o c (resp. s(h) o s(h′) + c),
– (s, h) � Δ1 ∧ Δ2 if (s, h) � Δ1 and (s, h) � Δ2,
– (s, h) � emp if ldom(h) = ∅,
– (s, h) � E �→ ρ if ldom(h) = s(E), and for each (f,X) ∈ ρ (resp. (d, x) ∈ ρ),

h(s(E), f) = s(X) (resp. h(s(E), d) = s(x)),
– (s, h) � P (E,α;F,β) if (s, h) ∈ vP (E,α;F, β)w,
– (s, h) � Σ1 ∗ Σ2 if there are h1, h2 such that h = h1 � h2, (s, h1) � Σ1 and

(s, h2) � Σ2.

516 Z. Xu et al.

where the semantics of predicates vP (E,α;F,β)w is given by the least fixed point
of a monotone operator constructed from the body of rules for P in a standard
way as in [6].

For a formula ϕ, let vϕw denote the set of states (s, h) such that (s, h) � ϕ.
We focus on the satisfiability problem, i.e., given a CSLTP[P] formula ϕ, decide
whether vϕw is empty.

Example 1. The first example bsth specifies binary search trees with one hole,
which exemplifies the usage of value variables for the sortedness constraints.
Here x, y represent the lower and upper bounds of the data values from D.

bsth(E, x, y;F, x′, y′):: = E = F ∧ x = x′ ∧ y = y′ ∧ emp,

bsth(E, x, y;F, x′, y′):: = ∃X,Y, z, x′′, y′′. y′′ < z < x′′ ∧
E �→ ((left,X), (right, Y), (data, z)) ∗
bsth(X,x, y′′;F, x′, y′) ∗ bsth(Y, x′′, y; nil, y, y),

bsth(E, x, y;F, x′, y′):: = ∃X,Y, z, x′′, y′′. y′′ < z < x′′ ∧
E �→ ((left,X), (right, Y), (data, z)) ∗
bsth(X,x, y′′; nil, x, x) ∗ bsth(Y, x′′, y;F, x′, y′).

Note that a binary search tree can be simply defined as bsth(E, x, y; nil, x, x)
or bsth(E, x, y; nil, y, y), where E is the root, and x, y are the lower respective
upper bounds for the data values occurring in the tree nodes.

The second example balthole specifies height-balancedness of AVL-trees with
one hole, which exemplifies the usage of size parameters. Here h ∈ N represents
the height of the tree.

balthole(E, h;F, h
′
):: = E = F ∧ h = h

′ ∧ emp,

balthole(E, h;F, h
′
):: = ∃X, Y, h1, h2. h1 � h2 � h1 + 1 ∧ h = h2 + 1 ∧

E �→ ((left, X), (right, Y)) ∗ balthole(X, h1;F, h
′
) ∗ balthole(Y, h2; nil, 0),

balthole(E, h;F, h
′
):: = ∃X, Y, h1, h2. h = h1 + 1 ∧ h1 = h2 + 1 ∧

E �→ ((left, X), (right, Y)) ∗ balthole(X, h1;F, h
′
) ∗ balthole(Y, h2; nil, 0),

balthole(E, h;F, h
′
):: = ∃X, Y, h1, h2. h1 � h2 � h1 + 1 ∧ h = h2 + 1 ∧

E �→ ((left, X), (right, Y)) ∗ balthole(X, h1; nil, 0) ∗ balthole(Y, h2;F, h
′
),

balthole(E, h;F, h
′
):: = ∃X, Y, h1, h2. h = h1 + 1 ∧ h1 = h2 + 1 ∧

E �→ ((left, X), (right, Y)) ∗ balthole(X, h1; nil, 0) ∗ balthole(Y, h2;F, h
′
).

The definitions of bsth and balthole can be combined to form a tree predicate
avlth(E, x, y, h;F, x′, y′, h′), which specifies both the sortedness and the height-
balancedness property of AVL-trees with one hole.

4 The Least Fixed Point of Data Predicates

Let P (E,α;F,β) be a tree predicate. The data predicate induced by P , denoted
by PD(α;β), is the predicate whose definition is obtained from the rules of P by
ignoring the spatial variables and spatial atoms. Formally, PD(α;β) is defined
by the rules of the following form,

Satisfiability of Compositional Separation Logic with Tree Predicates 517

– base rule: PD(α;β):: = α = β,

– for each left-hole inductive rule
P (E,α;F,β) :: = ∃X,Y ∃x∃h. Δ ∧ E �→ ((left,X), (right, Y), ρd) ∗

P (X, δ;F,β) ∗ P (Y,γ; nil, ε),
there is an inductive rule for PD of the form:

PD(α;β):: = ∃x∃h. Δ ∧ PD(δ;β) ∧ PD(γ; ε),

– similarly for the right-hole inductive rules.

Naturally, PD(α;β) induces a monotonic function and we use lfp(PD) to
denote its least fixed point.

We start with a “negative” result stating that, if multiple size source para-
meters were allowed in the tree predicates then lfp(PD) would be inexpressible in
Presburger arithmetic in general. This result underpins the constraint C4 which
dictates that only one source parameter of type N is allowed.

Theorem 1. If x, y, x′, y′ in avlth(E, x, y, h;F, x′, y′, h′) are assumed to be of
the type N, then lfp(avlthD) is inexpressible in Presburger arithmetic.

The intuition of Theorem 1 is explained as follows: If the data values in AVL-
trees are assumed to be natural numbers, then in avlth(E, x, y, h; nil, x, x, 0), the
predicate atom for AVL trees, y−x correlates with h and is at least exponential
in h. This relationship goes beyond Presburger arithmetic.

Next, for a tree predicate P in CSLTP, we show that a linear arithmetic
formula can be computed to represent lfp(PD).

Theorem 2. A linear arithmetic formula can be computed in 5-fold exponential
time to represent lfp(PD). In addition, if the natural-number constants in the
inductive definition of PD are encoded in unary, then the complexity is reduced
to 4-fold exponential time.

The rest of this section is devoted to the proof of Theorem 2. We start with
two simpler cases, i.e., dense order constraints and single size parameter.

4.1 Dense Order Constraints

In this subsection, we fix a tree predicate P (E,α;F,β) where all parameters
in α and β are of the type D. As a result, only value formulae ΔD are used in
PD(α;β). Let C(PD) denote the set of constants occurring in the rules of PD.

Definition 2 (Order graphs). Let V be a finite subset of DVars∪D. An order
graph G on V is an edge-labelled graph (V,E), where E ⊆ V × {�, <} × V .

It is evident that order graphs are simply another representation of value
formulae, which are dense order constraints on D. More specifically, from an order
graph G on V , a dense order constraint ΔD(G) can be naturally defined. On the
other hand, an order graph GΔD

can be constructed from a value formula ΔD. For
two order graphs G1, G2, we will use G1 |= G2 to denote ΔD(G1) |= ΔD(G2).

518 Z. Xu et al.

Definition 3 (Saturated order graphs). Assume an order graph G = (V,E).
The saturated graph of G, denoted by Sat(G), is computed from G by the following
procedure:

1. Initially, let Sat(G) := G.
2. Repeat the following procedure until no more edges can be added to Sat(G).

– If there are two edges (v1, o1, v2) and (v2, o2, v3) in Sat[G] such that o1
and o2 are both � and (v1,�, v3) is not an edge in Sat(G), then add
(v1,�, v3) into Sat(G).

– If there are two edges (v1, o1, v2) and (v2, o2, v3) in Sat(G) such that at
least one of o1 and o2 is < and (v1, <, v3) is not an edge in Sat(G), then
add (v1, <, v3) into Sat(G).

Sat(G) is said to be consistent if it does not contain edges of the form (v,<, v)
for v ∈ V . Otherwise, it is said to be inconsistent.

Proposition 2. Let ΔD be a value formula. Then ΔD is satisfiable iff Sat(GΔD
)

is consistent.

For a finite set V ⊆ DVars∪D, we use Gord(V) to denote the set of consistent
saturated order graphs on V . Note that the cardinality of Gord(V) is exponential
in the size of V .

To compute lfp(PD), let V = α∪β ∪C(PD). We define a monotone function
TPD

: 2Gord(V) → 2Gord(V) to capture PD(α;β), and compute lfp(TPD
) by a stan-

dard iteration: let G0 = ∅, and Gi := TPD
(Gi−1) until the iteration stabilises.

The algorithm terminates in exponential time, since TPD
is monotone and the

cardinality of Gord(V) is exponential in the size of V .
Suppose |α| = k. For a vector d,d′ ∈ D

k, define an order graph Gd,d′ =
(V,Ed,d′) as as follows: Let η : V → d ∪ d′ ∪ C(PD) such that η(α(i)) = d(i)
and η(β(i)) = d′(i) for each i ∈ [k], and η(d′′) = d′′ for each d′′ ∈ C(PD). Then
for each z, z′ ∈ V and o ∈ {<,�}, (z, o, z′) ∈ Ed,d′ iff η(z) o η(z′) holds in D.

Proposition 3. For any two vectors d,d′ ∈ D
k, lfp(PD)(d;d′) holds iff there

exists G ∈ lfp(TPD
) such that Gd,d′ |= G.

4.2 Single Size Parameter

In this subsection, we fix a tree predicate P where all (data) parameters are of
type N. Then according to C4, the parameters of P are of the form (E,α;F, β),
where α, β are of type N, in addition, each inductive rule of the associated data
predicate PD(α;β) is of the form

PD(α;β):: = ∃h. ΔN ∧ PD(δ;β) ∧ PD(γ;n). (1)

Let N (PD) denote the set of all constants n occurring in the predicate atom
PD(γ;n) of the body PD(α;β). By C3 and C4, δ and γ are the only existentially
quantified variables, that is, ∃h = ∃δ∃γ. For each n ∈ N (PD), we introduce a
new predicate PD,n(α), the definition of which is as follows:

Satisfiability of Compositional Separation Logic with Tree Predicates 519

– base rule: PD,n(α):: = α = n,
– inductive rules: PD,n(α):: = ∃δ∃γ. Δ ∧ PD,n(δ) ∧ PD,n′(γ), if there is an

inductive rule PD(α;β):: = ∃δ∃γ. Δ ∧ PD(δ;β) ∧ PD(γ;n′).

The general strategy to solve (1) is to first compute lfp(PD,n) as a quantifier-
free Presburger formula ϕPD,n

(α) for the predicates PD,n with n ∈ N (PD). We
then substitute PD(γ, n′) in the body of the inductive rule of PD(α;β) with
ϕPD,n′ (γ), resulting in a new collection of inductive rules for PD(α;β). Finally,
we compute the least fixed point of the function induced by this new collection
of rules of PD(α;β).

Computation of lfp(PD,n). We will reduce the problem to the computation of
the reachability sets of an A1CS APD

= (Q,Θ), where Q is the union of {PD,n |
n ∈ N (PD)} and a set of auxiliary states (see below), and Θ is defined according
to the inductive rules of the predicates PD,n for n ∈ N (PD).

Let us fix a predicate PD,n and an inductive rule of PD,n

PD,n(α):: = ∃δ∃γ. ΔN ∧ PD,n(δ) ∧ PD,n′(γ). (2)

By C4, the size formula ΔN must be of the form α = δ + m ∧ Δ′ or α =
γ +m∧Δ′ such that α does not occur in Δ′. W.l.o.g., we assume that α = δ+m
holds. It follows that Δ′ is a conjunction of difference bound constraints over δ
and γ. Hence, we may constraint γ in terms of α (rather than δ; this is possible
because α = δ+m). Namely, we may assume that Δ′ = Δ′

1(α)∧Δ′
2(α, γ)∧Δ′

3(γ),
where Δ′

1,Δ
′
2,Δ

′
3 are defined by the following rules,

1. Δ′
1(α):: = true | α � l | α � u | l � α � u, where l, u ∈ N,

2. Δ′
2(α, γ):: = true | γ � α + l | γ � α + u | α + l � γ � α + u, where l, u ∈ Z,

3. Δ′
3(γ):: = true | γ � l | γ � u | l � γ � u, where l, u ∈ N.

Θ comprises the transition rules for each predicate PD,n and each inductive
rule of PD,n as in Eq. (2), defined as follows:

– the transition rules for Δ′
1(α):

• if Δ′
1 = true, then PD,n ↪→ {(+0, q1)},

• if Δ′
1 = α � l, then PD,n ↪→ {(� l, q1)},

• if Δ′
1 = α ≤ u, then PD,n ↪→ {(� u, q1)},

• if Δ′
1 = l � α � u, then PD,n ↪→ {(� l, q′1)}, q′1 ↪→ {(� u, q1)};

– the transition rules for α = δ + m ∧ Δ′
2(α, γ):

• if Δ′
2 = true, then q1 ↪→ {(−m,PD,n), (reset(0), q′2)}, q′2 ↪→ {(+1, q′2)},

and q′2 ↪→ {(+0, q2)},
• if Δ′

2 = γ � α + l, then q1 ↪→ {(−m,PD,n), (l, q′2)}, q′2 ↪→ {(+1, q′2)},
q′2 ↪→ {(+0, q2)},

• if Δ′
2 = γ � α + u, then q1 ↪→ {(−m,PD,n), (u, q′2)}, q′2 ↪→ {(−1, q′2)},

q′2 ↪→ {(+0, q2)},
• if Δ′

2 = α + l � γ � α + u, then q1 ↪→ {(−m,PD,n), (m′, q2)} for each
l � m′ � u;

520 Z. Xu et al.

– the transition rules for Δ′
3(γ):

• if Δ′
3 = true, then q2 ↪→ {(+0, PD,n′)},

• if Δ′
3 = γ � l, then q2 ↪→ {(� l, PD,n′)},

• if Δ′
3 = γ � u, then q2 ↪→ {(� u, PD,n′)},

• if Δ′
3 = l � γ � u, then q2 ↪→ {(� l, q′3)}, q′3 ↪→ {(� u, PD,n′)},

where q1, q2, q
′
1, q

′
2, q

′
3 are the auxiliary (control) states.

For each predicate PD,n, we use P(PD,n) to denote the set of predicates PD,n′

such that PD,n′ occurs in the body of some inductive rule of PD,n. In particular,
PD,n ∈ P(PD,n). Then for each PD,n, we define a set of goal configurations
GConf(PD,n) = {(PD,n′ , n′) | PD,n′ ∈ P(PD,n)}.

Proposition 4. For each predicate PD,n and m ∈ N, lfp(PD,n)(m) holds iff
(PD,n,m) ⇒APD

GConf(PD,n).

Thanks to Proposition 4, we have lfp(PD,n) = Pre∗APD
(PD,n,GConf(PD,n)).

According to Proposition 1, for each predicate PD,n, a quantifier-free Presburger
formula ϕPD,n

(α) in disjunctive normal form to represent lfp(PD,n), can be com-
puted in doubly exponential time w.r.t. the size of APD

(thus in doubly expo-
nential time w.r.t. the size of the inductive definition of PD as well). In addition,
if the constants in the inductive definition of PD are encoded in unary, then the
complexity is dropped to singly exponential time.

Computation of lfp(PD). The main idea is to reduce the computation of lfp(PD)
to solving the reachability problem of an N1CS.

From the previous step, the solution of PD,n(γ) is expressed by the formula
ϕPD,n

(γ) in disjunctive normal form, say ϕPD,n
(γ) =

∨

1�i��n

ϕ
(i)
PD,n

(γ), where each

ϕ
(i)
PD,n

(γ) is of the form γ = n1 or γ � n1 ∧ γ ≡ n3 mod n2. Let N ∈ N be the
least common multiplier of the divisors n2 occurring in ϕPD,n

(α) for n ∈ N (PD).
It follows that PD(α;β):: = ∃δ∃γ. ΔN ∧ PD(δ;β) ∧ PD(γ;n) ≡

∨

1�i��n

∃δ∃γ. ΔN ∧ ϕ
(i)
PD,n

(γ) ∧ PD(δ;β). Namely, it suffices to consider PD(α;β) with
multiple rules of the form

PD(α;β):: = ∃δ∃γ. (ΔN ∧ ϕ
(i)
PD,n

(γ)) ∧ PD(δ;β), (3)

for 1 � i ≤ �n, where each ϕ
(i)
PD,n

(γ) is of the form γ = n1 or γ � n1 ∧ γ ≡
n3 mod N . This new collection of rules is linear in that the predicate PD occurs
at most once in the body of each rule, which is simpler than (2).

lfp(PD) can now be computed by appealing to an N1CS BPD
= (Q′, Θ′). The

N1CS BPD
is constructed according to the new collection of rules of PD. The

states of BPD
are of the form (q, r), where q is a location and r ∈ {0, . . . , N −1}.

In BPD
, a special location q0 is used to represent the predicate PD.

Let us fix an inductive rule of PD(α;β), say

PD(α;β):: = ∃δ∃γ. (ΔN ∧ ϕ
(i)
PD,n

(γ)) ∧ PD(δ;β). (4)

Satisfiability of Compositional Separation Logic with Tree Predicates 521

We will demonstrate how to construct the transition rules of BPD
according to

this rule. We will only illustrate the construction for the case that each ϕ
(i)
PD,n

(γ)
is of the form γ � n1 ∧ γ ≡ n3 mod N . The construction for the case γ = n1 is
(much) simpler.

For (4), as before by C4, ΔN must be of the form α = δ + m ∧ Δ′ or α =
γ + m∧Δ′ such that α does not occur in Δ′. We will illustrate the construction
by considering the former case, that is, α = δ + m ∧ Δ′.

Since δ = α − m, we can assume that Δ′ is a formula involving only α, γ
(instead of δ, γ). As before, Δ′ can be written as Δ′

1(α) ∧ Δ′
2(α, γ) ∧ Δ′

3(γ).
Therefore,

Δ′ ∧ ϕ
(i)
PD,n

(γ) = Δ′
1(α) ∧ Δ′

2(α, γ) ∧ (Δ′
3(γ) ∧ γ � n1 ∧ γ ≡ n3 mod N).

For each r ∈ {0, . . . , N − 1}, Θ′ includes the transition rules defined below. Let
us assume that the formula Δ′

3(γ)∧ γ � n1 ∧ γ ≡ n3 mod N is satisfiable (since
otherwise, no transition rules should be included into Θ′ in this case).

– The transition rules for Δ′
1:

• if Δ′
1 = true, then (q0, r) ↪→ (+0, (q1, r)),

• if Δ′
1 = α � l, then (q0, r) ↪→ (� l, (q1, r)),

• if Δ′
1 = α � u, then (q0, r) ↪→ (� u, (q1, r)),

• if Δ′
1 = l � α � u, then (q0, r) ↪→ (� l, (q′1, r)), (q′1, r) ↪→ (� u, (q1, r));

– the transition rules for

Δ′′ = Δ′
2(α, γ) ∧ (Δ′

3(γ) ∧ γ � n1 ∧ γ ≡ n3 mod N) :

• if Δ′
2 = true, then (q1, r) ↪→ (+0, (q2, r)), since Δ′

3(γ) ∧ γ � n1 ∧ γ ≡
n3 mod N is satisfiable (by assumption),

• if Δ′
2 = γ � α + l, then
∗ if Δ′

3 = true or Δ′
3 = γ � l′, then

∃γ. Δ′′ = ∃γ. γ � α + l ∧ Δ′
3 ∧ γ � n1 ∧ γ ≡ n3 mod N

is satisfiable for every value of α, therefore, we have (q1, r) ↪→
(+0, (q2, r)),
∗ if Δ′

3 = γ � u′ or Δ′
3 = l′ � γ � u′, let l′′ = n1 or l′′ = max(l′, n1)

respectively, then

∃γ. Δ′′ = ∃γ. γ � α + l ∧ l′′ � γ � u′ ∧ γ ≡ n3 mod N,

from this, we have that for each s ∈ N such that l′′ � s � u′ and
s ≡ n3 mod N , (q1, r) ↪→ (� s − l, (q2, r)),

• if Δ′
2 = γ � α + u,
∗ if Δ′

3 = true or Δ′
3 = γ � l′, let l′′ = n1 or l′′ = max(l′, n1)

respectively, then

∃γ. Δ′′ = ∃γ. γ � α + u ∧ γ � l′′ ∧ γ ≡ n3 mod N,

which is equivalent to α+u � l′′ +s, where s is the minimum natural
number satisfying 0 � s < N and l′′ + s ≡ n3 mod N , therefore, we
have (q1, r) ↪→ (� l′′ + s − u, (q2, r)),

522 Z. Xu et al.

∗ if Δ′
3 = γ � u′ or Δ′

3 = l′ � γ � u′, let l′′ = n1 or l′′ = max(l′, n1)
respectively, then

∃γ. Δ′′ = ∃γ. γ � α + u ∧ l′′ � γ � u′ ∧ γ ≡ n3 mod N,

from this, we have that for each s ∈ N such that l′′ � s � u′ and
s ≡ n3 mod N , (q1, r) ↪→ (� s − u, (q2, r)),

• if Δ′
2 = α + l � γ � α + u, then
∗ if Δ′

3 = true or Δ′
3 = γ � l′, let l′′ = n1 or l′′ = max(l′, n1)

respectively, then

∃γ. Δ′′ = ∃γ. α + l � γ � α + u ∧ γ � l′′ ∧ γ ≡ n3 mod N,

which is equivalent to α + s � l′′, provided that α ≡ r mod N , where
s is the maximum natural number such that l � s � u and r + s ≡
n3 mod N , therefore, we have (q1, r) ↪→ (� l′′ − s, (q2, r)),
∗ if Δ′

3 = γ � u′ or Δ′
3 = l′ � γ � u′, let l′′ = n1 or l′′ = max(l′, n1)

respectively, then

∃γ. Δ′′ = ∃γ. α + l � γ � α + u ∧ l′′ � γ � u′ ∧ γ ≡ n3 mod N,

from this, we have that for each s ∈ N such that l′′ � s � u′ and s ≡
n3 mod N , (q1, r) ↪→ (� s− l, (q′2, r)) and (q′2, r) ↪→ (� s− u, (q2, r)),

– the transition rule for α = δ + m: (q2, r) ↪→ (−m, (q0, (r − m) mod N)),

where q1, q2, q
′
1, q

′
2 are the freshly introduced locations.

We have the following result:

Proposition 5. For m,n ∈ N, let r = m mod N and r′ = n mod N . Then
lfp(PD)(m,n) holds iff ((q0, r),m) ⇒BPD

((q0, r′), n).

From Proposition 1, for each r, r′ ∈ {0, . . . , N − 1}, a quantifier-free Pres-
burger formula ϕ(q0,r),(q0,r′)(α, β) can be computed in triply exponential time
w.r.t. the size of BPD

to represent {(m,n) ∈ N
2 | ((q0, r),m) ⇒BPD

((q0, r′), n)}.
Therefore, from Proposition 5, lfp(PD) can be expressed with ϕPD

(α, β) ≡∨

0�r,r′<N

ϕ(q0,r),(q0,r′)(α, β). Since the size of the new collection of inductive rules

of PD—thus the size of BPD
—is at most doubly exponential in the size of the

(original) inductive definition of PD, we conclude that the size of ϕPD
(α, β) is

5-fold exponential in the size of the (original) inductive definition of PD. In addi-
tion, the size of ϕPD

(α, β) is 4-fold exponential if the constants in the inductive
definition of PD are encoded in unary.

4.3 The General Case

In the subsection, we show how to combine the techniques developed in the pre-
ceding sections to tackle the general case. Without loss of generality, we assume
that the data predicate PD(α,β) satisfies that |α| = k > 1, α(1), · · · ,α(k − 1)

Satisfiability of Compositional Separation Logic with Tree Predicates 523

are of type D, and α(k) is of type N. For convenience, we write α = (α′, α′′)
where α′ = (α(1), . . . ,α(k − 1)) and α′′ = α(k). Similarly, β = (β′, β′′). Then
each inductive rule for PD is of the form

PD(α′, α′′;β′, β′′):: = ∃x∃h. ΔD ∧ΔN ∧ PD(δ′, δ′′;β′, β′′)∧ PD(γ′, γ′′; ε′, n).
We split each inductive rule of PD into two rules,

PD,D(α′;β′):: = ∃x. ΔD ∧ PD,D(δ′;β′) ∧ PD,D(γ′; ε′),

PD,N(α′′;β′′):: = ∃h. ΔN ∧ PD,N(δ′′;β′′) ∧ PD,N(γ′′;n).

The computation of lfp(PD) proceeds as follows. Intuitively, we first deal with
PD,D(α′;β′) and PD,N(α′′;β′′) separately by the constructions in Sects. 4.1 and
4.2. More specifically, lfp(TPD,D

), a set of order graphs on V , is computed, and
the A1CS APD,N

and the N1CS BPD,N
are constructed. We then integrate the

order graphs from lfp(TPD,D
) into the states of APD,N

and BPD,N
.

As the first step, we use the algorithm in Sect. 4.1 to compute lfp(TPD,D
).

As a result, we obtain a set of order graphs over V = α′ ∪ β′ ∪ C(PD,D), where
C(PD,D) is the set of constants occurring in the body of the rules of PD,D(α′;β′).

Suppose APD,N
= (Q,Θ) is the A1CS constructed for PD,N(α′′;β′′) as in

Sect. 4.2. Recall that Q is the union of {PD,N,n | n ∈ N (PD,N)} and a set
of auxiliary states. We shall construct a new A1CS A′

PD
. The state space

of A′
PD

is lfp(TPD,D
) × Q. As before, for each n ∈ N (PD,N), we consider a

predicate PD,n(α′, α′′;β′) whose inductive definition is obtained from that of
PD(α′, α′′;β′, β′′) by replacing β′′ with n. Specifically, each inductive rule of
PD,n is of the form,

PD,n(α′, α′′;β′):: = ∃x∃h. ΔD ∧ ΔN ∧ PD,n(δ′, δ′′;β′) ∧ PD,n′(γ′, γ′′; ε′). (5)

Considering the inductive rule of PD,N,n(α′′) corresponding to (5),

PD,N,n(α′′):: = ∃h. ΔN ∧ PD,N,n(δ′′) ∧ PD,N,n′(γ′′). (6)

We lift the transition rules of APD,N
for the inductive rule (6) of PD,N,n(α′′)

to the ones of A′
PD

for the rule (5) of PD,n(α′, α′′;β′) as follows: For every
G,G1, G2 ∈ lfp(TPD,D

) satisfying the proper constraints induced by some induc-
tive rule of PD,D, add G,G1, G2 as the first-component of states. For instance,
the transitions PD,N,n ↪→ (+0, q1), q1 ↪→ {(−m,PD,N,n), (reset(0), q′2)}, q′2 ↪→
{(+1, q′2)}, q′2 ↪→ {(+0, q2)}, and q2 ↪→ {(+0, PD,N,n′)} in APD,N

are changed
to the following transitions in A′

PD
respectively: (G,PD,N,n) ↪→ (+0, (G, q1)),

(G, q1) ↪→ {(−m, (G1, PD,N,n)), (reset(0), (G, q′2))}, (G, q′2) ↪→ {(+1, (G, q′2))},
(G, q′2) ↪→ {(+0, (G, q2))}, and (G, q2) ↪→ {(+0, (G2, PD,N,n′))}.

Recall that P(PD,N,n) is the set of predicates PD,N,n′ occurring in the body of
the inductive rules of PD,N,n. Let GConf′(PD,n) = {((G0, PD,N,n′), n′) | PD,N,n′ ∈
P(PD,N,n)}, where G0 is the order graph corresponding to the value formula α′ =
β′. Again, from Proposition 1, for each state (G,PD,N,n) of A′

PD
, a quantifier-free

Presburger formula ϕ(G,PD,N,n) can be computed to represent the set of natural
numbers Pre∗A′

PD

((G,PD,N,n),GConf ′(PD,n)). As a result, lfp(PD,n) is given by

524 Z. Xu et al.

ϕPD,n
(α′, α′′;β′) =

∨

G∈lfp(TPD,D)

(Δ(G) ∧ ϕ(G,PD,N,n)).

Next, we replace each predicate atom PD(γ′, γ′′; ε′, n) in the body of each
inductive rule by the formula ϕPD,n

(γ′, γ′′; ε′) and rewrite ϕPD,n
(γ′, γ′′; ε′) into

a disjunctive normal form, resulting into a new collection of linear inductive
rules for PD(α′, α′′;β′, β′′).

We can then define the N1CS B′
PD

by adapting the construction of the N1CS
BPD,N

for PD,N. Roughly speaking, this is done by adding the order graphs as
components of the states of BPD,N

. Finally, a linear arithmetic formula ϕPD
(α;β),

which is a mixture of dense order constraints and quantifier-free Presburger
formulae, is computed from B′

PD
to represent lfp(PD), by using Proposition 1.

5 Satisfiability

Let ϕ = Π∧Δ∧Σ be a CSLTP[P] formula. Suppose Σ = a1∗· · ·∗an, where each ai

is either a points-to atom or a predicate atom. Let PD(α;β) be the data predicate
induced by P and ϕPD

(α,β) be the formula constructed in Sect. 4 to represent
lfp(PD). For each inductive rule R of P (E,α;F,β), we define Δ�1

R (α;β) as
follows.

– If R is a left-hole inductive rule

P (E,α;F,β) :: = ∃X∃Y ∃x∃h. Δ ∧ E �→ ((left,X), (right, Y), ρd) ∗
P (X, δ;F,β) ∗ P (Y,γ; nil, ε),

then Δ�1
R (α;β) := ∃x∃h. Δ ∧ ϕPD

[δ/α] ∧ ϕPD
[(γ, ε)/(α,β)].

– If R is a right-hole inductive rule, then Δ�1
R (α;β) is defined similarly.

In addition, we define Δ�1
P (α;β) :=

∨

R: inductive rule of P

Δ�1
R (α;β).

For each predicate atom ai = P (Z1,μ;Z2,ν), we define the formula
Ufld�1(ai) as Δ�1

P (μ,ν). Intuitively, Ufld�1(ai) is the data constraint obtained
by unfolding ai at least once (with the inductive rules of P).

For each location variable E and atom ai in Σ, we introduce a Boolean
variable [E, i] to represent whether E is allocated in ai. Let BVars(ϕ) denote the
set of introduced Boolean variables. We define an abstraction of ϕ [12,14] to be
Abs(ϕ):: = Π ∧ Δ ∧ φΣ ∧ φ∗ over BVars(ϕ) ∪ Vars(ϕ), where

– φΣ =
∧

1�i�n

Abs(ai) is an abstraction of Σ where

• if ai = E �→ ρ, then Abs(ai) = [E, i] ∧ E
= nil,

• if ai = P (Z1,μ;Z2,ν), then

Abs(ai) = (¬[Z1, i] ∧ Z1 = Z2 ∧ μ = ν) ∨ ([Z1, i] ∧ Z1
= nil ∧ Ufld�1(ai)).

Satisfiability of Compositional Separation Logic with Tree Predicates 525

– φ∗ states the separation constraint of spatial atoms,

φ∗ =
∧

[Z1,i],[Z′
1,j]∈BVars(ϕ),i
=j

(Z1 = Z ′
1 ∧ [Z1, i]) → ¬[Z ′

1, j].

Proposition 6. For CSLTP[P] formula ϕ, ϕ and Abs(ϕ) are equisatisfiable.

The formula Abs(ϕ) can be turned into a quantifier-free formula Absqf(ϕ) by
removing all the existential quantifiers in Ufld�1(ai) and replace the existentially
quantified variables with some freshly introduced variables. The formula Absqf(ϕ)
can be seen as a mixed real and integer linear arithmetic constraint, thus its
satisfiability can be decided in nondeterministic polynomial time in theory, and
can be solved by using the state-of-the-art SMT solvers, e.g. Z3 [34], in practice.

Theorem 3. The satisfiability of CSLTP[P] formulae can be decided in 6-fold
exponential time. In addition, if the natural-number constants in P are encoded
in unary, the satisfiability can be decided in 5-fold exponential time.

Remark 1. The decision procedure for the satisfiability problem can be easily
generalised to n-ary trees, and to separation logic formulae where several induc-
tive predicates, e.g., lseg(E;F) and bsth(E, x, y;F, x′, y′), occur simultaneously.

6 Conclusion

In this paper, we proposed CSLTP, the compositional separation logic with tree
predicates. We gave a complete decision procedure for the satisfiability problem.
To our best knowledge, this is one of the most expressive fragments of SLID with
data/size constraints that is equipped with a complete decision procedure. The
main ingredient of the decision procedure is to compute the least fixed point
of data predicates involving dense order constraints and difference-bound size
constraints, by utilising an automata-theoretical approach.

For the future work, the decision procedure for the satisfiability problem
paves the way towards a compete decision procedure for the entailment problem
of CSLTP. In addition, we plan to implement the decision procedure and apply
it to the analysis and verification of programs manipulating tree data structures.

References

1. Abdulla, P.A., Hoĺık, L., Jonsson, B., Lengál, O., Trinh, C.Q., Vojnar, T.: Ver-
ification of heap manipulating programs with ordered data by extended forest
automata. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 224–
239. Springer, Cham (2013). doi:10.1007/978-3-319-02444-8 17

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005). doi:10.1007/11575467 5

http://dx.doi.org/10.1007/978-3-319-02444-8_17
http://dx.doi.org/10.1007/11575467_5

526 Z. Xu et al.

3. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Accurate invariant checking
for programs manipulating lists and arrays with infinite data. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, pp. 167–182. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33386-6 14

4. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). doi:10.
1007/3-540-63141-0 10

5. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE
2011. LNCS, vol. 6803, pp. 131–146. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 12

6. Brotherston, J., Fuhs, C., Perez, J.A.N., Gorogiannis, N.: A decision procedure for
satisfiability in separation logic with inductive predicates. In: LICS, pp. 25:1–25:10
(2014)

7. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981)

8. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

9. Chu, D.-H., Jaffar, J., Trinh, M.-T.: Automatic induction proofs of data-structures
in imperative programs. In: PLDI, pp. 457–466 (2015)

10. Comon-Lundh, H., Jacquemard, F., Perrin, N.: Visibly tree automata with memory
and constraints. Logical Methods Comput. Sci. 4(2), 1–36 (2008)

11. Creus, C., Godoy, G.: Tree automata with height constraints between brothers. In:
RTA-TLCA, pp. 149–163 (2014)

12. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment check-
ing for a fragment of separation logic. In: Garrigue, J. (ed.) APLAS 2014. LNCS,
vol. 8858, pp. 314–333. Springer, Cham (2014). doi:10.1007/978-3-319-12736-1 17

13. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma generation for separa-
tion logic with inductive definitions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 80–96. Springer, Cham (2015). doi:10.1007/
978-3-319-24953-7 7

14. Gu, X., Chen, T., Wu, Z.: A complete decision procedure for linearly compositional
separation logic with data constraints. In: IJCAR, pp. 532–549 (2016)

15. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and
parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR
2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04081-8 25

16. Habermehl, P., Iosif, R., Vojnar, T.: Automata-based verification of programs with
tree updates. Acta Inf. 47(1), 1–31 (2010)

17. Hóu, Z., Goré, R., Tiu, A.: Automated theorem proving for assertions in separation
logic with all connectives. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS,
vol. 9195, pp. 501–516. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 34

18. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp.
21–38. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 2

19. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation
logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 201–218. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6 15

http://dx.doi.org/10.1007/978-3-642-33386-6_14
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-319-12736-1_17
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-642-04081-8_25
http://dx.doi.org/10.1007/978-3-642-04081-8_25
http://dx.doi.org/10.1007/978-3-319-21401-6_34
http://dx.doi.org/10.1007/978-3-642-38574-2_2
http://dx.doi.org/10.1007/978-3-319-11936-6_15

Satisfiability of Compositional Separation Logic with Tree Predicates 527

20. Le, Q.L., Sun, J., Chin, W.-N.: Satisfiability modulo heap-based programs. In:
Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 382–404. Springer,
Cham (2016). doi:10.1007/978-3-319-41528-4 21

21. Manna, Z., Sipma, H.B., Zhang, T.: Verifying balanced trees. In: Artemov, S.N.,
Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 363–378. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-72734-7 26

22. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0 1

23. Pek, E., Qiu, X., Madhusudan, P.: Natural proofs for data structure manipulation
in C using separation logic. In: PLDI, pp. 440–451 (2014)

24. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 54

25. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer,
Cham (2014). doi:10.1007/978-3-319-08867-9 47

26. Piskac, R., Wies, T., Zufferey, D.: GRASShopper - complete heap verification with
mixed specifications. In: TACAS, pp. 124–139 (2014)

27. Qiu, X., Garg, P., Stefănescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: PLDI, pp. 231–242 (2013)

28. Revesz, P.Z.: A closed-form evaluation for datalog queries with integer (gap)-order
constraints. Theor. Comput. Sci. 116(1), 117–149 (1993)

29. Reynolds, A., Iosif, R., Serban, C., King, T.: A decision procedure for separation
logic in SMT. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol.
9938, pp. 244–261. Springer, Cham (2016). doi:10.1007/978-3-319-46520-3 16

30. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74 (2002)

31. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 24

32. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for
free. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 1136–1149. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27836-8 94

33. Tatsuta, M., Le, Q.L., Chin, W.-N.: Decision procedure for separation logic with
inductive definitions and presburger arithmetic. In: Igarashi, A. (ed.) APLAS
2016. LNCS, vol. 10017, pp. 423–443. Springer, Cham (2016). doi:10.1007/
978-3-319-47958-3 22

34. Z3. http://rise4fun.com/z3

http://dx.doi.org/10.1007/978-3-319-41528-4_21
http://dx.doi.org/10.1007/978-3-540-72734-7_26
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-319-08867-9_47
http://dx.doi.org/10.1007/978-3-319-46520-3_16
http://dx.doi.org/10.1007/978-3-642-39799-8_24
http://dx.doi.org/10.1007/978-3-540-27836-8_94
http://dx.doi.org/10.1007/978-3-540-27836-8_94
http://dx.doi.org/10.1007/978-3-319-47958-3_22
http://dx.doi.org/10.1007/978-3-319-47958-3_22
http://rise4fun.com/z3

	Satisfiability of Compositional Separation Logic with Tree Predicates and Data Constraints
	1 Introduction
	2 Preliminaries
	3 Compositional Separation Logic with Tree Predicates
	4 The Least Fixed Point of Data Predicates
	4.1 Dense Order Constraints
	4.2 Single Size Parameter
	4.3 The General Case

	5 Satisfiability
	6 Conclusion
	References

