
On the Axiomatizability of Impossible Futures:
Preorder versus Equivalence ∗

Taolue Chen
CWI

PO Box 94079, 1090 GB Amsterdam, NL
chen@cwi.nl

Wan Fokkink
Vrije Universiteit

De Boelelaan 1081a, 1081 HV Amsterdam, NL
wanf@cs.vu.nl

Abstract

We investigate the (in)equational theory of impossible fu-
tures semantics over the process algebra BCCSP. We prove
that no finite, sound axiomatization for BCCSP modulo im-
possible futures equivalence is ground-complete. By con-
trast, we present a finite, sound, ground-complete axioma-
tization for BCCSP modulo impossible futures preorder. If
the alphabet of actions is infinite, then this axiomatization is
shown to be ω-complete. If the alphabet is finite, we prove
that the inequational theory of BCCSP modulo impossible
futures preorder lacks such a finite basis. We also derive
non-finite axiomatizability results for nested impossible fu-
tures semantics.

1 Introduction

Labeled transition systems constitute a widely used
model of concurrent computation. They model processes by
explicitly describing their states and their transitions from
state to state, together with the actions that produce these
transitions. Several notions of behavioral semantics have
been proposed, with the aim to identify those states that af-
ford the same observations. Van Glabbeek [7] presented the
linear time – branching time spectrum of behavioral seman-
tics for finitely branching, concrete, sequential processes.
These semantics are based on simulation notions or on dec-
orated traces. Fig. 1 depicts the linear time – branching
time spectrum, where an arrow from one semantics to an-
other means that the source of the arrow is finer, i.e. more
discriminating, than the target.

In this paper, we study impossible futures semantics
[12, 13]. This semantics is missing in van Glabbeek’s orig-
inal spectrum, because it was only studied seriously from
2001 on, the year that [7] appeared. An impossible future
of a state s consists of (1) a trace s

a1···an→ s′, and (2) a set
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Figure 1. Linear time-branching time spec-
trum

X of traces such that s′ does not exhibit any of the traces in
X . Impossible futures semantics is a natural variant of pos-
sible futures semantics [11] (in which X is the set of traces
from s′). In [9] it was shown that weak impossible futures
equivalence (which takes into account the hidden action τ )
with an additional root condition, is the coarsest congruence
with respect to choice and parallel composition operators
containing weak bisimilarity with explicit divergence that
respects deadlock/livelock traces and assigns unique solu-
tions to recursive equations. This equivalence is closely re-
lated to fair testing semantics [10].

The process algebra BCCSP contains only the basic pro-
cess algebraic operators from CCS and CSP, but is suffi-
ciently powerful to express all finite synchronization trees
(without τ -transitions). Van Glabbeek [7] associated with
most behavioral equivalences in his spectrum a sound ax-
iomatization, to equate closed BCCSP terms that are be-
haviorally equivalent. These axiomatizations were shown
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to be ground-complete, meaning that whenever two closed
BCCSP terms are behaviorally equivalent, then they can be
equated.

An axiomatization is said to be ω-complete if it enjoys
the property that whenever all closed instances of an equa-
tion can be derived from it, then the equation itself can also
be derived from it. In universal algebra, such an axiomatiza-
tion is referred to as a basis for the equational theory of the
algebra it axiomatizes. Groote [8] developed a technique
of “inverted substitutions” to prove that an axiomatization
is ω-complete, and proved for some of the equivalences in
the linear time – branching time spectrum that their equa-
tional theory in BCCSP has a finite basis. In [3, 5], a cat-
egorization of the equational theories for BCCSP modulo
the semantics in the linear time – branching time spectrum
is given. For each preorder and equivalence it is studied
whether a finite, sound, ground-complete axiomatization
exists. And if so, whether there exists a finite basis for the
equational theory.

So all questions on these matters have been resolved?
No, as for impossible futures semantics, the (in)equational
theory remained unexplored. Only the inequational theory
of BCCSP modulo weak impossible futures preorder was
studied in [13]. In that paper, Voorhoeve and Mauw of-
fer a finite, sound, ground-complete axiomatization; their
ground-completeness proof relies heavily on the presence of
τ . They also prove that their axiomatization is ω-complete
(they do not refer to ω-completeness explicitly, but they
work on open terms, see [13, Thm. 5]). They implicitly
assume an infinite alphabet (at [13, p. 7] they require a dif-
ferent action for each variable).

In this paper, we focus on the axiomatizability of im-
possible futures preorder and equivalence over BCCSP. In
summary, we obtain the following results.

1. We prove that there exists a finite, sound, ground-
complete axiomatization for BCCSP modulo impossi-
ble futures preorder �IF

1. (By contrast, in [1] it was
shown that such an axiomatization does not exist mod-
ulo possible futures preorder.)

2. Next, we show that BCCSP modulo impossible futures
equivalence �IF does not have a finite, sound, ground-
complete axiomatization. This negative result is based
on the following infinite family of equations from [1],
for m ≥ 0:

a2m+10 + a(am0 + a2m0) ≈ a(am0 + a2m0)

Actually, since these equations are also sound modulo
2-nested simulation equivalence [7], this negative re-
sult applies to all BCCSP-congruences that are at least

1In case of an infinite alphabet of actions, occurrences of action names
in axioms should be interpreted as variables, as else most of the axiomti-
zations would be infinite.

as fine as �IF and at least as coarse as 2-nested simu-
lation equivalence.

3. Next, we investigate ω-completeness for �IF.

First, we prove that if the alphabet of actions is in-
finite, then the ground-complete axiomatization for
BCCSP modulo �IF is ω-complete. To prove this re-
sult, we apply the technique of inverted substitutions
from [8]. Only, that technique was originally devel-
oped for equivalences. Therefore, as an aside, we
adapt this technique in such a way that it applies to
preorders.

Second, we prove that in case of a finite alphabet of ac-
tions, the inequational theory of BCCSP modulo �IF

does not have a finite basis. In case of a singleton al-
phabet, this negative result is based on the following
infinite family of equations, for m ≥ 0:

amx � amx+ x

And for finite alphabets with at least two actions, we
use the family

a(amx) + a(amx+ x) +
∑

b∈A

a(amx+ amb0)

� a(amx+ x) +
∑

b∈A

a(amx+ amb0)

4. n-Nested impossible futures semantics, for n ≥ 0,
form a natural hierarchy (cf. [1]), which coincides with
the universal relation for n = 0, trace semantics for
n = 1, and impossible futures semantics for n = 2.
Using a proof strategy from [1], we show that the neg-
ative result regarding impossible futures equivalence
extends to all n-nested impossible futures equivalences
for n ≥ 2, and to all n-nested impossible futures pre-
orders for n ≥ 3. Apparently, (2-nested) impossible
futures preorder is the only positive exception.

To achieve the negative results, we mainly use what in [3,
Sect. 2.3] is called the proof-theoretic technique. On top
of this, a saturation principle is introduced, to transform a
single summand into a large collection of (semi-)saturated
summands.

Impossible futures semantics is the first example that af-
fords a ground-complete axiomatization for BCCSP mod-
ulo the preorder, while missing a ground-complete axiom-
atization for BCCSP modulo the equivalence. This surpris-
ing fact suggests that if one wants to show p �IF q, one has
to resort to deriving p �IF q and q �IF p separately, instead
of proving it directly.

In [2, 6] an algorithm is presented which produces, from
an axiomatization for BCCSP modulo a preorder, an ax-
iomatization for BCCSP modulo the corresponding equiv-
alence. If the original axiomatization for the preorder is
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ground-complete or ω-complete, then so is the resulting ax-
iomatization for the equivalence. However, that algorithm
only applies to semantics that are at least as coarse as ready
simulation semantics. Since impossible futures semantics is
incomparable to ready simulation semantics, it falls outside
the scope of [2, 6]. Interestingly, our results yield that no
such algorithm exists for semantic incomparable with (or
finer than) ready simulation.

This paper is set up as follows. Sect. 2 presents basic def-
initions regarding impossible futures semantics, the process
algebra BCCSP, and (in)equational logic. Sect. 3 provides
some basic facts for �IF. Sect. 4 provides a sound, finite,
ground-complete axiomatization for �IF. Sect. 5 contains
the proof of the negative result for �IF. Sect. 6 is devoted to
the proofs of the negative and positive results regarding ω-
completeness for �IF. Sect. 7 contains the negative results
regarding n-nested impossible futures semantics.

Due to space restrictions, some of the proofs have been
omitted: of the basic lemmas in Sect. 3, of the positive ω-
completeness result for infinite alphabets, and of the cor-
rectness of the inverted substitutions technique adapted to
preorders on which that result is based (Sect. 6.1), and of
the negative ω-completeness result in case of a singleton al-
phabet (Sect. 6.3). These proofs can be found in the full
version of the current paper [4].

2 Preliminaries

A labeled transition system consists of a set of states S,
with typical element s, and a transition relation → ⊆ S ×
L × S, where L is a set of labels ranged over by a, b. We
write s

a→ s′ if (s, a, s′) is an element of →. The set I(s)
consists of those labels a for which there exists an s′ such
that s

a→ s′. Let a1 · · · ak, with k ≥ 0, be a sequence of
labels; we write s

a1···ak→ s′ if there are states s0, . . . , sk

such that s = s0
a1→ · · · ak→ sk = s′. A sequence a1 · · · ak is

a trace of a state s if there is a state s′ such that s
a1···ak→ s′.

We write T (s) for the set of traces of state s, ranged over by
α, β. We say a1 · · · ak is a completed trace of s if moreover
I(s′) = ∅, and write CT (s) for the set of completed traces
of state s. The empty sequence is denoted by ε. We write
s1 �CT s2 if the completed traces of s1 are included in
those of s2.

Definition 1 Assume a labeled transition system. A pair
(a1 · · · ak,X), with k ≥ 0 and X ⊆ L∗, is an impossible
future of a state s if s

a1···ak→ s′ for some state s′ with T (s′)∩
X = ∅.

We write s1 �IF s2 if the impossible futures of s1 are in-
cluded in those of s2. We write s1 �IF s2 if both s1 �IF s2
and s2 �IF s1. The relation �IF is called impossible fu-
tures preorder, while �IF is called impossible futures equiv-
alence.

A sequence a1s1 · · · aksk is a completed path of a state
s0 if s0

a1→ s1 · · ·
ak→ sk with I(sk) = ∅. We write CP(s)

for the set of completed paths of state s, which is ranged
over by π.

2.1 BCCSP

BCCSP(A) is a basic process algebra for expressing fi-
nite process behavior. Its signature consists of the constant
0, the binary operator + , and unary prefix operators a ,
where a ranges over a nonempty set A of actions, called the
alphabet, with typical elements a, b. The term ant is ob-
tained from t by prefixing it n times with a, i.e., a0t = t
and an+1t = a(ant). Intuitively, closed BCCSP(A) terms,
which are ranged over by p, q, r, represent finite process be-
haviors, where 0 does not exhibit any behavior, p+ q offers
a choice between the behaviors of p and q, and ap executes
action a to transform into p. This intuition is captured by the
transition rules below, in which a ranges over A. They give
rise to A-labeled transitions between closed BCCSP terms.

ax
a→ x

x
a→ x′

x+ y
a→ x′

y
a→ y′

x+ y
a→ y′

We assume a countably infinite set V of variables; x, y, z
denote elements of V . Open BCCSP terms, denoted by
t, u, v, w, may contain variables from V . The set of vari-
ables that occur in term t is denoted by var (t). And if
t

a1···ak→ x + t′, for some k ≥ 0, then x ∈ vark(t). It is
technically convenient to extend the operational semantics
to open terms. We do not include additional rules for vari-
ables, which effectively means that they do not exhibit any
behavior.

The depth of a term t, denoted by depth(t), is the length
of a longest trace of t. And the norm of a term t, denoted
by norm(t), is the length of a shortest completed trace of t.

A (closed) substitution, denoted by ρ, σ, maps variables
in V to (closed) terms. For open terms t and u, and a pre-
order � (or equivalence �) on closed terms, we define t � u
(or t � u) if ρ(t) � ρ(u) (resp. ρ(t) � ρ(u)) for all closed
substitutions ρ. Clearly, t

a→ t′ implies that σ(t) a→ σ(t′)
for all substitutions σ.

The preorders � in the linear time – branching time
spectrum are all precongruences for BCCSP, meaning that
p1 � q1 and p2 � q2 implies p1 + p2 � q1 + q2 and
ap1 � aq1 for a ∈ A. (For (rooted weak) impossible
futures preorder, a proof of this fact can be found in [13,
Thm. 3].) And the equivalences in the spectrum are all con-
gruences for BCCSP.

An axiomatization is a collection of equations t ≈ u or
of inequations t � u. The (in)equations in an axiomati-
zation E are referred to as axioms. If E is an equational
axiomatization, we write E 
 t ≈ u if the equation t ≈ u

158



is derivable from the axioms in E using the rules of equa-
tional logic (reflexivity, symmetry, transitivity, substitution,
and closure under BCCSP contexts). For the derivation of
an inequation t � u from an inequational axiomatization
E, denoted by E 
 t � u, the rule for symmetry is omit-
ted. We will also allow equations t ≈ u in inequational
axiomatizations, as an abbreviation of t � u and u � t.

An axiomatization E is sound modulo a preorder � (or
equivalence �) if for any terms t, u, from E 
 t � u (or
E 
 t ≈ u) it follows that ρ(t) � ρ(u) (or ρ(t) � ρ(u))
for all closed substitutions ρ. E is ground-complete for �
(or �) if for any closed terms p, q, p � q (or p � q) implies
E 
 p � q (or E 
 p ≈ q). And E is ω-complete if for any
terms t, u with E 
 ρ(t) � ρ(u) (or E 
 ρ(t) ≈ ρ(u)) for
all closed substitutions ρ, we have E 
 t � u (or E 
 t ≈
u). The equational theory of BCCSP modulo a preorder
� (or equivalence �) is said to be finitely based if there
exists a finite, ω-complete axiomatization that is sound and
ground-complete for BCCSP modulo � (or �).

The core axioms A1-4 for BCCSP below are sound mod-
ulo every semantics in the spectrum depicted in Fig. 1. We
assume that A1-4 are included in every axiomatization, and
write t = u if A1-4 
 t ≈ u.

A1 x+ y ≈ y + x
A2 (x+ y) + z ≈ x+ (y + z)
A3 x+ x ≈ x
A4 x+ 0 ≈ x

Summation
∑

{t1, . . . , tn} or
∑

i∈{1,...,n} ti denotes
t1 + · · · + tn, where summation over the empty set de-
notes 0. As binding convention, + and summation bind
weaker than a . For every term t there exists a finite set
{aiti | i ∈ I} of terms and a finite set Y of variables such
that t =

∑
i∈I aiti +

∑
y∈Y y. The aiti for i ∈ I and the

y ∈ Y are called the summands of t (notation: aiti � t and
y � t). It is easy to see that t

a→ t′ iff at′ � t.

3 Properties of �IF

We present some basic facts for �IF.

Lemma 1 Suppose t �IF u. Then

1. T (t) = T (u); and

2. CT (t) ⊆ CT (u).

Lemma 2 Suppose t �CT u. Then vark(t) ⊆ vark(u) for
all k ≥ 0.

Lemma 3 Suppose t �IF u. Then for any summand at′ of
t there is a summand au′ of u such that var (u′) ⊆ var (t′).

Lemma 4 Let |A| > 1. Suppose t �IF u. Then for any
summand at′ of t there is a summand au′ of u such that
vark(u′) ⊆ vark(t′) for all k ≥ 0.

Remark: The condition |A| > 1 in Lem. 4 is necessary.
Namely, if |A| = 1, then for instance aax �IF a(ax+ x).

4 Axiomatization for �IF

In this section, we provide a ground-complete axioma-
tization for impossible futures preorder. It consists of the
core axioms A1-4 together with two extra axioms:

IF1 a(x+ y) � ax+ ay
IF2 a(x+ y) + ax+ a(y + z) ≈ ax+ a(y + z)

Recall that here, t ≈ u denotes that both t � u and u � t
are present in the inequational axiomatization. It is not hard
to see that IF1,2 are sound modulo �IF. The rest of this
section is devoted to proving the following theorem.

Theorem 1 A1-4+IF1-2 is ground-complete for
BCCSP(A) modulo �IF.

To give some intuition on the ground-completeness
proof, we first present an example.

Example 1 Let p = a(a0 + a20) + a40 and q = a(a0 +
a30) + a30. It is not hard to see that p �IF q. However,
neither a(a0+a20) �IF a(a0+a30) nor a(a0+a20) �IF

a30 holds. In order to derive p � q, we therefore first derive
with IF2 that q ≈ p + q. And p � p + q can be derived
with IF1.

In general, to derive a sound closed inequation p � q,
first we derive q ≈ S(q) (see Lem. 5), where S(q) con-
tains for every a ∈ I(q) a “saturated” a-summand (see
Def. 2). (In Ex. 1, this saturated a-summand would have
the form a(a0 + a20 + a30 + a(a0 + a20)).) Then, in the
proof of Thm. 1, we derive Ψ+S(q) ≈ S(q) (equation (1)),
p � Ψ (equation (2)) and p � p + q (equation (3)), where
the closed term Ψ is built from many “semi-saturated” sum-
mands (like, in Ex. 1, p). These results together provide the
desired proof (see the last line of the proof of Thm. 1).

Definition 2 For each closed term q, the closed term S(q)
is defined recursively on the depth of q as follows:

S(q) = q +
∑

a∈I(q)

a(S(
∑

aq′�q

q′))

Example 2 If q = a(b(c0+d0)+be0)+af0, then S(q) =
a(b(c0 + d0) + be0) + af0 + a(b(c0 + d0) + be0 + f0 +
b(c0 + d0 + e0)).
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In the remainder of this section, E denotes the axiomati-
zation A1-4+IF1-2.

Lemma 5 For each closed term q, E 
 q ≈ S(q).

Proof: By induction on depth(q). For any a ∈ I(q),

E 
 q ≈ q + a(
∑

aq′�q

q′) ≈ q + a(S(
∑

aq′�q

q′))

The first derivation step uses IF2, and the second induction.
Hence, summing up over all a ∈ I(q),

E 
 q ≈ q +
∑

a∈I(q)

a(S(
∑

aq′�q

q′)) = S(q) �

For closed terms q and α ∈ T (q), the closed term qα
is obtained by summing over all closed terms q′ such that
q

α→ q′, and then applying the saturation from Def. 2. The
auxiliary terms qα will only be used in the derivation of
equation (1) within the proof of Thm. 1.

Definition 3 Given a closed term q, and a completed trace
a1 · · · ad of q. For 0 ≤ 	 ≤ d we define

Qa1···a�
= {q� | q a1→ q1 · · ·

a�→ q�}

and
qa1···a�

= S(
∑

q�∈Qa1···a�

q�)

Note that qε = S(q). We prove some basic properties for
the terms qα.

Lemma 6 Given a closed term q, and a completed trace
a1 · · · ad of q. Then, for 0 ≤ 	 < d,

• qa1···a�

a�+1→ qa1···a�+1 ; and

• qa1···a�

a�+1→ q�+1 for all q�+1 ∈ Qa1···a�+1 .

Proof: Clearly, q�+1 ∈ Qa1···a�+1 iff there exists some q� ∈
Qa1···a�

such that q�
a�+1→ q�+1. And since a1 · · · a�+1 is a

trace of q, a�+1 ∈ I(q�) for some q� ∈ Qa1···a�
. So by

Def. 2,

qa1···a�
= S(

∑

q�∈Qa1···a�

q�)
a�+1→

S(
∑

q�+1∈Qa1···a�+1

q�+1) = qa1···a�+1

Moreover, for all q�+1 ∈ Qa1···a�+1 we have
∑

q�∈Qa1···a�
q�

a�+1→ q�+1. Hence, by Def. 2,

qa1···a�
= S(

∑

q�∈Qa1···a�

q�)
a�+1→ q�+1 �

We now embark on proving the promised ground-
completeness result.

Proof: (of Thm. 1) Suppose p �IF q. We derive E 
 p � q
using induction on depth(p). If p = 0, then clearly q =
0, and we are done. So assume p = 0, and consider any
completed path π = a1p1 · · · adpd of p (with d ≥ 1); that
is, p

a1→ p1 · · ·
ad→ pd = 0. We recursively construct closed

terms ψπ
� , for 	 from d down to 1. For the base case, ψπ

d =
0. Now let 1 ≤ 	 < d. Since p

a1···a�→ p� and p �IF q,
there exists a sequence of transitions q

a1···a�→ q� such that
T (q�) ⊆ T (p�). We define

ψπ
� = q� + a�+1ψ

π
�+1

We prove, by induction on d− 	, that for 1 ≤ 	 ≤ d,

T (ψπ
� ) ⊆ T (p�)

The base case is trivial, since T (ψπ
d ) = ∅. Now let 1 ≤

	 < d. By induction, T (ψπ
�+1) ⊆ T (p�+1). Moreover,

p�
a�+1→ p�+1, so T (a�+1ψ

π
�+1) ⊆ T (p�). Hence, T (ψπ

� ) =
T (q� + a�+1ψ

π
�+1) = T (q�) ∪ T (a�+1ψ

π
�+1) ⊆ T (p�).

Next, we prove, by induction on d−	, that for 1 ≤ 	 ≤ d,

E 
 a�ψ
π
� + qa1···a�−1 ≈ qa1···a�−1

In the base case, since ψπ
d = 0 ∈ Qa1···ad

(see Def. 3), this
is a direct consequence of the second item in Lem. 6. Now
let 1 ≤ 	 < d.

E 
 a�ψ
π
� + qa1···a�−1

= a�(q� + a�+1ψ
π
�+1) + qa1···a�−1

+ a�q� + a�qa1···a�
(Lem. 6)

≈ a�(q� + a�+1ψ
π
�+1) + qa1···a�−1

+ a�q� + a�(a�+1ψ
π
�+1 + qa1···a�

) (induction)

≈ qa1···a�−1 + a�q�
+ a�(qa1···a�

+ a�+1ψ
π
�+1) (IF2)

≈ qa1···a�−1 + a�q�
+ a�qa1···a�

(induction)

= qa1···a�−1 (Lem. 6)

In the end, for 	 = 1, we get E 
 a1ψ
π
1 + qε ≈ qε. In other

words,
E 
 a1ψ

π
1 + S(q) ≈ S(q)

Since this holds for all completed paths π of p, it follows
that

E 

∑

a∈I(p)

∑

ap′�p

∑

π∈CP(ap′)

aψπ
1 + S(q) ≈ S(q) (1)

where CP(ap′) denotes the set of completed paths of the
summand ap′.
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On the other hand, for every summand ap′ of p,

p′ �IF

∑

π∈CP(ap′)

ψπ
1

Namely, consider any path π0 = a1p1 · · · ahph of ap′. Ex-
tend π0 to some completed path π of ap′. By the defini-
tion of the ψπ

� , clearly, ψπ
�

a�+1→ ψπ
�+1 for 1 ≤ 	 < h. So

ψπ
1

a2···ah→ ψπ
h . Moreover, we proved that T (ψπ

h) ⊆ T (ph).
So by induction on depth, for every summand ap′ of p,

E 
 p′ �
∑

π∈CP(ap′)

ψπ
1

And thus, by IF1,

E 
 ap′ � a(
∑

π∈CP(ap′)

ψπ
1 ) �

∑

π∈CP(ap′)

aψπ
1

Hence, summing over all summands ap′ of p,

E 
 p �
∑

a∈I(p)

∑

ap′�p

∑

π∈CP(ap′)

aψπ
1 (2)

Finally, since p �IF q, clearly, for each a ∈ I(p),

∑

ap′�p

p′ �IF

∑

aq′�q

q′

So by induction on depth, for each a ∈ I(p),

E 

∑

ap′�p

p′ �
∑

aq′�q

q′

So by IF2 and IF1, and since I(p) = I(q),

E 
 p ≈ p+
∑

a∈I(p)

a(
∑

ap′�p

p′)

� p+
∑

a∈I(q)

a(
∑

aq′�q

q′) � p+
∑

a∈I(q)

∑

aq′�q

aq′

That is,

E 
 p � p+ q (3)

Finally, inequations (3), (2) and (1), together with Lem. 5,
yield

E 
 p � p+ q ≈ p+ S(q) �
∑

a∈I(p)

∑

ap′�p

∑

π∈CP(ap′)

aψπ
1 + S(q) ≈ S(q) ≈ q �

5 Non-finite Axiomatizability of �IF

In this section, we prove that surprisingly, there does not
exist any finite, sound, ground-complete axiomatization for
BCCSP(A) modulo �IF. The cornerstone for this negative
result is the following infinite family of closed equations,
for m ≥ 0:

a2m+10 + a(am0 + a2m0) ≈ a(am0 + a2m0)

It is not hard to see that they are sound modulo �IF. We
start with a key lemma.

Lemma 7 Assume that, for some terms t, u and closed sub-
stitution ρ:

1. t �IF u;

2. m > depth(u);
3. CT (ρ(u)) ⊆ {am+1, a2m+1}; and

4. there is a closed term p′ such that ρ(t) a→ p′ and
CT (p′) = {a2m}.

Then there is a closed term q′ such that ρ(u) a→ q′ and
CT (q′) = {a2m}.

Proof: According to proviso (4) of the lemma, we can dis-
tinguish two cases.

• t has a summand y ∈ V such that ρ(y) a→ p′ where
CT (p′) = {a2m}. Since t �IF u, by Lem. 2, y is also
a summand of u. Hence ρ(u) a→ p′.

• t has a summand at′ with CT (ρ(t′)) = {a2m}. Since
depth(t′) < m, clearly, either norm(ρ(x)) = 0
or norm(ρ(x)) > m for any x ∈ var (t′). Since
t �IF u, by Lem. 3, u has a summand au′ with
var (u′) ⊆ var (t′). Hence, either norm(ρ(x)) = 0
or norm(ρ(x)) > m for any x ∈ var (u′). Since
depth(u′) < m, am /∈ CT (ρ(u′)). It follows
from CT (ρ(u)) ⊆ {am+1, a2m+1} that CT (ρ(u′)) =
{a2m}. �

Lemma 8 Let the finite axiomatizationE be sound modulo
�IF. Assume that, for some closed terms p, q:

1. E 
 p ≈ q;

2. m > max{depth(u) | t ≈ u ∈ E};

3. CT (q) ⊆ {am+1, a2m+1}; and

4. there is a closed term p′ such that p
a→ p′ and

CT (p′) = {a2m}.

Then there is a closed term q′ such that q
a→ q′ and

CT (q′) = {a2m}.

Proof: By induction on the derivation of E 
 p ≈ q.
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• Case E 
 p ≈ q because ρ(t) = p and ρ(u) = q for
some t ≈ u ∈ E and closed substitution ρ. The claim
follows by Lem. 7.

• CaseE 
 p ≈ q becauseE 
 p ≈ r andE 
 r ≈ q for
some r. By proviso (3) of the lemma and Lem. 1(2),
CT (r) ⊆ {am+1, a2m+1}. Since there is a p′ such that
p

a→ p′ with CT (p′) = {a2m}, by induction, there is
an r′ such that r

a→ r′ and CT (r′) = {a2m}. Hence,
again by induction, there is a q′ such that q

a→ q′,
CT (q′) = {a2m}.

• Case E 
 p ≈ q because p = p1 + p2 and q = q1 + q2
with E 
 p1 ≈ q1 and E 
 p2 ≈ q2. Since there is a
p′ such that p

a→ p′ and CT (p′) = {a2m}, either p1
a→

p′ or p2
a→ p′. Assume, without loss of generality,

that p1
a→ p′. By induction, there is a q′ such that

q1
a→ q′ and CT (q′) = {a2m}. Since q1 = 0, clearly

CT (q1) ⊆ {am+1, a2m+1}. So q = q1 + q2
a→ q′.

• Case E 
 p ≈ q because p = ap′ and q = aq′ with
E 
 p′ ≈ q′. By proviso (4), CT (p′) = {a2m}. So by
Lem. 1(2), CT (q′) = {a2m}. �

Remark: Lem. 8 does not hold if its first requirement is
changed into E 
 p � q. Note that the proof regarding the
congruence rule for a. in Lem. 8 fails for �IF.

For example, consider the following closed inequations,
for m ≥ 0:

a2m+10 � a(a2m0 + am0)

They are sound modulo �IF, and satisfy the third and fourth
requirement of Lem. 8. However, they can all be derived by
means of IF1:

a2m+10 = a(am(am + 0)) � a(am−1(am+10 + a0))

� a(am−2(am+20 + a20)) � · · · � a(a2m0 + am0)

Theorem 2 There is no finite, sound, ground-complete ax-
iomatization for BCCSP(A) modulo �IF.

Proof: Let E be a finite axiomatization over BCCSP(A)
that is sound modulo �IF. Let m be greater than the depth
of any term in E. Clearly, a(am0 + a2m0) does not con-
tain a summand r such that r

a→ r′ and CT (r′) = {a2m}.
So according to Lem. 8, a2m+10 + a(am0 + a2m0) ≈
a(am0+a2m0) cannot be derived from E. And this closed
inequation is sound modulo �IF. �

Actually, since the equations a2m+10 + a(am0 +
a2m0) ≈ a(am0 + a2m0) are sound modulo 2-nested
simulation equivalence, this negative result applies to all
BCCSP-congruences that are at least as fine as impossible
futures equivalence and at least as coarse as 2-nested simu-
lation equivalence.

6 ω-Completeness for �IF

In this section, we turn to ω-completeness. In view of the
negative result on impossible futures equivalence in Sect. 5,
we focus on impossible futures preorder. In case |A| = ∞,
we prove that there exists a finite basis for the equational
theory of BCCSP(A) modulo �IF. The proof is based on
an adaptation of Groote’s inverted substitutions technique
[8] to inequations. In case |A| < ∞, we prove that a finite
basis does not exist. We give two different proofs of this
last fact, one for the case 1 < |A| <∞ and one for the case
|A| = 1. The detailed proof for the latter case is omitted.

6.1 |A| = ∞

The axiomatization A1-4+IF1-2 is ω-complete, provided
the alphabet is infinite. Our proof of this fact, which is
omitted here, is based on inverted substitutions [8]; ac-
tually, while Groote developed this technique for equiva-
lences, here we need it for preorders.

Let T(Σ) and T(Σ) denote the set of closed and open
terms, respectively, over some signature Σ. Consider an
axiomatization E over Σ. For each inequation t � u of
which all closed instances can be derived from E, one must
define a closed substitution ρ and a mapping R : T(Σ) →
T(Σ) such that:

(1) E 
 t � R(ρ(t)) and E 
 R(ρ(u)) � u;

(2) E 
 R(σ(v)) � R(σ(w)) for each v � w ∈ E and
closed substitution σ; and

(3) for each function symbol f (with arity n) in the signa-
ture, and for all closed terms p1, . . . , pn, q1, . . . , qn:

E ∪ {pi � qi, R(pi) � R(qi) | i = 1, . . . , n} 

R(f(p1, . . . , pn)) � R(f(q1, . . . , qn))

Then E is ω-complete. The proof that this adaptation of
the inverted substitutions technique to preorders is correct,
is also omitted here.

By applying this technique, we can prove in a straight-
forward fashion that:

Theorem 3 For |A| = ∞, A1-4+IF1-2 is ω-complete.

6.2 1 < |A| <∞

In this section, we prove that, if A is finite, the inequa-
tional theory of BCCSP(A) modulo �IF does not have a
finite basis. The cornerstone for this negative result is the
following infinite family of inequations, for m ≥ 0:

a(amx) + Φm � Φm
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with

Φm = a(amx+ x) +
∑

b∈A

a(amx+ amb0)

It is not hard to see that these inequations are sound
modulo �IF. Namely, given a closed substitution
ρ, I(ρ(a(amx))) = {a} = I(ρ(Φm)). And if
ρ(a(amx)) a1···ak→ p with k ≥ 2, then owing to the sum-
mand a(amx + x), we have ρ(Φm) a1···ak→ p. Finally, con-
sider the transition ρ(a(amx)) a→ amρ(x). If ρ(x) = 0,
then clearly ρ(Φm) a→ am0. And if b ∈ I(ρ(x)) for
some b ∈ A, then clearly ρ(Φm) a→ amρ(x) + amb0, and
T (amρ(x)+amb0) = T (amρ(x)). Concluding, for any α,
if ρ(a(amx)) α→ p, then ρ(Φm) α→ q with T (q) = T (p).

We now establish some key lemmas.

Lemma 9 Let 1 < |A| < ∞. Assume that, for some terms
t, u and substitution σ:

1. t �IF u;

2. m > depth(u);
3. σ(u) + Φm �IF Φm; and

4. σ(t) has a summand �IF a(amx).

Then σ(u) has a summand �IF a(amx).

Proof: According to proviso (4) of the lemma, we can dis-
tinguish two cases.

• t has a summand y ∈ V such that σ(y) has a summand
�IF a(amx). Since t �IF u, by Lem. 2, y is also
a summand of u. Hence σ(u) has a summand �IF

a(amx).

• t has a summand at′ with σ(t′) �IF a
mx. Since t �IF

u and |A| > 1, by Lem. 4, there is a summand au′

of u such that vark(u′) ⊆ vark(t′) for all k ≥ 0.
Since σ(t′) �IF amx, by Lem. 1(1), depth(σ(t′)) =
m, so for all k ≥ 0 and z ∈ vark(u′) ⊆ vark(t′),
depth(σ(z)) ≤ m− k. Moreover, proviso (2) implies
depth(u′) < m, so it follows that depth(σ(u′)) ≤ m.
On the other hand, it follows from proviso (3) of the
lemma together with Lem. 1(2) that norm(σ(u′)) ≥
m. So all completed traces of σ(u′) are of the form

σ(u′) am

→ u′′.

Since σ(t′) �IF a
mx, by Lem. 2, varm(σ(t′)) = {x}

and vark(σ(t′)) = ∅ for k = m. Since vark(u′) ⊆
vark(t′) for all k ≥ 0, it follows that varm(σ(u′)) ⊆
{x} and vark(σ(u′)) = ∅ for k = m. Due to proviso
(3) of the lemma, it is easy to see that for each com-

pleted trace σ(u′) am

→ u′′, u′′ = 0; so varm(σ(u′)) ⊆
{x} yields u′′ = x. Concluding, σ(u′) �IF a

mx. �

Lemma 10 Let 1 < |A| < ∞. Assume that, for some
terms t, u:

1. E 
 t � u;

2. m > max{depth(w) | v � w ∈ E};

3. u+ Φm �IF Φm; and

4. t has a summand �IF a(amx).

Then u has a summand �IF a(amx).

Proof: By induction on the derivation of E 
 p � q.

• Case E 
 t � u because σ(v) = t and σ(w) = u
for some v � w ∈ E and substitution σ. The claim
follows by Lem. 9.

• CaseE 
 t � u becauseE 
 t � v andE 
 v � u for
some v. Since v �IF u and u + Φm �IF Φm, clearly
v+Φm �IF Φm. By induction, v has a summand �IF

a(amx). Hence, again by induction, u has a summand
�IF a(amx).

• Case E 
 t � u because t = t1 + t2 and u = u1 + u2

with E 
 t1 � u1 and E 
 t2 � t2. Since t has a
summand �IF a(amx). so does either t1 or t2. As-
sume, without loss of generality, that t1 does. Since
u + Φm �IF Φm, clearly u1 + Φm �IF Φm. By in-
duction, u1 has a summand �IF a(amx), so the same
holds for u.

• Case E 
 t � u because t = at′ and u = au′

with E 
 t′ � u′. By proviso (4) of the lemma,
t′ �IF amx. Hence amx �IF u′. So by Lem. 1(1),
depth(u′) = m. On the other hand, it follows from
proviso (3) of the lemma together with Lem. 1(2) that
norm(u′) ≥ m. So all completed traces of u are of

the form u′ am

→ u′′.

Since amx �IF u′ and m > 1 and |A| > 1, clearly,
var0(u′) = ∅. And from proviso (3) of the lemma
together with Lem. 2 it follows that varm(u′) ⊆ {x}
and vark(u′) = ∅ for k ∈ {0,m}. Due to proviso (3)
of the lemma, it is easy to see that for each completed

trace u′ am

→ u′′, u′′ = 0; so varm(u′) ⊆ {x} yields
u′′ = x. Concluding, u′ �IF a

mx. �

Theorem 4 For 1 < |A| < ∞, the inequational theory of
BCCSP(A) modulo �IF does not have a finite basis.

Proof: Let E be a finite axiomatization over BCCSP(A)
that is sound modulo �IF. Let m be greater than the depth
of any term in E. Clearly, Φm does not contain a summand
�IF a(amx). So according to Lem. 10, a(amx) + Φm �
Φm cannot be derived fromE. And this inequation is sound
modulo �IF. �
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6.3 |A| = 1

Also, the inequational theory of BCCSP(A) modulo
�IF does not have a finite basis in case of a singleton alpha-
bet. Our proof of this fact, which is omitted here, follows
very closely the proof structure for 1 < |A| < ∞ in the
previous section. The cornerstone for the negative result for
|A| = 1 is the following infinite family of inequations, for
m ≥ 0:

amx � amx+ x

If |A| = 1, then these inequations are clearly sound modulo
�IF. Note that given a closed substitution ρ, T (ρ(x)) ⊆
T (ρ(amx)).

Theorem 5 For |A| = 1, the inequational theory of
BCCSP(A) modulo �IF does not have a finite basis.

7 n-Nested Impossible Futures

Similar to the n-nested semantics and n-nested possible
futures semantics (see, e.g., [1]), one can define n-nested
impossible futures semantics.

Definition 4 Assume a labeled transition system. For each
n ≥ 0, the n-nested impossible futures preorder �n on
states is defined by:

• s1 �0 s2 for any states s1, s2;

• s1 �n+1 s2 if s1
a1···ak→ s′1 implies s2

a1···ak→ s′2 with
s′2 �n s

′
1.

We write �n for �n ∩ �n.

�n+1⊂�n⊂�n for n ≥ 1. Moreover, �1 coincides
with trace preorder, while �2=�IF. It is not hard to see
that the intersection of �n (for any n ≥ 0) coincides with
the intersection of �n, which in turn, coincides with bisim-
ulation. We will argue that apart from �IF, no nested im-
possible futures semantics allows a finite, ground-complete
axiomatization.

In the proof of this result, which basically consists of a
generalization of the proofs of Lem. 7, Lem. 8 and Thm. 2,
we shall make use of formulas in the modal characteriza-
tion of the n-nested impossible futures preorders. A state s
satisfies the modal formula 〈a〉ϕ if there exists a transition
s

a→ s′ where s′ satisfies the modal formula ϕ.

Definition 5 For n ≥ 0, we define a set Ln of modal for-
mulas:

L0 contains only � and ⊥;

Ln+1 is given by the BNF

ϕ ::= 〈a1〉 · · · 〈ak〉¬ϕ′ (a1 · · · ak ∈ A∗, ϕ′ ∈ Ln).

Lemma 11 Let n ≥ 0. If s1 �n s2, then ∀ϕ ∈ Ln: s1 |=
ϕ ⇒ s2 |= ϕ.

Proof: By induction on n. The base case is trivial. Sup-
pose s1 �n+1 s2, and let s1 |= ϕ ∈ Ln+1, where
ϕ = 〈a1〉 · · · 〈ak〉¬ϕ with ϕ ∈ Ln. Then s1

a1···ak→ s′1 with
s′1 |= ϕ. Since s1 �n+1 s2, s2

a1···ak→ s′2 with s′2 �n s
′
1. By

the induction hypothesis, s′2 |= ϕ. Then s′2 |= ¬ϕ, and thus
q |= ϕ. �

The operator ;ma� adds a sequence of 	 a-transitions to
every state at depthm from which no transition is available.

Definition 6 [1, Def. 31] For k, 	 ≥ 0, define the operator
;ka� on closed terms recursively by

(
∑m

i=1 aipi);k+1a
� = Σm

i=1ai(pi;ka�)
(bp+ q);0a� = bp+ q

0;0a� = a�0

In the remainder of this section, we assume without loss
of generality that A = {a}. This is justified because in the
coming proofs we will only consider inequations t � u and
equations t ≈ u where no actions b = a occur in t and
u; and it is easy to see that any sound derivation of such
an (in)equation cannot contain an occurrence of an action
b = a.

For n ≥ 1 and m ≥ 0, we define formulae ϕm
n :

ϕm
1 = 〈a〉m¬〈a〉�

ϕm
n+1 = 〈a〉¬ϕm

n

In other words, ϕm
n = (〈a〉¬)n−1〈a〉m¬〈a〉�. By induction

on n, it is easy to see that ϕm
n ∈ Ln+1.

We now formulate a slight variation of [1, Lem. 36].

Lemma 12 Let t be a term with depth(t) < m and
depth(ρ(t)) < 2m + n, for some m,n ≥ 1. Let ρ be a
closed substitution with ρ(y) = 0 for each variable y that
occurs at multiple depths in t. Let ρ′ be a closed substitu-
tion with ρ′(x) = ρ(x);m+n−1−dx

am+10 if ρ(x) = 0 and
x ∈ vardx

(t), and ρ′(x) = 0 if ρ(x) = 0. Then

ρ(t) |= ϕm
n ⇔ ρ′(t) |= (〈a〉¬)n−1〈a〉2m+1�

Proof: (Sketch) By induction on m, we can show

ρ′(t) = ρ(t);m+n−1 a
m+1

And by induction on m+ n, we can show

ρ(t) |= ϕm
n ⇔ ρ(t);m+n−1 a

m+1 |= (〈a〉¬)n−1〈a〉2m+1�

(The latter proof uses that A = {a}.) �

Lemma 13 Let n ≥ 1. Assume that, for some terms t, u
and closed substitution ρ:
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1. t �n u;
2. m > depth(u);
3. CT (ρ(u)) ⊆ {am+n−1, a2m+n−1}; and
4. ρ(t) |= ϕm

n .

Then ρ(u) |= ϕm
n .

Proof: From provisos (2) and (3), it is not hard to see
that ρ(y) = 0 for each variable y that occurs at multiple
depths in u. So by Lem. 2, the same holds for t. Let ρ′

be defined as in Lem. 12. By proviso (4), ρ(t) |= ϕm
n ,

so by Lem. 12, ρ′(t) |= (〈a〉¬)n−1〈a〉2m+1�. Note that
(〈a〉¬)n−1〈a〉2m+1� ∈ Ln. By proviso (1), ρ′(t) �n

ρ′(u), so by Lem. 11, ρ′(u) |= (〈a〉¬)n−1〈a〉2m+1�.
Hence, again by Lem. 12, ρ(u) |= ϕm

n . �

Lemma 14 Let n ≥ 2. Let the finite axiomatization E be
sound modulo �n. Assume that, for some closed terms p, q:

1. E 
 p ≈ q;
2. m > depth(q);
3. CT (q) ⊆ {am+n−1, a2m+n−1}; and
4. p |= ϕm

n .

Then q |= ϕm
n .

Proof: By induction on the derivation of E 
 p ≈ q.
The case ρ(t) = p and ρ(u) = q for some t ≈ u ∈ E

and closed substitution ρ, follows from Lem. 13.
The other three cases ((1) E 
 p ≈ r and E 
 r ≈ q;

(2) p = p1 + p2 and q = q1 + q2 with E 
 p1 ≈ q1 and
E 
 p2 ≈ q2; (3) p = ap′ and q = aq′ with E 
 p′ ≈ q′)
can be dealt with in the same way as in the proof of Lem. 8.
�

Theorem 6 Let n ≥ 2. There is no finite, sound, ground-
complete axiomatization for BCCSP(A) modulo �n.

Proof: Let E be a finite axiomatization that is sound mod-
ulo �n. Let m be greater than the depth of any term in E.

For k ≥ 0, we define closed terms pm
k and qm

k :

pm
0 = a2m−10 qm

0 = am−10
pm

k+1 = apk + aqk qm
k+1 = apk

Clearly, qk �k+1 pk. This induces that pm
k �k q

m
k .

It is not hard to see that pm
k |= ϕm

k while qm
k |= ϕm

k (for
k ≥ 1). So by Lem. 14, pm

n ≈ qm
n cannot be derived from

E. Hence, E is not ground-complete. �

Likewise we can prove this non-finite axiomatizability
result for �n in case n ≥ 3. The reason that the proof can be
shifted from equivalences to preorders without problem, is
that the key result Lem. 13 is formulated for �n. The reason
that the proof does not extend to �2 is that �2 ⊆�CT, while
this inclusion is essential in the proof of Lem. 14 (see also
the proof of Lem. 8). On the other hand, �3⊆�CT does
hold (see Lem. 1).

Theorem 7 Let n ≥ 3. There is no finite, sound, ground-
complete axiomatization for BCCSP(A) modulo �n.
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