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Abstract—Probabilistic model checking is a verification technique that has been the focus of intensive research for over a decade. One

important issue with probabilistic model checking, which is crucial for its practical significance but is overlooked by the state-of-the-art

largely, is the potential discrepancy between a stochastic model and the real-world system it represents when the model is built from

statistical data. In the worst case, a tiny but nontrivial change to some model quantities might lead to misleading or even invalid

verification results. To address this issue, in this paper, we present a mathematical characterization of the consequences of model

perturbations on the verification distance. The formal model that we adopt is a parametric variant of discrete-time Markov chains

equipped with a vector norm to measure the perturbation. Our main technical contributions include a closed-form formulation of

asymptotic perturbation bounds, and computational methods for two arguably most useful forms of those bounds, namely linear

bounds and quadratic bounds. We focus on verification of reachability properties but also address automata-based verification of

omega-regular properties. We present the results of a selection of case studies that demonstrate that asymptotic perturbation bounds

can accurately estimate maximum variations of verification results induced by model perturbations.

Index Terms—Asymptotic perturbation bound, discrete-time Markov chain, numerical iteration, optimization, parametric Markov chain,

perturbation analysis, probabilistic model checking, quadratic programming
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1 INTRODUCTION

PROBABILISTIC model checking is a system verification
technique that has matured over the past two decades

and has been applied in software engineering, such as verifi-
cation of non-functional requirements for complex software
systems [1]. A common scenario of probabilistic model
checking is to verify a systemmodel, such as a Discrete-Time
Markov Chain (DTMC) [2], Markov Decision Process (MDP)
[3] and Continuous-TimeMarkov Chain (CTMC) [4], against
a temporal property, such as a formula in the Linear Tempo-
ral Logic (LTL) [5] or Probabilistic Computation Tree Logic
(PCTL) [6], and to return either a qualitative answer (namely
a yes/no answer) or a quantitative answer (namely a proba-
bility). PRISM [7] is one of themost widely used probabilistic
model checking tools.

Many case studies reported for probabilistic model check-
ing, including those performedwith PRISM, involve stochas-
tic models embodying theoretically defined distributions, such
as the use of a fair coin toss to introduce randomization into

an algorithm, or the uniform probability distribution of ran-
domly chosen IP addresses in the Zeroconf protocol.
However, real-world systems often contain probability
parameters that are empirically determined, such as the failure
rate of a system component. Whether the verification reflects
the true quantitative property of the system underlying the
stochastic model is dependent on whether the model is a
faithful abstraction of the system. In the stochastic model
construction, measurements or experiments are employed to
determine the transition probabilities (for discrete-time sys-
tems) or transition rates (for continuous-time systems). On
the one hand, those statistical quantities are affected by the
measurement or experimental environment. For example,
the rate of losing a message in a communication protocol
implemented in a physical network is affected by network
load, electrical or wireless noise, etc. On the other hand, the
stochastic nature of the system itself may vary over time. For
example, the reliability of a hardware component decreases
with the age of the component.

In both of the above situations, usually the model builder
is able to improve the precision of the empirical parameters
with various measures, e.g., by increasing the sample size
or reducing the environmental disturbance. However, it is
important to consider the possible consequence of some per-
turbation occurring in the parameters on the verification of
the model. In the worst case, a tiny but non-trivial change to
some quantities in the model might lead to a misleading or
even invalid verification result.

A straightforward method to address the above prob-
lem is to perform multiple point-wise model checking
which is supported by e.g., the tool PRISM: We modify the
values of the quantities in the model, run the model
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checker for each choice of values, and then compare the
resulting set of outcomes. Such a simplified method only
partially reveals the dependence of verification on model
perturbations. A rigorous alternative technique is the
parametric variant of probabilistic model checking called
parametric model checking [8], [9], [10] which symbolically
or semi-symbolically computes a closed-form, perhaps
highly non-linear probability function to capture the math-
ematical relationship between the parameters and a verifi-
cation result. In practice, there may be no precise, concrete
values to instantiate the parameters. It is well-known that
the optimization problem of non-convex polynomial func-
tions is NP-hard in general and even good approximate
solutions are often difficult to compute using relaxation
methods [11]. Another recently developed technique is the
polynomial-time verification of interval-value variants of
DTMCs [12], [13], [14], in which interval-value estimates
of probabilities are allowed. But this technique computes
optimal point-wise verification results rather than closed-
form expressions with limited reusability.

In this paper, we present a novel technique of perturba-
tion analysis for probabilistic model checking to achieve the
aforementioned purpose. As in parametric model checking,
our formal model is a parametric variant of a DTMC, called
a Parametric Markov Chain (PMC), whose transition matrix
contains probability variables. To cope with the imprecision
with the parameter elicitation, we employ the entry-wise
1-norm to measure the perturbation distance of the PMC
probability variables. The main technical contributions of
this paper are as follows:

� We present a closed-form formulation of asymptotic
perturbation bounds that characterize the worst effects
of model perturbations on a verification result.

� We also investigate the computation problem of the
two most useful forms of those bounds, namely the
linear bounds and the quadratic bounds. Specifically, we
investigate the mathematical programming of those
two forms of bounds and the computational complex-
ity, and then present a scalable iterative method to
facilitate the numerical computation in practice.

� Lastly, we derive the backward counterparts of those
bounds which, given a variation range for a verifica-
tion result, infer the largest tolerated distance of
model perturbations.

The dynamics of a DTMC is determined by a (stochastic)
transition matrix. Perturbation analysis of matrix operators
is a long-investigated research area which, in general terms,
results in either perturbation upper bounds [15] or asymp-
totic expansions [16]. The former are non-asymptotic and
defined in terms of a norm of the perturbed matrix, whereas
the latter are approximate with increasing orders and are
most useful only when the perturbed matrix is fixed. Instead
of directly applying existing perturbation techniques to our
problem, a different perspective of our approach is the pur-
suit of asymptotic bounds via mathematical programming
with variablesmeasured by the 1-norm.

Informally speaking, we can identify three aspects of
significance for asymptotic bounds. First, asymptotic
bounds are natural theoretical metrics of the worst possi-
ble effect of the perturbed quantities on the model

verification. Second, because—as mentioned—the impre-
cision of the parameter elicitation is usually small but not
eliminated, asymptotic bounds can be used to conve-
niently but accurately estimate the maximum variations
that might occur to a verification result. Third, the back-
ward bounds provide an answer to the following ques-
tion: How accurate should a model builder measure some
specific parameters in order to safely confine a verifica-
tion result within a desirable range?

For the ease of presentation, we mainly deal with the ver-
ification of extended reachability probabilities in the text,
but based on automata-based verification method, our tech-
nique can also deal with v-regular properties. We evaluate
our approach with case studies on variant models of some
widely studied systems, including the Google PageRank
algorithm, the Zeroconf protocol and a NANDmultiplexer.

The remainder of the paper is organized as follows:
Section 2 presents the formal model and basic definitions.
Section 3 presents the main technical results of our
approach for reachability model checking. Section 4 extends
those results for automata-based model checking. Section 5
discusses several issues related to the main contributions.
Section 6 presents case studies. Section 7 discusses the
related work. Section 8 concludes the paper. Preliminary
results in the paper have been reported in three previous
conference papers [17], [18], [19].

2 MODEL, 1-NORM AND EXAMPLE

In this section, we recall some preliminary definitions, and
then present the PMC model and the 1-norm of vectors. We
also present a running example based on the Google Pag-
eRank Algorithm.

2.1 Markov Chain and Preliminary Definitions

The model of Discrete-Time Markov Chains or, briefly, Mar-
kov Chains (MCs) is a fundamental model that captures the
probabilistic aspect of a discrete-time system.

Definition 1 (Markov Chain). An MC is a tupleM¼ ðS;P;
a; A; LÞ where
� S is a finite, non-empty set of states represented as

numbers 1; . . . ;m for somem � 1,
� P an m�m transition matrix such that, for each

s; t 2 S, Pðs; tÞ 2 ½0; 1� andPt2S Pðs; tÞ ¼ 1,
� a an initial distribution such that aðsÞ � 0 for each

s 2 S and
P

s2S aðsÞ ¼ 1,
� A a set of atomic propositions, and
� L : S ! 2A a labeling function.

The digraph ofM is induced as follows: s is a vertex of the
digraph if and only if s 2 S, and ðs; tÞ is an edge of the digraph
if and only ifPðs; tÞ > 0. The size ofM, denoted as jMj, is the
sumof the numbers of vertices and edges in the digraph ofM.
A path inM is an infinite sequence p ¼ s0s1s2 � � � of states in S
such that Pðsi; siþ1Þ > 0 for each i. Denote the set of paths in

M byPathM. The probability distributionPrM overPathM is
defined in a standard way as in the literature (e.g., see Baier
and Katoen [20, Chapter 10]). For convenience, we extend the
labeling function L to paths, namely, LðpÞ ¼ Lðs0ÞLðs1Þ � � �.
We say t 2 S is reachable from s if there is a path p such that
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p½0� ¼ s and p½i� ¼ t for some i. Let rchðsÞ � S denote the set
of states reachable from s, and rchðMÞ � S the set of states
reachable from some s 2 S such that aðsÞ > 0.

The problem of verifyingM against some property ’ is

defined as the computation of PrMð’Þ. In the sequel, we
mainly deal with the following extended reachability properties
or, briefly, reachability properties. Let S?; S! � S. The property
of reaching S! via S?, denoted by the conventional LTL-style
“until” notation S?US!, is interpreted as the following set:

fp 2 PathM j 9i:p½i� 2 S! ^ 80 � j < i:p½j� 2 S?g :

The notation PrMðS?US!Þ reads as “the probability that S?US!

is satisfied byM”. IfS? [ S! ¼ S, we abbreviate S?US! as	S!.
For simplicity, we mainly deal with reachability proper-

ties. But we demonstrate in detail later in Section 4 that our
approach can be immediately generalized for the whole
class of v-regular properties.

2.2 Parametric Markov Chain and 1-Norm

A PMC model is a parametric variant of an MC with one or
more undetermined transition probability variables [8].
Before presenting the PMC model, we formulate the most
essential ingredients of the model. A vector variable ~x is a
vector of pair-wise distinct symbolic variables ðx1; . . . ; xkÞ
for some k � 1. Let I be a partition of f1; . . . ; kg. Intuitively,
I separates ~x into multiple independent perturbed sub-
vectors. To abuse notation for simplicity, we also use ~x to

denote a vector in Rk. Two transition matrices P and P0 of
the same size are structurally equivalent, denoted P ’ P0, if
they have exactly the same positions of zero entries.

We refer to the parametric counterpart of a transition
matrix in a PMC as a parametric transition matrix. Informally,
a parametric transition matrix P½~x� based on P and ~x is
obtained by associating variables from ~x with some specific
entries of P. Formally, the ðs; tÞ-entry of P½~x� is either the
probability Pðs; tÞ or a symbolic expression of the form
Pðs; tÞ þ xi for some 1 � i � k. Here, the constant value
Pðs; tÞ in the symbolic expression is usually an average of a
set of measured values and the variable xi encodes the pos-
sible perturbation. We further require P½~x� to satisfy the fol-
lowing conditions, which we argue are mild and sufficient
for practical purposes.

1) For all s; t 2 S, if Pðs; tÞ 2 f0; 1g then P½~x�ðs; tÞ ¼
Pðs; tÞ. In words, only “truly” probabilistic entries in
P½~x� (with values larger than 0 but smaller than 1)
can be parameterized.

2) For all s; t; t0 2 S such that t 6¼ t0, if P½~x�ðs; tÞ ¼ aþ x
and P½~x�ðs; t0Þ ¼ bþ x0 then x 6¼ x0, namely, a single
variable is not allowed to be associated with differ-
ent entries in the same row of P½~x�. Because entries in
the same row archive outgoing transition probabili-
ties from the same state, they cannot be parameter-
ized with the same variable. (Note that the same x is
allowed to occur in different rows.)

3) Let varðsÞ be the set of variables appearing in the
sth row of P½~x�. For all s 2 S, either varðsÞ ¼ ? or
varðsÞ ¼ fxigi2I for some I 2 I . In words, either no
variable appears in a row in P½~x� or variables appear-
ing in that row form an independent sub-vector .

Moreover, whenever P½~x� is mentioned in the sequel, it is
always assumed that ~x is within the following set:

UI ¼ f~x 2 Rk j 8I 2 I ;Pi2I xi ¼ 0; and P½~x� ’ Pg :

The zero-sum constraint in UI expresses that the perturba-
tion on the same-row probabilities should not distort them
to be a probability distribution. The constraint of structural
equivalence in UI expresses that the perturbation should
not alter the structure of the original matrix.

Definition 2 (Parametric Markov Chain). A PMC is a tuple
M½~x� ¼ ðS;P½~x�;a; A; LÞ where
� P½~x� is anm�m parametric transition matrix, and
� all other components are the same as their counterparts

in an MC (c.f., Definition 1).

We call each variable in~x a perturbed parameter or, simply,
parameter ofM½~x�. We also callM¼ ðS;P;a; A; LÞ the unper-
turbed MC ofM½~x�. It is easy to see thatM½~x� with ~x 2 UI
has the same underlaying digraph asM. Note that Defini-
tion 2 is more restricted than the original PMC definition [8]
because of the conditions added to the parametric transition
matrix. But again, we believe that those conditions impose
little practical restriction.

To cope with the imprecision with the parameter elicita-
tion, we employ a vector 1-norm to measure the perturbation
distance of ~x ofM½~x�. Recall that k~xk1 ¼

Pk
i¼1 jxij. Through-

out the text, we write k~xk1 as k~xk for simplicity. The reason
for choosing such a norm is two-fold. First, the 1-norm is
one of the simplest norms and thus easy to use in practice.
Second, compared with other norms (e.g., the Euclidean
norm), the linear totality of the 1-norm results in simplified
computational techniques for asymptotic perturbation
bounds. We further explain the role and advantage of the
1-norm in Section 5.2.

2.3 Example: PageRank Algorithm

In the following, we present a running example. Consider
the Google PageRank Algorithm that runs on a mini Web
depicted in Fig. 1a [21, Section 11.6].1 Nodes in the directed
graphical model refer to Web pages and edges refer to
hyperlinks. The probability labeling an edge is calculated
by the number of hyperlinks. For example, Web Page 1 has
hyperlinks to Web Pages 2, 4 and 5, and so each of the three
edges from Web Page 1 to its linked Web pages is labeled 1

3.
Web Page 4 is only linked to Web Page 3, and the edge from
Web Page 4 to Web Page 3 is labeled 1. Web Page 3 contains
no hyperlink and so has no outgoing edge. We assume the
initial distribution over the five Web pages is uniform.

The directed graphical model in Fig. 1a can be re-formu-
lated as a matrix P0. The PageRank algorithm translates P0
into a transition matrix P by replacing the zero rows (rows
with zero entries only) of P0 with uniform distributions.
Then, the algorithm sets the PageRank probability matrix
Ppr ¼ dP þ ð1
 dÞ1 � v, where d 2 ½0; 1� is a so-called damp-
ing factor, row vector v is a so-called personalization vector,
and 1 denotes a column vector of 1-entries. d is usually set

1. All the concrete probabilities presented in this example are taken
from the citation.
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as 0:85 but we let d ¼ 4
5 to make the presentation of numbers

simple. v is set as ½ 116 4
16

6
16

4
16

1
16�. With probabilistic model

checking, we can calculate the probability, say, of reaching
Web Pages 4 or 5 without browsing Web Page 3, namely,
the probability of ’pr ¼ f1; 2gUf4; 5g. But we also want to

see the effect on such a probability result if the personaliza-
tion vector is changed slightly at each Web page. To this
end, we associate each entry of Ppr with a variable. The
resulting parametric transition matrix, denoted Ppr½~x� with
~x ¼ ðxi;jÞ1�i;j�5, is depicted in Fig. 1b. It may be the case that

xi1;j ¼ xi2;j for all i1; i2; j. But to achieve a general model, we

let all variables be distinguished. Also note that the binary
indexes of the variables are for readability. It is easy to re-
index the variables to strictly follow our definition of vector
variables. For example, let xi;j ¼ x5i
5þj for all 1 � i; j � 5.

The partition on ~x is given by ffxi;jg5j¼1g5i¼1.

3 PERTURBATION ANALYSIS

In this section, we present the technical details of our per-
turbation analysis. Section 3.1 defines a variation function.
Section 3.2 analyzes asymptotic perturbation bounds, in
particular, linear bounds and quadratic bounds. Section 3.3
presents the backward counterparts of asymptotic perturba-
tion bounds.

3.1 Variation Function

Throughout this section, we focus on extended reachability
properties of PMCs. Given a PMCM½~x� with state space S
and an extended reachability property S?US! such that S?;

S! � S, for any ~x 2 UI , we recall that PrM½~x�ðS?US!Þ denotes
the probability that S?US! is satisfied byM½~x�.

The effect of perturbing ~x on verification ofM½~x� against
S?US! is formally characterized by the following function,
which is our main study object.

Definition 3. A variation function of M½~x� against S?US! is
r : UI ! ½0; 1� such that

rð~xÞ ¼ PrM½~x�ðS?US!Þ 
 PrMðS?US!Þ:
In words, a variation function captures the difference of

satisfying a reachability property by a perturbed MC and an
unperturbed MC. Alternatively, a variation function can be
formulated directly based on vector and matrix structures
from standard probabilistic model checking. To illustrate
this, we define a set

S0 ¼ fs 2 ðrchðMÞ \ S?ÞnS! jS! \ rchðsÞ 6¼ ?g :
Let a0 be the sub-vector of a obtained by restricting a to S0.
Let A½~x� be an jS0j � jS0j parametric matrix that contains the

(possibly parameterized) transition probabilities between
states in S0, namely, A½~x�ðs; tÞ ¼ P½~x�ðs; tÞ for all s; t 2 S0.
Let I be the identity matrix of the same size as A½~x�. By ele-
mentary matrix theory, I
A½~x� is invertible. Let b½~x� be a
parametric vector of length jS0j that contains the probabili-
ties of reaching S! from S0 in one step, namely, b½~x�ðsÞ ¼P

t2S! P½~x�ðs; tÞ for each s 2 S0. We call a0 the initial vector,

A½~x� the constraint matrix and b½~x� the target vector for verify-
ingM½~x� against S?US!. Let A (resp. b) be a matrix obtained
by substituting each variable in A½~x� (resp. b½~x�) to 0. The
following lemma provides a well-known alternative formu-
lation for variation functions.

Lemma 4. Let aT
0 denote the transpose of a0. For any ~x 2 UI ,

rð~xÞ ¼ aT
0 ðI
A½~x�Þ
1b½~x� 
 aT

0 ðI
AÞ
1b :

Proof. The lemma is an immediate consequence of Theorem
10.19 and Remark 10.20 in [20]. tu
We present the Taylor expansion of any given variation

function, which is interesting by itself and is useful in the
sequel. Denote ðI
AÞ
1 as A�, A½~x� 
A as A0½~x�, and b½~x� 

b as b0½~x�.
Lemma 5. rð~xÞ ¼P1

i¼1 rið~xÞ where for each i � 1

rið~xÞ ¼ aT
0 A�A0½~x� . . .A�A0½~x�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{i
1 copies of A�A0½~x�

ðA�A0½~x�A�bþA�b0½~x�Þ :

Proof. For any ~x 2 UI , as I
A½~x� is invertible, we have

ðI
A½~x�Þ
1 ¼P1
i¼0 A½~x�i. Thus from Lemma 4,

rð~xÞ ¼ aT
0

X1

i¼0
A½~x�ib½~x� 
 aT

0

X1

i¼0
Aib:

Note that each term in the series
P1

i¼0 A½~x�ib½~x� is a non-
negative vector, the convergence of the series implies its
absolute convergence, and thus the summands can be
reordered freely. Then,

X1

i¼0
A½~x�ib½~x� ¼

X1

i¼0
ðA0½~x� þAÞiðb0½~x� þ bÞ

¼
X1

i¼0
Aibþ

X1

i¼1
A�A0½~x� . . .A�A0½~x�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{i
1 copies of A�A0 ½~x�

ðA�A0½~x�A�bþA�b0½~x�Þ
To see the equality above, note that every term on the left
side of equality has a unique corresponding term on the
right side and vice versa. It is now clear that the lemma
follows directly from the definition of rn. tu

Fig. 1. (a) Graphical model for a mini web and (b) parametric transition matrix of a PMC model for PageRank.
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Note that some variation functions have finite expan-
sions only. In other words, for some r, there is n such that
rið~xÞ ¼ 0 (for all ~x 2 UI ) if i > n.

Example. We denote the PageRank PMC model with the
parametric transition matrix depicted in Fig. 1b byMpr½~x�
where~x ¼ ðxi;jÞ1�i;j�5. Recall that the verification problem

that we are interested in for this example is the probability
of ’pr satisfied byMpr½~x�, namely, the probability of reach-

ing Web Pages 4 or 5 without browsing Web Page 3. We
generate the corresponding initial vector, the constraint
matrix and target vector as presented in Fig. 2. Then, by
Lemma 4, we can compute the variation function rpr as

presented in Fig. 3, which defines the exact variation of
the probability of ’pr satisfied byMpr½~x� for any~x. Clearly,
rpr is a nonlinear multivariate function. Also note that

some variables from ~x do not appear in rprð~xÞ. As men-

tioned before, because the values of variables in ~x are
unknown, rprð~xÞ sheds little light on how much of the

probability of ’pr satisfied by Mpr½~x� will change if ~x is

perturbed by a specific amount. Hence, we developmeth-
ods to address this issue in subsequent sections.

3.2 Asymptotic Perturbation Bound

In this section, we study the asymptotic bounds. Section
3.2.1 formulates the asymptotic perturbation bounds of arbi-
trary degrees. Section 3.2.2 and Section 3.2.3 investigate the
computation and complexity of linear and quadratic asymp-
totic perturbation bounds, respectively. Section 3.2.5
presents the iteration methods for numerically computing
the two forms of bounds.

3.2.1 Definition and Property

For s; t 2 S, let cs;t ¼ 1 if Pðs; tÞ 2 f0; 1g and let cs;t ¼
minfPðs; tÞ; 1
 Pðs; tÞg otherwise. Let c ¼ mins;t2Scs;t. The
intention with the radius c is to restrict the perturbation dis-
tance of~x so that the possibility of~x falling out ofUI is elim-
inated. Note that since our pursuit is the asymptotic
bounds, such a restriction does not affect the analysis.

Definition 6. Let rþ; r
 : ð0; cÞ ! R such that

rþðdÞ ¼ supfrð~xÞ j~x 2 UI ; k~xk � dg
r
ðdÞ ¼ inffrð~xÞ j~x 2 UI ; k~xk � dg :

In words, given any 0 < d < c, rþðdÞ (resp. r
ðdÞ) is the
least upper bound (resp. greatest lower bound) of the varia-
tion function rð~xÞ subject to the condition that the distance of
~x is confinedwith d. Intuitively, rþ and r
 capture the largest
possible effect of model perturbations on verification. How-
ever, the closed-form expressions of these exact bounds are
usually difficult to obtain (see Section 5.1 for discussion).
Therefore, we pursue their approximations.

Definition 7 (Asymptotic perturbation bound). A pair of
upper and lower asymptotic perturbation bounds of degree n for
variation function r are functions fþn ; f



n : ð0; cÞ ! R such that

fþn ðdÞ 
 rþðdÞ ¼ oðdnÞ
f
n ðdÞ 
 r
ðdÞ ¼ oðdnÞ;

in other words,

lim
d!0

jfþn ðdÞ 
 rþðdÞj
dn

¼ lim
d!0

jf
n ðdÞ 
 r
ðdÞj
dn

¼ 0 :

In words, Definition 7 states that, as d tends to 0, fþn ðdÞ
(resp. f
n ðdÞ) converges to rþðdÞ (resp. r
ðdÞ) at least as fast
as any polynomial function on d of degree n. It is easy to see
that rþ and r
 themselves are upper and lower asymptotic
perturbation bounds, and thus Definition 7 is legitimate. In
the sequel, we often abbreviate asymptotic perturbation
bounds as asymptotic bounds.

In general, asymptotic bounds are not unique. In the fol-
lowing, we present a mathematical construction of upper
and lower asymptotic bounds of arbitrary degree. The con-
struction not only provides theoretical insights but also
paves the way for the computation of asymptotic bounds.

For n 2 N, we define a function gþn : ð0; cÞ ! R such that,
for each d 2 ð0; cÞ, gþn ðdÞ is the solution of the following
mathematical optimization problem:

Maximize
X
1�i�n

rið~xÞ

subject to ~x 2 UI and k~xk � d:

(1)

Similarly, g
n : ð0; cÞ ! R is a function such that, for each
d 2 ð0; cÞ, g
n ðdÞ is the solution of the following mathematical
optimization problem:

Minimize
X
1�i�n

rið~xÞ

subject to ~x 2 UI and k~xk � d:

(2)

Theorem 8. For all n 2 N, gþn (resp. g
n ) is an upper (resp. lower)
asymptotic bound of degree n for r.

Proof. We first recall the standard multivariate index nota-
tions and present a supporting lemma. For any integer
vector i ¼ ði1; . . . ; ikÞ, let

jij :¼ i1 þ � � � þ ik; i! :¼ i1! . . . ik!; ~xi :¼ x
i1
1 . . .x

ik
k :

Also let

rirð~xÞ ¼ @jijrð~xÞ
@x

i1
1 � � � @xik

k

:

Fig. 2. (a) Initial vector, (b) constraint matrix and (c) target vector for veri-
fyingMpr½~x� against ’pr.

Fig. 3. Closed-form variation function rpr ofMpr½~x� against ’pr.
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Note that r is infinitely differentiable on UI and thus has
a Taylor series. Comparing the Taylor series of r andP1

i¼1 ri, we have the following lemma: tu
Lemma 9. For each i � 1,

rið~xÞ ¼
X
jij¼i

rirð0Þ
i!

~xi:

Proof of Lemma 9. The equations hold simply by observing
that both

P
jij¼i

rirð0Þ
i! ~xi and rið~xÞ contain all and only the

expressions of ~x of order i from r. tu
We now present the main proof of Theorem 8. By

Lemma 9, we have
P

1�i�n rið~xÞ ¼
P

1�jij�n
rirð0Þ

i! ~xi. Denote

by r�nð~xÞ this quantity. Let ~xd be a solution of Problem (1)

for an arbitrary i—the existence of ~xd is guaranteed by the
compactness of the feasible set and the continuity of the
object function. For any " > 0, by Taylor expansion theo-
rem we can choose d0 2 ð0; cÞ small enough such that for any

~x 2 Rk with k~xk � d0,

jrð~xÞ 
 r�nð~xÞj � k~xkn"=2: (3)

Now for 0 < d < d0,

� we have jrð~xdÞ 
 gþn ðdÞj < "dn from Eq. (3), and thus

gþn ðdÞ
dn

<
rð~xdÞ
dn
þ " � rþðdÞ

dn
þ ":

� there exists ~x0 2 UI such that k~x0k � d and
rð~x0Þ > rþðdÞ 
 dn"=2. Thus, we also have from
Eq. (3) that jrð~x0Þ 
 r�nð~x0Þj < dn"=2, and

gþn ðdÞ
dn
� r�nð~x0Þ

dn
>

rð~x0Þ
dn

 "

2
>

rþðdÞ
dn

 ":

Therefore, limd!0 jgþn ðdÞ 
 rþðdÞj=dn ¼ 0 as expected. We
can show limd!0 jg
n ðdÞ 
 r
ðdÞj=dn ¼ 0 in a similar way.
This completes the proof.

Through Theorem 8, we can see that in order to compute
asymptotic bounds of order n, it suffices to consider a par-
tial sum in the expansion of r up to order n. Because the
constraint k~xk � d in Problems (1) and (2) can be decom-

posed to 2k linear constraints, we can employ standard
mathematical programming methods to compute gþn and
g
n . However, by exploiting the linear totality of k � k, we
present customized computational methods for asymptotic
bounds of degrees one and two in the sequel.

3.2.2 Linear Perturbation Bound

In this section, we present a method to compute linear
closed-form expressions for gþ1 and g
1 . Because all entries in
a0, A, and b are nonnegative, and because all entries in

A0½~x� and b0½~x� are either 0 or a sum expression of variables
from ~x, according to Lemma 5, we reformulate the linear
fragment r1 of r as follows:

r1ð~xÞ ¼ aT
0A
�ðA0½~x�A�bþ b0½~x�Þ ¼ h �~x

for some nonnegative vector h ¼ ðh1; . . . ; hkÞ. Let k ¼
1
2maxi;j2I;I2I ðhi 
 hjÞ.

Lemma 10. The following equations hold:

lim
d!0

rþðdÞ
d
¼ 
 lim

d!0

r
ðdÞ
d
¼ k :

Proof. Observing
P
jij¼1rirð0Þ~xi ¼ h �~x, it is easy to see

from Problem (1) that gþ1 ðdÞ=d ¼ 
g
1 ðdÞ=d ¼ k. tu

We call k the condition number of r. The following theo-
rem confirms that a condition number provides an asymp-
totic bound of degree one.

Theorem 11. The linear functions �kd are a pair of upper and
lower asymptotic bounds of degree one for r.

Proof. The proposition is an immediate consequence of The-
orem 8 and Lemma 10. tu
From now on, we formally refer to the linear functions kd

and 
kd as linear (perturbation) bounds for r.
We now consider the worst-case complexity for comput-

ing condition numbers. The generation of A and b uses a
conventional graph-based algorithm. The complexity of
computing the inverse of I
A is cubic in the size of M.
Then, we have the following theorem:

Theorem 12. Computing linear bounds (namely condition num-
bers) can be done in time OðjMj3Þ.
We mention in passing that it is possible to show that the

computation of linear bounds is in the complexity class
probabilistic logspace, which is believed to be lower than the
complexity class P [22].

Example. For the PageRank example, a simple numerical
calculation provides the expansion of the linear frag-
ment of rpr based on Lemma 5, as presented in Fig. 4.
Then, the condition number kpr is immediately calcu-

lated as 313
2242 ¼ 0:1396 (with the aid of Matlab). This

means that for a given small amount of model pertur-
bations, in the worse case the probability of satisfying
the property varies approximately that amount multi-
plied by kpr.

3.2.3 Quadratic Perturbation Bound

In this section, we consider the computation of quadratic
closed-form expressions for gþ2 and g
2 . Recall that r1 is
the linear fragment of r, and accordingly, we write
r1 þ r2 for the quadratic fragment of r. For convenience,
we introduce the concept of directions. A vector ~v is a
direction of r1 þ r2 if j~vj ¼ k,

P
~vI ¼ 0 for all I 2 I and

k~vk ¼ 1. So for any ~x 2 UI , ðr1 þ r2Þð~xÞ ¼ k~xk2r2ð~vÞ þ
k~xkr1ð~vÞ for some direction ~v. Informally, our strategy is
to find a direction such that r1 þ r2 increases or decr-
eases at the fastest rate.

Formally, let ~y� 2 Rk be an optimal vector of the follow-
ing quadratic program:

Fig. 4. Linear fragment in the expansion of rpr.
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Maximize r2ð~yÞ
subject to

X
i2I

yi ¼ 0; 8I 2 I

k~yk ¼ 1 and h �~y ¼ k:

(4)

Similarly, let ~y� 2 Rk be an optimal vector of the following
quadratic program:

Minimize r2ð~yÞ
subject to

X
i2I

yi ¼ 0; 8I 2 I

k~yk ¼ 1 and h �~y ¼ 
k:
(5)

We call ~y� and ~y� a maximally increasing direction (MID)
and a maximally decreasing direction (MDD) of r1 þ r2,
respectively. The following theorem confirms that MIDs
and MDDs provide asymptotic bounds of degree two. Note
that r1ð~y�Þ ¼ 
r1ð~y�Þ ¼ k.

Theorem 13. The quadratic functions r2ð~y�Þd2 � kd are a pair of
upper and lower bounds of degree two for r.

We present the length proof of Theorem 13 in
Appendix A , which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSE.2015.2508444. We also call r2ð~y�Þd2 þ kd

(resp. r2ð~y�Þd2 
 kd) an upper (resp. lower) quadratic
(perturbation) bound for r.

We now consider the complexity of computing quadratic
bounds. First, quadratic bounds are computed based on lin-
ear bounds (or condition numbers). Second, we observe that
the constraint k~yk ¼ 1 in Problems (4) and (5) can be decom-

posed into linear constraints of the form
Pk

i¼1 &iyi ¼ 1

where &i 2 f
1; 1g. Then each of the two problems is equiv-

alent to a combination of 2k standard quadratic optimiza-
tion problems according to different signs &. Thus, we have
the following theorem:

Theorem 14. Computing quadratic bounds can be done in time

OðpolyðjMjÞ; 2j~xjÞ.
Alternatively, we can show that computing quadratic

bounds is in the complexity class of functional NP [23].

3.2.4 Simplification by Structural Analysis

Sections 3.2.2 and 3.2.3 present the computational methods
and complexity analysis for linear and quadratic bounds. In
practice, the computation usually can be simplified consid-
erably by carefully analyzing the structure of the constraint
matrix and target vector. This structural analysis is based
on the following three lemmas. To present (some of) these
lemmas, we need some auxiliary definitions.

For each I 2 I , let hI ¼ ðhiÞi2I and kI ¼ maxðhIÞ 

minðhIÞ. Let ~xmin

I ¼ fxi j i 2 I; hi ¼ minðhIÞg and ~xmax
I ¼

fxi j i 2 I; hi ¼ maxðhIÞg. For s 2 S, let As½~x� (resp. bs½~x�)
denote the sth row (resp. sth entry) of A½~x� (resp. b½~x�). Let
SI � S contain exactly the states s such that varðsÞ ¼
fxigI2I . Let~vi;j (where i; j � j~vi;jj) denote a vector (i.e., direc-
tion) such that ~vi;jðiÞ ¼ 0:5, ~vi;jðjÞ ¼ 
0:5 and ~vi;jðkÞ ¼ 0 for
any k =2 fi; jg.
Lemma 15. hi ¼ 0 iff xi does not appear in A½~x� or b½~x�.

Proof. It is obvious that if xi does not appear in A½~x� or b½~x�
then hi ¼ 0. For the reversed direction, suppose xi

appears in A½~x� or b½~x�. Recall that A½~x� and b½~x� are
defined based on S0, a subset of S from states in which at
least one of target states is reachable. In other words,
there is a path s0; . . . ; sj; sjþ1; . . . ; sm . . . such that aðs0Þ >
0, P½~x�ðsj; sjþ1Þ ¼ aþ xi (where a is a constant) and
sm 2 S?. Then, it must be the case that

hi � aðs0Þ �
Yj

l¼0
Pðsl; slþ1Þ �

Ym

l0¼jþ1
Pðsl0 ; sl0þ1Þ > 0 :

The lemma follows. tu
Lemma 16. If xi appears in bs½~x� for each s 2 SI , then hi ¼

maxðhIÞ where i 2 I for all I 2 I .
Proof. Suppose xi appears in bs½~x� for each s 2 SI . Consider

the vector b00½~x� ¼ A0½~x�A�bþ b0½~x�. Clearly, since a vari-

able does not occur at the same row of A0½~x� and b0½~x�
simultaneously, the coefficient of any variable at any row

of b00½~x� is not large than 1. Let j 2 s. Thus, the coefficient

of xj in the sth row of b00½~x� (which may be 0) is not large
than that of xi at the same row (which must be 1). As

h �~x ¼ aT
0A
�b00½~x�, hj � hi. tu

With Lemmas 15 and 16, to compute a condition number,
one usually can remove the “irrelevant” variables in the
constraint matrix and target vector and thus simplify the
variation function.

Lemma 17. If there are i#; i" 2 I for some I 2 I such that

(c1) ðhi" 
 hi#Þ=2 ¼ k > kI0 for all I
0 2 InfIg,

(c2) unless ~xmin
I ¼ fxi#g, for each s 2 SI , all the variables

in ~xmin
I appear in bs½~x� or none of them appears in

bs½~x� or As½~x�, and
(c3) unless ~xmax

I ¼ fxi"g, for each s 2 SI , all the variables
in ~xmax

I appear in bs½~x� or none of them appears in
bs½~x� or As½~x�,

then~vi";i# (resp.~vi#;i" ) is an MID (resp. MDD) of r1 þ r2.

Proof. We aim to show that vi";i# is a solution of quadratic
program (4), while the case that vi#;i" is a solution of qua-

dratic program (5) is similar. Clearly, Condition (c1)
guarantees that v";i# satisfy the three constraints of (4).

Let ~y� be a solution of (4). If ~y�½i� < 0, then xi 2 ~xmin
I ; if

~y�½i� > 0, then xi 2 ~xmax
I . By (c2), we have that, for any

xj 2 ~xmin
I such that j 6¼ i#,

r2ð~y�Þ ¼ r2ð~y�½i#  yi# þ yj; j 0�Þ: (6)

(Here ~y�½i#  yi# þ yj; j 0� denotes a new vector
obtained by assigning yi# þ yj to the i#th item and 0 to the

jth item of ~y�.) To see this, if ~xmin
I ¼ fxi#g then it must be

the case that~y�ði#Þ ¼ 
0:5 (because otherwise~y� does not
satisfy the constraints of (4)) and thus (6) holds. If there is

xj 2 ~xmin
I such that j 6¼ i#, then (c2) guarantees that

� for any variable z 62 fxj; xi#g, czxj appears in r2ð~xÞ
iff czxi# appears in r2ð~xÞ for any coefficient c1; and

� for any variable z 2 fxj; xi#g, neither czxi# nor czxj

appears in r2ð~xÞ for any coefficient c.
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Thus, (6) also holds. Similarly, by condition (c3), we
can show that for any xj 2 ~xmax

I such that j 6¼ i", r2ð~y�Þ ¼
r2ð~y�½i"  yi" þ yj; j 0�Þ. Therefore, r2ð~y�Þ ¼ r2ðvi";i# Þ. tu
In words, condition (c1) says that kI is the unique maxi-

mum in fkI0 gI02I and that hi# (resp. hi" ) is a minimum (resp.

maximum) of hI . Condition (c2) (resp. (c3)) says that unless

~xmin
I (resp. ~xmax

I ) contains a single variable (equivalently, hI

has a unique minimum (resp. maximum) element), for each
row of the constraint matrix and target vector either all varia-

bles from ~xmin
I (resp.~xmax

I ) appear in the target vector only or
none of them appears in the constraint matrix or target vector.

The significance of Lemma 17 is as follows. After we
compute h and k and know ðhi" 
 hi#Þ=2 ¼ k, if we further
that the pair of indices i#; i" 2 I satisfy conditions ðc1Þ to
ðc3Þ (just by scrutinizing the structure of the constraint
matrix and target vector), we immediately know that ~vi";i#
(resp. ~vi#;i" ) is an MID (resp. MDD), thus avoiding the qua-

dratic programs (i.e., Problems (4) and (5)).
Based on Lemma 17, we present Algorithm 1 which can

simplify the computation of MIDs and MDDs for a usual
group of variation functions. Procedures QP �ðÞ and QP�ðÞ
for solving Problems (4) and (5) are supported by off-the-
shelf nonlinear program solvers. For example, they can be
easily reformulated as constrained optimization problems
in Matlab [24].

Algorithm 1. MID and MDD Computation Based on
Lemma 17

Input: h; k; r2
If There exist a pair ði"; i#Þ of indices in I 2 I satisfying conditions

(c1) to (c3) in Lemma 17 then~y�  ~vi" ;i# and~y�  ~vi# ;i" ;

else
~y�  QP �ðr2;h; kÞ and~y�  QP�ðr2;h; kÞ;

/* QP �ðÞ and QP�ðÞ are procedures for solving

Problems (4) and (5)

resp. */
return~y�,~y�

Example. By Lemmas 15 and 16, we can derive that the con-
dition number kpr is (non-uniquely) archived by either
the pair x1;3 and x1;4 (or x1;5) or the pair x2;3 and x2;4 (or
x2;5) in the constrain matrix and target vector in Fig. 2.
The variation function rpr in Fig. 4 is simplified by

removing all other variables, and becomes as follows:

~rpr1 ¼ 231
1121x1;4 þ 231

1121x1;5 þ 313
1121x2;4 þ 313

1121x2;5 :

Certainly, as 231
1121 < 313

1121, we conclude that kpr is achieved

by x2;3 and x2;4 and kpr ¼ 313
1121 � 12.

To save space, we do not present the expansion of the
quadratic fragment rpr2 of rpr in the text. But we note that
the expansion contains 28 (symbolic) non-zero summands.
Thus, re-indexing xi;j as x5i
5þj for all 1 � i; j � 5, the pair
of indexes 8 and 9 meet conditions (c1) to (c3) in Lemma 17.
Therefore, ~v9;8 and ~v8;9 are an MID and MDD of the qua-
dratic fragment of rpr, respectively. In other words, an MID

(resp. MDD) is obtained by increasing (resp. decreasing)
x2;4 and decreasing (resp. increasing) x2;3.

However, further calculations show that rpr2ð~v9;8Þ and
rpr2ð~v8;9Þ are equal to 0. This means that the upper (resp.

lower) quadratic bound of rpr is just the linear bound kprd

(resp. 
kprd). This is, however, not the general case. In Sec-
tion 4, we will present another variation function of the Pag-
eRank model Mpr½~x� such that conditions (c1) to (c3) are
satisfied but the quadratic bounds do not coincide with their
linear counterparts.

3.2.5 Numerical Computation by Iteration

A realistic system model may have a large state space and a
relatively high number of parameters. Like probabilistic
model checking, the computation of linear and quadratic
bounds can benefit from the numerical iteration, which is
more efficient than the Gauss-Jordan elimination method
for the inversion operation of a large matrix [25]. An itera-
tive computation technique for linear and quadratic bounds
can be envisaged from Lemma 5, and is detailed below.

Let I0 ¼ fi 2 I j I 2 I and xi occurs in A½~x�or b½~x�g. Sup-
pose I0 6¼ ? , since otherwise the linear and quadratic
bounds are trivial. For each i 2 I0, let Ci;i0 (resp. di;i0 ) be

obtained from A0½~x� (resp. b0½~x�) by instantiating 1 into xi

and xi0 , and by instantiating 0 into all other variables. If
i ¼ i0, we simply write Ci (resp. di) instead of Ci;i (resp. di;i).
Recall that the linear coefficients in r are h ¼ ðh1; . . . ; hkÞ.
Then we have that

hi ¼ 1
2a

T
0A
�ðCiA

�bþ diÞ; i 2 I0 (7)

and hi ¼ 0 for other i 62 I0. Since A
� ¼P1

j¼0 A
j, according to

the definition of k, it can be effectively approximated by the
numerical iteration. Note that according to Lemmas 15 and
16, we may not need to compute hi for all 1 � i � k.

For quadratic bounds, we consider the lower bound only,
as the upper bound can be dealt with in a symmetric man-
ner. For each i; i0 2 I0 such that i 6¼ i0, let Ei;i0 (resp. fi;i0 ) be
obtained from A0½~x� (resp. b0½~x�) by instantiating 
1 into xi,
1 into xi0 , and 0 into all other variables. If conditions (c1) to
(c3) in Lemma 17 are satisfied, then an index pair ði#; i"Þ
achieving an MDD can be determined. If so, the nonlinear
coefficient in the lower quadratic bound g
2 of r is given by

r2ðvi#;i"Þ ¼ 1
4a

T
0A
�Ei#;i"A

�ðEi#;i"A
�bþ fi#;i"Þ : (8)

Otherwise, to invoke QB�ðÞ in Algorithm 1, we need to first
compute the expression of r2. Consider the coefficient of
xj1xj2 (or, equivalently, xj2xj1 ) in r2, denoted cj1;j2 , for all

1 � j1; j2 � k. We separate three cases. For all j1 ¼ j2 2 I0,

cj1;j1 ¼ aT
0A
�Cj1A

�ðCj1A
�bþ dj1Þ : (9)

For all j1; j2 2 I0 such that j1 6¼ j2,

cj1;j2 ¼ aT
0A
�Cj1;j2A

�ðCj1;j2A
�bþ dj1;j2Þ


 cj1;j1 
 cj2;j2 :
(10)

If j1 62 I0 or j2 62 I0, then cj1;j2 ¼ 0, namely, xj1xj2 does not
occur in r2. We conclude that quadratic bounds can be com-
puted using the numerical iteration.

630 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016



While probabilistic model checking uses a flat iteration to
approximate A�b, it is easy to observe that Equation (7) sug-
gests a double-iteration for computing a condition number.

In particular, we compute g 
 A�b and then a 
 aT
0A
�Cig.

Similarly, Equations (8) to (10) suggest a triple-iteration for
computing the coefficients in the quadratic bound or in the
quadratic fragment of the variation function. Roughly, letM
denote the runtime of a flat iteration (even though in practice
M is usually not constant but subject to factors such as the
convergence rate and the termination criterion). Thus, the
runtime of the numerical iteration part of probabilisticmodel
checking isM. The runtime of iteratively computing a condi-
tion number is up to 2NM where N ¼ jI0j. The runtime of
iteratively computing quadratic bounds is ð2N þ 3ÞM if con-

ditions (c1) to (c3) hold, and is less than ð2N þ 3N2ÞM in the
worst case (because the number of non-zero quadratic coeffi-

cients is less thanN2). This analysis indicates the scalability of
the iterative computation of condition numbers and qua-
dratic bounds with respect to the iterative computation as a
part of probabilistic model checking.

3.3 Backward Analysis

In the previous sections, we have dealt with the forward per-
turbation analysis, which analyzes the worst possible conse-
quence of model perturbations on verification results. In
this section, we present a similar analysis in backward direc-
tion, which provides the maximum permitted perturbations
to the model if variations of the verification result are con-
fined to a specific range, and thus is complementary to the
forward analysis. It turns out that there exists an elegant
correspondence between (both exact and asymptotic) per-
turbation bounds and their backward counterparts.

Definition 18. Let %þ; %
 : Rþ ! Rþ such that

%þðdÞ ¼ inffk~xk j~x 2 UI ; rð~xÞ � dg
%
ðdÞ ¼ inffk~xk j~x 2 UI ; rð~xÞ � 
dg :

Inwords, given any d � 0, %þðdÞ (resp., %
ðdÞ) is the smallest
perturbation distance k~xk subject to the condition that~x 2 UI
and rð~xÞ � d (resp. rð~xÞ � 
d). Intuitively, whenever ~x 2 UI
and k~xk < minf%þðdÞ; %
ðdÞg,
d < rð~xÞ < d is guaranteed.

Note that the functions rþ and %þ are both nondecreas-
ing. The following key lemma shows that they actually
form a Galois connection.

Lemma 19. rþð%þðdÞÞ � d and %þðrþðdÞÞ � d for any suffi-
ciently small d � 0.

Proof. We only prove the first part; the second one is simi-
lar. Let d � 0 sufficiently small so that %þðdÞ < c. For any
� 2 ð0; %þðdÞÞ, let

Að�Þ ¼ f~x 2 UI j k~xk � %þðdÞ 
 �g:

Then for any ~x 2 Að�Þ, rð~xÞ < d since otherwise by the
definition of %þ, k~xk � %þðdÞ, a contradiction. Thus

rþð%þðdÞ 
 �Þ ¼ supfrð~xÞ j~x 2 Að�Þg � d;

and hence rþð%þðdÞÞ � d by letting � tend to 0. tu

Furthermore, we prove that %þ is a pseudo-inverse of rþ.
Similar results also hold between %
 and r
.

Lemma 20. %þrþ%þ ¼ %þ and rþ%þrþ ¼ rþ:

Proof. Direct from Lemma 19, by notting that both rþ and
%þ are nondecreasing functions. tu
We now present our main theorem of this section.

Theorem 21.

1) limd!0
%þðdÞ

d
¼ limd!0

%
ðdÞ
d
¼ 1

k
:

2) Let f̂þ2 ðdÞ ¼ d=k
 r2ð~y�Þd2=k3 and f̂
2 ðdÞ ¼ d=k þ
r2ð~y�Þd2=k3. Then

lim
d!0

jf̂þ2 ðdÞ 
 %þðdÞj
d2

¼ lim
d!0

jf̂
n ðdÞ 
 %
ðdÞj
d2

¼ 0 :

Proof. 1) By Lemma 19 and Theorem 10, we have

lim
d!0

%þðdÞ=d � lim
d!0

%þðdÞ=rþð%þðdÞÞ
¼ lim

d0!0
d0=rþðd0Þ ¼ 1=k

and

lim
d!0

%þðdÞ=d ¼ lim
d0!0

%þðrþðd0ÞÞ=rþðd0Þ
� lim

d0!0
d0=rþðd0Þ ¼ 1=k:

Thus limd!0 %
þðdÞ=d ¼ 1=k.

2) By Lemma 19 and Theorems 10 and 13, we have

lim
d!0

%þðdÞ 
 d=k

d2
� 
 lim

d!0

rþð%þðdÞÞ 
 k%þðdÞ
%þðdÞ2 � %

þðdÞ2
kd2

¼ 
 r2ð~y�Þ=k3

and

lim
d!0

%þðdÞ 
 d=k

d2
¼ lim

d0!0

%þðrþðd0ÞÞ 
 rþðd0Þ=k
rþðd0Þ2

� 
 lim
d0!0

rþðd0Þ 
 kd0

d02
� d02

krþðd0Þ2
¼ 
 r2ð~y�Þ=k3

Thus %þðdÞ ¼ d=k
 r2ð~y�Þd2=k3 þ oðd2Þ. tu
Theorem 21 confirms that 1=k serves as a backward condi-

tion number, while f̂þ2 and f̂
2 are a pair of backward coun-
terparts of quadratic bounds.

4 AUTOMATA-BASED GENERALIZATION

For simplicity of presentation, in the previous sections we
focused on (extended) reachability properties. In this section,
we explain how our perturbation analysis of PMCs can be
generalized for LTL properties and v-regular properties via
automata-based verification. We only present the necessary
definitions to reveal this generalization. For completeness,
we present the state-of-the-art technicalities underlying the
automata-based verification of MCs in Appendix B of the
online supplementary document.
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We first recall the syntax of LTL, which is a compact for-
malism for expressing (a subclass of) v-regular properties.

Definition 22 (Linear Temporal Logic). Given a set of atomic
propositions A, the syntax of LTL formulas is defined by the
following rules:

’ ::¼ tt j a j :’ j’ _ ’ jX’ j’U’;

where a 2 A.

Let 	’ abbreviate ttU’. We define a “bounded version”

of 	’: Let 	�0’ be ’ and 	�nþ1’ ¼ ’ _X	�n’ for all n 2 N.
The semantics of LTL is defined in a standard way by a sat-
isfaction relation, denoted �. Given an infinite path p of MC
M¼ ðS;P;a; A; LÞ, and i 2 N, we define:

ðp; iÞ � tt

ðp; iÞ � ’1 _ ’2 iff ðp; iÞ � ’1orðp; iÞ � ’2

ðp; iÞ � a iff a 2 Lðp½i�Þ
ðp; iÞ � :’ iff ðp; iÞ 6� ’

ðp; iÞ � X’ iff ðp; iþ 1Þ � ’

ðp; iÞ � ’1U’2 iff 9i0 � i: ðp; i0Þ � ’2

and 8i � i00 < i0: ðp; i00Þ � ’1:

Write p � ’ if ðp; 0Þ � ’. The LTL-verification problem of
MCs is to compute

PrMð’Þ ¼ PrMðfp 2 PathM jp � ’gÞ :
The general class of v-regular properties, including LTL

properties, can be encoded by the generalized B€uchi automata
(GBA).

Definition 23 (Generalized B€uchi Automata). A GBA is a
tuple A ¼ ðS; Q;D; Q0;FÞ, where
� S is a finite alphabet;
� Q is a finite set of states,
� D � Q� S�Q is a transition relation,
� Q0 � Q is a set of initial states, and
� F � 2Q is a set of acceptance sets.

An infinite wordw 2 S
v is accepted by A, if there exists an

infinite run u 2 Qv such that u½0� 2 Q0, ðu½i�; w½i�; u½iþ 1�Þ 2 D
for i � 0 and for each F 2 F , there exist infinitely many
indices j 2 N such that u½j� 2 F . Note that w½i� (resp. u½i�)
denotes the ith letter (resp. state) of w (resp. u). The accepted

language of A, denoted LðAÞ, is the set of all words
accepted by A. It is well-known that GBA are expressive
enough to accept the class of v-regular languages.

For simplicity, when given an MC M and a GBA A,
we always assume they are compatible, namely, S ¼ 2A

where A is the set of atomic propositions for M and S is
the alphabet of A. Then, the automata-based verification
problem is to compute

PrMðAÞ ¼ PrMðfp 2 PathM jLðpÞ 2 LðAÞgÞ :
It is well-known that each LTL formula can be encoded by a
GBA, thus PrMðAÞ subsumes PrMð’Þ.

The key idea of computing PrMðAÞ is by constructing a

productMCM�A0 such that A0 is a so-called separated GBA

that is equivalent to A and PrMðAÞ equals to PrM�A
0ð	BÞ

for some reachability problem 	B. The formal techniques
behind this idea is presented in Appendix, available in the
online supplemental material. In the same way, given

PMC M½~x�, we can construct a product PMC M½~x� �A0.
We can verify that such a product PMC contains a
parametric transition matrix satisfying the intended con-
straints (c.f., Section 2.2). We define a generalized variation
function forM½~x� against A as

rAð~xÞ ¼ PrM½~x�ðAÞ 
 PrMðAÞ :
Then, all techniques presented in Section 3 can be lifted for
rA immediately.

Example. In the following, we illustrate automata-based
perturbation analysis of our PageRank example. Con-
sider the LTL formula ’0pr ¼ 	�3f4; 5g, which informally
expresses “reaching Web pages 4 or 5 within three steps
(i.e., clicking the hyperlinks no more than three times)”.
The initial vector, constraint matrix and target vector for
verifying Mpr½~x� (with ~x ¼ ðxi;jÞ1�i;j�5) against ’0pr
(namely A’0prÞ are presented in Fig. 5. With them one

immediately obtains the closed-form expression of r0pr
(similar to the one in Fig. 3 for rpr). To save space, we

do not present the expression of r0pr or its linear frag-

ment r0pr1 or quadratic fragment r0pr1 þ r0pr2 explicitly.

We note that the expansion of r0pr1 contains 15 (sym-

bolic) summands and the expansion of r0pr2 contains 78

(symbolic) summands. We compute the condition num-
ber as 0:1443. By using Lemma 17, we can determine

Fig. 5. (a) Initial vector, (b) constraint matrix and (c) target vector for verifyingMpr½~x� against ’0pr.
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that an MID (resp. MDD) is obtained by increasing
(resp. decreasing) x3;4 while decreasing (resp. increas-
ing) x3;3 only. We further compute the quadratic bounds

as �0:1443d 
 0:0927d2. In words, for any amount of the
perturbation d that occurs to the model Mpr½~x�, using
the condition number, we estimate the maximum varia-
tion of the probability of ’0pr satisfied by Mpr½~x� as

�0:1443d, and using the quadratic bounds, we estimate

it as �0:1443d
 0:0927d2.

5 DISCUSSION

5.1 Reflection on Linear and Quadratic Bounds

An important rationale behind our perturbation analysis is
the fact that, the imprecision of quantities in the system
model is usually of small-scale in the realistic situations, in
other words, the model builder has various measures to
narrow down the ranges of the parameter values. Con-
sider, for example, the situation where the true value of a
perturbed parameter is the expected value of a random
variable. To estimate this value, we can observe the ran-
dom variable to generate samples. If the sample size is
large enough, by statistics theory there is a high confidence
that the sample mean is sufficiently close to the true value
of the parameter.

The asymptotic nature of linear and quadratic bounds
implies that they are only able to provide approximations
rather than exact bounds. Nonetheless, for stochastic sys-
tems with parameters subject to small but nontrivial per-
turbations, linear and quadratic bounds provide adequate
estimates and fulfill our requirements to a satisfactory
degree in application (as shown later in Section 6). More-
over, linear and quadratic bounds have two advantages.
First, they enjoy simple closed forms that uniformly char-
acterize the sensitivity and robustness of a verification
result, regardless of the actual model perturbation. Sec-
ond, their computation has relatively low complexity
upper-bound (compared with the point-wise exact bounds
[19]) and can employ efficient numerical iteration meth-
ods in practice.

It is natural to expect that asymptotic bounds of higher
degrees provide more accurate approximations, but at cost
of high computational burden. This challenging generaliza-
tion is left to future work.

5.2 Reflection on Vector Norm

Many results presented in Section 3 depend on the 1-norm
of the perturbed parameters. In short, by choosing such a
norm, the condition number can be computed by linear
programming, and the quadratic bounds are computed by
pursuing an MID and an MDD, which are computed
largely based on the condition number. In what follows,
we clarify the (in)dependence in more detail. Because
lower (perturbation) bounds are symmetric to upper (per-
turbation) bounds, we here only need to discuss the case
of upper bounds.

Certainly, the variation function r is independent of any

norm. We denote the resulted upper bound as rþk�k� if the

norm k � k� is adopted. As we only consider finite norms, a
well-known fact from the matrix theory states that there are
positive constants c and C such that

ck~xk � k~xk� � Ck~xk; ~x 2 Rk: (11)

Hence, one can easily show that Theorem 8 holds for rþk�k� as
well if Problem (1) and (2) are adapted for k � k�.

However, the computation of linear bounds based on an
arbitrary norm cannot directly resort to linear programming.
To see this, consider the following simple variation function:

regðx; y; zÞ ¼ x=2þ y=3þ x2=4 :

Note that reg is obtained from a simple PMC with the reach-
ability problem. (The detailed model is omitted for simplic-
ity.) Assume the Euclidean norm k � k2 to measure the
variables of reg. By Theorem 8, a linear upper bound of reg
is an optimal solution of the following problem:

Maximize x=2þ y=3

subject to xþ yþ z ¼ 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� d:

(12)

The above problem is clearly not a linear program. Its unique
optimal solution is as follows:

x ¼ 4ffiffiffiffi
42
p d; y ¼ 1ffiffiffiffi

42
p d; z ¼ 
 5ffiffiffiffi

42
p d :

Thus, the linear upper bound is 7d=ð3 � ffiffiffiffiffi
42
p Þ. Furthermore,

the linear bounds say little about the quadratic bounds. To
see this, replace the objective function in Problem (12) with
the quadratic function reg itself. Then, the solution is no lon-

ger an optimal solution of the modified problem. This exam-
ple demonstrates the dependence of the computational
techniques in Sections 3.2.2 and 3.2.3 on the 1-norm.

We also mention that, Inequality (11) implies an inequal-
ity between an exact bound based on the 1-norm and one
based on another norm. In particular, as

ffiffiffi
k
p k~xk � k~xk2 �

k~xk and rþ is an increasing function, we have that

rþðdÞ � rþk�k2ðdÞ � rþð
ffiffiffi
k
p

dÞ :

The above bounding relationship can be used to provide
(loose) estimates for our asymptotic bounds if the Euclidean
norm is adopted. Note that for other norms (e.g., the maxi-
mum norm k � k1), a similar relationship holds.

6 CASE STUDIES

In this section, we evaluate the applicability of the two
forms of asymptotic bounds, namely, condition numbers
and quadratic bounds. We mainly consider the accuracy of
these bounds. Our objective is to demonstrate that, despite
the asymptoticity, these bounds can be used to accurately
predict the actual worst effect caused by small but non-
trivial model perturbations. Our computation of these
bounds in the case studies adopts the numerical iteration.
We have analyzed the scalability of this iterative computa-
tional method with respect to the one in probabilistic model
checking in Section 3.2.5. In this section, we also provide
empirical evidence for scalability through analysis of com-
putation runtime.

The case studies are based on the PageRank example
and two other benchmarks, namely a Zeroconf protocol
model and a NAND multiplexer model. We have imple-
mented our iterative computational method in Matlab
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and interacted with PRISM. The procedure is depicted in
Fig. 6. We first specify a system model in PRISM and
export its state space and transition matrix into matrices
in Matlab. We then generate the constraint matrix and
target vector with respect to a verification property,
namely a reachability property or LTL property. Finally,
we calculate the condition number and quadratic bounds
using my implementation prototype. All PRISM specifi-
cations and the Matlab source codes are available at the
first author’s Web site.2

The evaluation constitutes the following steps: First, we
verify the unperturbed modelM ofM½~x� against a property
’, which produces the probabilistic result p. Second, we
select a set of small perturbation values d for the perturbed
parameters ~x. Third, for each d, we select multiple vectors~vi
such that k~vik � d and obtain a perturbed MCM½~vi�. Fourth,
we verifyM½~vi� against ’ and obtain the probabilistic result
pi. Finally, we compare the estimates kd and fþðdÞ (or
f
ðdÞ) with maxiðpi 
 pÞ or miniðpi 
 pÞ where k is the con-
dition number and fþ and f
 are the quadratic bounds
computed before.

6.1 PageRank Algorithm

Recall that the two verification properties for the PageRank
model Mpr½~x� that we considered earlier are ’pr ¼ f1; 2gU
f4; 5g and ’0pr ¼ 	�3f4; 5g, and the condition numbers (CN

for short) and quadratic bounds (QB for short) correspond-
ing to these two properties are as follows:

property CN QB
’pr kpr ¼ 0:1396 � 0:1396d

’0pr k0pr ¼ 0:1443 � 0:1443d
 0:0927d2

Our computation reveals that the maximum variations
of the probability of satisfying ’pr almost overlays with kprd

for any perturbation distance d. This is not the case for ’0pr.
But our validation data as presented in Table 1 shows that
up to the perturbation distance of 0:01, the condition num-
ber and quadratic bounds can accurately estimate the maxi-
mum variations. When the perturbation distance is 0, the
upper and lower bounds of the probabilistic results coin-
cide with the unperturbed results. Note that the 0:01 pertur-
bation distance is a nontrivial distance compared with the

smallest constant transition probability 1
80 ¼ 0:0125 in the

parametric transition matrix ofMpr½~x� (see Fig. 1b). We also
see that the quadratic bounds provide more accurate esti-
mates than the condition number.

6.2 Zeroconf Protocol

Consider the IPv4 Zeroconf protocol implemented in
some physical network with noisy communication chan-
nels. The Zeroconf protocol enables a new host to join a
computer network automatically and with “zero configu-
ration” (such as without pre-assignment of an IP
address). Fig. 7 depicts a lightweight abstract model of
Zeroconf that uses a maximum of four message probes
for the new host to discover an unused IP address. At the
start state, the new host randomly selects an IP address
and either moves to a probe state or the ok state, depend-
ing on whether the selected IP address is occupied or not.
At each of the four test states, the new host sends a probe
to existing hosts and waits. If it receives a reply within a
specified time, then the process goes back to the probe
state; if not, the process proceeds to the next probe state or
the error state. The constant number n is the number of
existing hosts, and m ¼ 60,534 is the size of the IP address
space as specified in Zeroconf. The variable x refers to the
loss rate of a probe or its reply. Note that y ¼ 1
 x. In
reality, x relies on an ad-hoc statistical estimation and is
instantiated by the sample mean �x. Due to sampling
errors or environmental influences, there may be some
perturbations on x.

We are interested to know the probability that an
address collision happens. This problem can be stated as
the reachability property 	ferrorg. For experimentation
purposes, we assume that the number of hosts in the
network is 35,000, and let the estimated message loss
rate be 0.1 while the actual rate be perturbed up to � 5
percent. We calculate the condition number and qua-
dratic bounds as follows:

loss rate CNð�10
3Þ QBð�10
3)
0:100 3:9965 d2 � 42:308� d � 3:9965

Fig. 6. Computation procedure in the experiment.

TABLE 1
Accuracy Test Data for PageRank w.r.t. (a) ’pr and (b) ’0pr

Fig. 7. Zeroconf protocol with uncertain message loss rate.2. http://www.comp.nus.edu.sg/�sugx/tse15/
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The experimental data for the accuracy test are presented
in Table 2, from which we observe that

� there are non-negligible effects on the address colli-
sion probability due to small perturbations of the
message loss rate;

� the pair of quadratic bounds provide more accurate
estimates than the condition number; and

� as the message loss rate increases or decreases from
the estimated rate, the deviation between the actual
result and the estimated result increases.

To further test the last observation presented above, we
perform the same perturbation analysis pivoted at 0.096
and 0.104 message loss rates. The condition numbers and
quadratic bounds are as follows:

loss rate CNð�10
3Þ QBð�10
3Þ
0:096 3:4832 d2 � 38:336� d � 3:4832
0:104 4:5634 d2 � 46:539� d � 4:5634

The additional experimental data are also presented in
Table 2. By comparing the three groups of data in the table,
we observe that the perturbation bounds provide more

accurate estimates when the perturbation distance of the
message loss rate is small. We also test the dependence rela-
tionship of the address collision probability and the condi-
tion number on the number of existing hosts. Two
increasing trends are depicted in Fig. 8.

6.3 NAND Multiplexing

Multiplexing is a technique for building more reliable
components from less reliable ones. Fig. 9 depicts an
imperfect NAND gate and a NAND multiplexer. The
NAND multiplexer is devised by replicating the NAND
gate K times. Since the multiplexer is a component of a
system that may contain other unreliable components, the
inputs for the multiplexer are two bundles of K logical
values 1 (representing a stimulated result) or 0 (represent-
ing a non-stimulated result) as determined by a probabil-
ity distribution. The functionality of the U unit is to
randomly choose two input values as the inputs for the
NAND gates. It is assumed that the NAND gates have
the same error rate and that they fail independently.
Whether the overall output of the multiplexer is stimu-
lated or not depends on the number of stimulated outputs
of the NAND gates. More specifically, we specify a small
value 0 < D < 0:5. Then, the overall output of the multi-
plexer is considered to be stimulated if at least Kð1
 DÞ
of the outputs of the NAND gates are stimulated, and
non-stimulated if no more than KD of them are stimu-
lated. In the case that neither of the two conditions is sat-
isfied, the overall output is undecided.

The NAND multiplexer specified in PRISM has two
probability parameters, namely the original stimulated
input and the error rate. We analyze the consequence of
perturbations to the two parameters on the overall stim-
ulated or non-stimulated probabilities of the multiplexer.
In our experiments, we set K ¼ 40 (resulting in 6,642
states in the model) and D ¼ 0:25. We also set the unper-
turbed probability of stimulated inputs as 0.9 and the
unperturbed gate error rate as 0.01. Tables 3a and 3b
present validation data corresponding to the two param-
eters. Again, similar to the previous two case studies, we
observe both non-trivial variations on verification results
and accurate estimates when the two parameters are per-
turbed slightly.

6.4 Runtime Analysis

We summarize runtime results of our experiment in all case
studies together with the model information for each exam-
ple in Table 4. Note that we only consider the iteration part
of computation. The termination criterion for all iterations
is set as 10
12. The machine that we used to run the experi-
ment is an MS Windows 7 desktop with 3.4 GHz quad-core
CPU and 16 GB RAM in total. We adopt two runtime meas-
ures, namely the actual elapsed time and the iterative num-
ber. It is emphasized that we do not aim to devise an

TABLE 2
Accuracy Test Data for Zoreconf Protocol

loss rate result (10
6) %
estimated (10
6)

CN QB

0.095 
36.73 
19.8% 
39.97 
35.73
0.096 
29.89 
16.9% 
31.97 
29.26
0.097 
22.79 
12.3% 
23.98 
22.46
0.098 
15.47 
8.33% 
15.99 
15.31
0.099 
7.859 
4.23% 
7.993 
7.824
0.100 185.67 – – –
0.101 þ8.131 þ4.38% þ7.993 þ8.162
0.102 þ16.54 þ8.91% þ15.99 þ16.66
0.103 þ25.22 þ13.6% þ23.98 þ25.50
0.104 þ34.20 þ18.4% þ31.97 þ34.68
0.105 þ43.48 þ23.4% þ39.97 þ44.20
0.095 
6.845 
4.39% 
6.966 
6.813
0.096 155.79 – – –
0.097 þ7.089 þ4.54% þ6.966 þ7.120
0.103 
8.979 
4.08% 
9.127 
8.941
0.104 219.87 – – –
0.105 þ9.277 þ4.22% þ9.127 þ9.313

Fig. 8. Address collision and its sensitivity w.r.t. host number.

Fig. 9. NAND multiplexer.
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optimized implementation but only to evaluate the scalabil-
ity of the iteration for computing CN and QB with respect
to that for computing a probabilistic verification outcome.
From our analysis results, a reasonable scalability is demon-
strated via a comparison of data in the the correspondent
columns of the table.

6.5 Summary

In summary, from the previous case studies, we learn that

� small but nontrivial perturbations on probability
parameters of the stochastic system model can
cause non-negligible variations on verification,
potentially turning acceptable results into unac-
ceptable ones;

� condition numbers and quadratic bounds can pro-
vide sufficiently accurate estimates of the maximum
variations of the verification results;

� as the perturbation distance increases, estimates by
quadratic bounds are tighter than those by condition
numbers; and

� the runtime analysis manifests promising scalability
for the iterative computation of those bounds.

7 RELATED WORK

7.1 Parametric Model Checking

One key definition underlying our approach is the probabil-
ity function PrM½~x�ðS?US!Þ (c.f., Definition 3) for a given
PMC M½~x� and a reachability property S?US!. Different
methods for generating such a probability function are stud-
ied in the literature. Daws [8] presented a language-theo-
retic method to compute the exact rational expression of

such a probability function, based on the fact that all paths
satisfying ’ can be represented as a (finite) B€uchi automa-
ton. Once such an automaton is constructed, one can use a
standard method in automata theory to infer a regular
expression, which is further evaluated to the rational
expression of the function. Hahn et al. [9] improved the effi-
ciency of Daws’s method for most practical cases by reduc-
ing the state space and by using a method called early
evaluation, even though the length of the rational expres-

sion in the worst case is unchanged, namely QðnlognÞ where
n is the size of the state space of the PMC. Their parametric
model checking also deals with rewards properties and
MDPs, and is implemented in a tool called PARAM [9].

Filieri et al. [10] presented a parameterized version of the
matrix inversion operation, namely the Gauss-Jordan elimi-
nation method, to compute the same probability function.
Since the transition matrix of the PMC model is usually
sparse in practice, the method by Filieri et al. [10] leads to a
reasonable computational cost. The worst-case complexity
is Oðn3� tcÞ where n is the size of the state space of the PMC,
t is the average number of outgoing transitions from each
state (thus t � n by sparsity), and c is the number of rows
containing symbolic entries. Their method can also deal
with properties expressed by nested Probabilistic Computa-
tion Tree Logic formulas, which cannot be directly repre-
sented as finite automata. They also presented sensitivity
analysis directly using the first-order partial derivatives of
the probability function.

Our perturbation analysis is in contrast to these existing
approaches mainly on two aspects. First, we consider the
Taylor expansion of the variation function but not the
closed-form probability function. In practice, we are partic-
ularly concerned with the linear and quadratic fragment of
the expansion, we can employ the iterative numerical com-
putation and avoid the expensive symbolic or semi-sym-
bolic computation in parametric model checking. Second, to
provide an outcome of verification or sensitivity analysis,
these approaches require concrete numerical values to be
instantiated into the variables of the probability function,
instead of using a norm to measure those variables.
Although—not explicitly mentioned in those papers—one
can exploit an optimization method to deal with the worst
effect of the imprecise variables on the probability function,
it is well-known that the optimization problem of non-con-
vex polynomial functions is NP-hard and even good
approximate solutions are difficult to compute using the
relaxation methods (e.g, semidefinite programing [11]).

Like Daws [8] and Hahn et al. [9] but unlike Filieri et al.
[10], we do not address nested PCTL formulas. The reason
is two-fold. First, albeit nested PCTL formulas are of interest

TABLE 3
Accuracy Test Data for NAND Multiplexer with (a) Perturbed

Input and (b) Perturbed Error Rate

input result %
estimated by

CN QB

0.884 
.12710 
14.9% 
.10771 
.12842
0.888 
.09208 
10.8% 
.08078 
.09243
0.892 
.05903 
6.91% 
.05385 
.05903
0.896 
.02825 
3.31% 
.02693 
.02822
0.900 0.85413 – – –
0.904 þ.02555 þ2.99% þ.02693 þ.02563
0.908 þ.04828 þ5.65% þ.05385 þ.04867
0.912 þ.06816 þ7.98% þ.08078 þ.06913
0.916 þ.08522 þ9.97% þ.10771 þ.08699

(a)

error rate result %
estimated by

CN QB

0.006 þ.00929 þ1.09% þ.00970 þ.00952
0.007 þ.00670 þ0.82% þ.00728 þ.00717
0.008 þ.00469 þ0.55% þ.00485 þ.00480
0.009 þ.00236 þ0.28% þ.00243 þ.00241
0.010 0.85413 – – –
0.011 
.00238 
0.28% 
.00243 
.00244
0.012 
.00478 
0.56% 
.00485 
.00490
0.013 
.00720 
0.84% 
.00728 
.00738
0.014 
.00964 
1.13% 
.00970 
.00988

(b)

TABLE 4
Runtime Analysis Data in All Case Studies

model #st. #pa.
verification CN QB

ms #it. ms #it. ms #it.

PR 25 25 0.39 13 0.70 26 – –
PR’ 25 25 0.19 3 0.28 7 0.33 10
ZCF 7 2 2.40 87 5.40 184 8.20 289
NAND 6,642 2 8.55 161 20.0 321 30.0 480
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in theory, v-regular properties are expressive enough to
represent most interesting temporal properties for real-
world system models. Second, nested PCTL formulas break
the continuity of the probability function (as demonstrated
in our previous work [26]) and thus limit the applicability
of condition numbers and quadratic bounds.

There are research works [13], [27], [28] on parameter
estimations and model repairs, which in general address
how to determine the values of some parameters in the Mar-
kov model or to fix the model such that a given, originally
unsatisfied temporal property becomes satisfied. Those
works are complementary to parametric model checking
and our perturbation analysis.

We also mention that parameters in a PMC are described
with probability distributions in some papers [29], [30]. The
authors employed statistical inference [29] or simulation
[30] to deal with the verification problem of the resulted
model. By contrast, the reasoning techniques adopted by us
and the aforementioned literature are analytical.

7.2 Model Checking with Uncertain Probabilities

In the probabilistic model checking setting, there is a line of
research on Markov models with uncertainties. The uncer-
tainties with the probabilities in the transition matrix of the
model are characterized by interval values. Sen et al. [12]
presented two semantic interpretations for an interval-val-
ued variant of DTMCs in which the uncertain probabilities
in a transition matrix are given as intervals. Such a model is
interpreted either as a set of DTMCs, called an Uncertain
Markov Chain (UMC), or as a variant of a Markov Decision
Process with an (uncountably) infinite set of adversaries,
called an Interval-valued MDP (IMDP). Sen et al. [12] con-
sidered the complexity bounds of the model checking prob-
lems for the two kinds of models (namely UMCs and
IMDPs) against PCTL. Chatterjee et al. [31] considered the
problems against an extended logic of PCTL, denoted
v-PCTL, which can express all v-regular properties, and
presented tighter complexity bounds that those by Sen et al.
[12]. Benedikt et al. [32] considered the problem for IMDP
against LTL, which, despite a fragment of v-PCTL, leads to
a different complexity upper bound. Chen et al. [33] pre-
sented complexity bounds (namely P-completeness) that
further improve the results by Chatterjee et al. [31] on the
model checking problem for IMDPs against PCTL, and a
different complexity lower bound for the problem for UMC
against PCTL. Puggelli et al. [14] presented P-completeness
complexity bounds for an generalization of IMDPs that use
convex sets to characterize the uncertain probabilities.

The methods presented in the above works are related to
the perturbation bounds of variations on verification results
that we address in this paper. Indeed, this relationship has
been exploited in our previous work [19] to compute point-
wise exact bounds for the probability function. However,
point-wise bounds are not in closed form, and thus are less
informative and useful for characterizing the consequences
of model perturbations on its verification if the value ranges
of the parameters are unknown.

Another similar work in the same setting is the approxi-
mate model checking method based on interval and affine
arithmetic for UMCs proposed by Ghorbal et al. [34]. Such a

method computes over-approximate verification bounds
that also are not in closed form.

7.3 Perturbation Analysis of Matrix Operator

Since the dynamics of a DTMC (and a PMC) is determined
by a stochastic transition matrix, the problem of the varia-
tion function that we investigate in this paper can be alter-
natively and equivalently defined using the inversion of (a
fragment of) the transition matrix (c.f., Lemma 4). In view of
this, our paper is in line with a long-investigated research
area called perturbation analysis of operators on matrices
(e.g., inversion, rank, eigenvalue and stationary vector). The
existing literature in this area usually provide two results,
namely perturbation upper bounds [15], [35] and asymp-
totic expansions [16]. The upper bounds are non-asymptotic
and defined in terms of a norm of the perturbed matrix,
whereas the expansions are approximate but most useful
when the value of each entry in the perturbed matrix is
known. Because of requiring quite different mathematical
techniques, the two are usually studied separately in the lit-
erature. But both are useful in practice, such as in numerical
computation and dynamic robust control. In software engi-
neering, in particular, the partial derivatives (which are
equivalent to the linear fragment of the Taylor expansion)
have been used to analyze the sensitivity of the overall sys-
tem performance (e.g., reliability) to a parameter belonging
to some system component [36], [37], [38].

We do not directly exploit an exiting technique to deal
with our problem in the context of probabilistic model
checking. Our pursuit of asymptotic bounds is clearly
related but in contrast to the upper-bound approach and
the asymptotic approach. On the one hand, we make use of
the Taylor expansion of our variation function. On the other
hand, we measure the perturbed parameters by a vector
norm and pursue asymptotic bounds as mathematical pro-
gramming problems. Moreover, our approach emphasizes
the computation of those bounds and considers both the
computational complexity and the iteration-based numeri-
cal computation.

8 CONCLUSIONS

In this paper, we have presented a systematic approach to
formulate and compute asymptotic perturbation bounds,
especially the linear and quadratic forms of those bounds,
to support probabilistic model checking applied to systems
containing empirically determined probability parameters.
We showed the advantage and significance of those bounds
through both theoretical analysis and empirical evaluation.

Future research directions fall into two categories. The
first one includes the tool support and applications of our
approach. For experimentation purposes, we have devel-
oped an implementation prototype. A more sophisticated,
self-contained toolkit is an important part of our further
work. We also plan to apply our approach to analyzing spe-
cific problems in software engineering, such as decision-
making of self-adaptive systems based on imprecise param-
eter estimations. The second work category includes various
topics of theoretical and methodological enhancements for
our approach, such as perturbation analysis for CTMCs.
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