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ABSTRACT
Given a corpus of bug reports, software developers must read
various descriptive sentences in order to identify correspond-
ing buggy source files which potentially result in the defects.
This process itself represents one of the most expensive, as
well as time-consuming, activities during software mainte-
nance and evolution. To alleviate the workload of develop-
ers, many methods have been proposed to automate this pro-
cess and narrow down the scope of reviewing buggy files. In
this paper, we present a novel buggy source file localization
approach, leveraging both a part-of-speech based weighting
strategy and the invocation relationship among source files.
We also integrate an adaptive technique to strengthen the
optimization of the performance. The adaptive technique
consists of two modules. One is to maximize the accuracy
of the first recommended file, and the other aims at improv-
ing the accuracy of the fixed defect file list. We evaluate
our approach on three large-scale open source projects, i.e.,
ASpectJ, Eclipse, and SWT. Compared with the baseline
work, our approach can improve 17.13%, 6.29% and 3.15%
on top 1, top 5 and top 10 respectively for ASpectJ, 6.40%,
4.94% and 4.39% on top 1, top 5 and top 10 respectively for
Eclipse, and 15.31%, 8.16% and 5.10% on top 1, top 5 and
top 10 respectively for SWT.

Categories and Subject Descriptors
D.2.7 [Software]: Software Engineering—Distribution, Main-
tenance, and Enhancement ; H.3.3 [Information System-
s]: Information Search and Retrieval—Information filtering,
Retrieval models and Relevance feedback

Keywords
Mining Software Repositories, Bug Localization, Informa-
tion Retrieval, Bug Report
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Bug tracking systems (BTS) are widely used for software
developers to manage bug related issues during software de-
velopment and maintenance phases. Usually, a new software
project may set up an account in a robust BTS, such as
Bugzilla, to gather potential defects. If multiple sharehold-
ers of the software, such as developers, testers or even users,
come across a defect, they can go to the BTS and create an
issue report to describe the situation. When a bug report
is received and confirmed, it will be assigned to a developer
for fixing [35]. The developer must first carefully read the
bug report, especially the descriptive parts (e.g., “Summary”
and “Description”) and elicit the keywords such as the class
names or method names, and then review source code files
to find and fix the buggy parts. The above activity is indeed
time-consuming and annoying, particularly for the one who
is unfamiliar with the defective programming modules. As a
result, it is highly desirable to automatically locate those po-
tential buggy source files and recommend to the developers
with the given bug reports.

In recent years, some researchers have proposed various
approaches using static analysis techniques to produce a
ranking list of buggy files for a processing bug report [32].
The ranking list can narrow down developer’s search scales
and thus help augment debugging productivity. The basic
technique of these approaches is standard information re-
trieval (IR). It returns a ranking list of buggy files based on
similarity scores between textual parts of bug reports and
source code. However, the important information of bug re-
ports does not only exists in the textual information, but
also in the other parts. For example, Sisman et al. extended
the IR framework by incorporating the histories of defects
and modifications stored in the versioning tools [25]. The
histories might fill the gaps of the vague description in the
textual parts of the bug reports and improve the accuracy
of rankings of the buggy files. Indeed, the source files are
coded in some specific programming languages, like Java or
C++, which have different grammatical/semantic features
compared with natural languages. Therefore, traditional
natural language processing techniques from IR field can-
not be applied directly to extract discriminative features of
the source code. In light of this, Saha et al. utilized code
constructs and presented a structured information retrieval
based technique [23]. They divided the code of each file into
four parts, namely, Class, Method, Variable and Comments,
and achieve the similarity score between a source file and a
bug report by adding the eight similarity scores between the
four parts of the source file and the summary, description of
a bug report. In [35], Zhou et al. integrated the file length in-



Bug ID: 76225 

Summary: Move the ExternalAntBuildfileImportPage to use the AntUtil 

support. 

Description: The ExternalAntBuildFileImportPage duplicates a lot of 

funcationality now presented in AntUtil. 

Fixed Files: 

org.eclipse.ant.internal.ui.AntUtil.java 

org.eclipse.ant.internal.ui.model.AntElementNode.java 

org.eclipse.ant.internal.ui.model.AntModel.java 

Figure 1: Bug Report example

formation to strengthen the traditional Vector Space Model
and utilized the similar bugs to calibrate the ranking results.
After that, many other researchers have explored combining
other attributes of the bug reports and the source codes to
further improve the accuracy of bug localization [28, 33, 31].

However, we observe that most of existing works, if not all,
treat the words (apart from stop words) equally without dis-
crimination. To be more specific, they do not consider the
part-of-speech features of underlying words in bug report-
s. In reality, to understand the meaning of a bug report,
part-of-speech of every word in a sentence is of particular
importance. For example, after traditional IR-based prepro-
cessing, the summary of Eclipse Bug Report #84078: “Re-
moteTreeContentManager should override default job name”
is transformed into “RemoteTreeContentManag overrid de-
fault job name”. The noun “RemoteTreeContentManager”
directly indicates the buggy file and the noun phrase “job
name” is the substring of a method in the buggy file. By
contrast, the verb “override” doesn’t exist in the defect file
and the adjective “default” is not a discriminative word for
Java code. Thus the later words actually provide little help
during debugging.

Textual similarity can indeed help identify potential bug-
gy source files. For example, Figure 1 illustrates a textual
snippet of a real bug report (ID: 76255) from Eclipse 3.1
and the fixed information. Both the summary and the de-
scription focus on the source file “AntUtil.java” and the file
is indeed at the first place of the ranking list, but the rest
two fixed files “AntElementNode.java” and “AntNode.java”
contributing to this defect are at 4302 and 11459 places in
the same list ranked solely by similarity [35]. In this case,
we observe that most fixed files for the same bug report have
invocation relationship between them. For example, the file
“AntUtil.java” invokes the other two files. This logical rela-
tionship cannot be captured by the grammatical similarity.
This fact motivates us to combine the invocation informa-
tion with the traditional IR based methods to improve the
accuracy of buggy source files identification.

In [14], Kochhar et al. investigated the potential biases
in bug localization. They defined “localized bug reports” in
which the buggy files have been identified in the report itself,
namely, the buggy files’ class names or method names exist
in the bug reports. In our approach, we filter the source
files and only reserve the class names and method names to
reduce the noisy localization for the localized bug reports.
If a bug report is a localized one, this method indeed can

lift up the rankings of its buggy files. However, this process
also introduces potential issues, i.e., this filtering strategy
will also lift other irrelevant files up to the top places as a
side effect. Moreover, if a bug report is not a localized one,
for example, the bug report doesn’t contain class names and
method names but its buggy files are ranked high on the list,
this filtering strategy will reduce their rankings.

In light of the above considerations, we need a more com-
prehensive approach to combine different sources of informa-
tion to give a more accurate buggy source file localization
based on bug reports. We believe that different types of
words in bug reports contribute differently to the defect lo-
calization process and are worth treating distinctively. Our
approach takes the part-of-speech of index terms as well as
the underlying invocation relationship into account. In or-
der to take advantages of the localized bug reports and avoid
the decrease of global performance, we use different ranking
strategies for top 1 and top N recommendations, and pro-
pose an adaptive approach, considering the demand of the
developers.

The main contributions of this paper include:

1. We propose a part-of-speech based weighting method
to automatically adjust the weight of terms in bug re-
ports. Particularly, we emphasize the importance of
noun terms. This method sets different weights to
terms from the summary and description parts in bug
reports in order to distinguish their importance.

2. We consider the invocation relationship between source
code files to lift up the ranking of the files that are in-
voked by the file mentioned in bug reports with the
highest similarity scores. This method can help in-
crease the global performance, like MRR (Mean Re-
ciprocal Rank).

3. We propose an adaptive approach to maximize the ac-
curacy of recommendations. The approach sets a se-
lection variable ran∈{true, false} for users. We con-
duct a comparative study on the same dataset in [35],
which confirms the performance improvement by our
approach.

The rest of the paper is organized as follows. Section 2
describes the background of our work. Section 3 presents the
part-of-speech oriented weighting method and our adaptive
defect recommendation approach. We experiment with open
source data and discuss the results in Section 4. Section 5
and Section 6 give the threat to validity and related work.
We conclude the paper in Section 7.

2. BACKGROUND

2.1 Basic Ranking Framework
IR is a process to find the contents in a database which

are related to the input queries. The matching result is not
unique, but consists of several objects with different degrees
of correlation, forming a ranking list [18]. The basic idea
of defect localization using IR is to compute the similarity
between textual information of a given bug report and the
source code of the related project. It takes summary and de-
scription parts of a bug report as a query, the source files as
documents and ranks the relevancy depending on similarity
scores.



To identify relevant defect source files, the textual part of
bug reports and source code are typically transformed into
a suitable representation respecting a specific model. In our
approach, we use the Vector Space Model (aka Term Vector
Model) which represents a query or a file as vectors of index
terms.

In order to transform texts into word vectors more effi-
ciently, we need to preprocess the textual information. The
traditional text preprocessing involves three steps: first, we
replace all non-alphanumeric symbols with white spaces, and
split texts of bug reports into a stream of terms by white
spaces. Second, meaningless or frequently used terms called
stop word, such as propositions, conjunctions and articles,
are all removed. Usually, stop word list of source code is
totally different from natural language documents and is al-
ways composed of particular words relying on programming
language. Third, all reserved words should be transformed
into their basic form by Poster Stemming Algorithm, which
can normalize the term with different forms.

After preprocessing, we take the rest terms of bug reports
as index terms to build vector spaces which represent each
bug report and source file as vectors. The weight of an index
term in a bug report is based on its Token Frequency (TF) in
the bug report and its Inverse Document Frequency (IDF)
in the whole bug reports. The same goes for the weight of
an index term in a source file. It is generally known that
the smaller the angle of two vectors is, the closer the two
documents represented by the two vectors are [8].

2.2 Part-of-Speech Tagging
Part-of-speech (POS) tagging is the process of marking up

a term as a particular part of speech based on its context,
such as nouns, verbs, adjectives, and adverbs, etc. Because
a term can represent more than one part of speech at dif-
ferent sentences, and some parts of speech are complex or
indistinct, it becomes difficult to perform the process exact-
ly. However, many researches have improved the accuracy
of POS tagging giving rise to various effective POS tagger-
s such as TreeTagger, TnT (based on the Hidden Markov
model), Stanford tagger, etc [4, 9, 11]. State of the art tag-
gers highlight accuracy of circ 93% compared to human’s
tagging results.

In recent years, researchers have tried to help developers
in program comprehension and maintenance by analyzing
textual information in software artifacts [1]. The IR-based
framework is widely used and the POS tagging technique
has demonstrated to be effective for improving the perfor-
mance [5, 24]. Tian et al. have investigated the effectiveness
of seven POS taggers on sampled bug reports; the Stanford
POS tagger and TreeTagger achieved the highest accuracy
up to 90.5% [26].

In our study, the textual information of bug reports are
composed in natural languages and we have discovered that
the noun-based terms are more important for bug localiza-
tion. Therefore, we have made use of POS tagging tech-
niques to label the terms and adjusted the weight of the
terms in vector transforming accordingly.

2.3 Evaluation Metrics
Three metrics are used to measure the performance of our

approach.

1. TOP N is the number of bug reports localized in top N
(N=1,5,10) of the returned results. A bug is related to

many buggy files and if one of the buggy files is ranked
in top N of the returned list, we consider the bug to
be located in top N . Of course, the higher the metric
value is, the better our approach performs.

2. MRR (Mean Reciprocal Rank) is a statistic measure
for evaluating the process that produces a sample of
the ranking list to all queries. The reciprocal rank of
a list is the multiplicative inverse of the rank of the
first correct answer. The mean reciprocal rank is the
average of the reciprocal ranks for all queries Q :

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(1)

where ranki is the rank of the first correct recommend-
ed file to bug report i and |Q| is the number of all bug
reports.

3. MAP (Mean Average Precision) is a global measure-
ment for all the ranking lists. It takes all the buggy
files’ rankings into account. There are many relevan-
t source code files corresponding to a bug report, the
Average Precision (AP) for a bug report n can be com-
puted as:

APn =

|S|∑
k=1

P (k)× pos(k)

Numbers of Defective Files
(2)

where |S| is the number of source files, and pos(k) is
the indicator representing whether or not the file at
rank k is a real defect. P (k) is the precision at the
given cut-off rank k. MAP is the mean of the average
precision values for all bug reports.

3. APPROACH
Our approach consists of two interconnecting modules and

a parameter ran.

1. Module 1 is a revised Vector Space Model combin-
ing with part-of-speech oriented weighting method. A
ranking list for a certain bug report will be produced.
In this module, we use a revised Vector Space Model
to represent the bug report and index the source code
files for similarity calculation. The proposed weighting
method was applied to automatically adjust the weight
of each term based on its tag. We note that how to
filter the source code is determined by the parameter
ran.

2. Module 2 is based on the results of Modules 1. We
use the invocation relationship to further boost the
accuracy of the results. In this module, we will search
the summary and description parts of a bug report for
the class-name terms. If the corresponding source files
of the class have been ranked high in module 1, their
invoking files will be raised accordingly in the ranking
lists.

3. Parameter ran is a trigger of our adaptive recommen-
dation depending on the developers’ context. If ran is
set to be true, it means developers want a single de-
cisive, most probable file to this bug report; otherwise
ran = false means a list of n files would be provided.



Figure 2: The Overview of Our Approach
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Figure 3: The Tagging Results

Our approach mainly uses POS tagging technique to mark
up the part-of-speech of each term in bug reports and the
invocation relationship between source files can be defined
simply by class name searching. Figure 2 gives an overview
of our approach. The details will be elaborated below.

3.1 Module 1 – Similarity Calculation
In this module, the similarity scores between the new bug

report and the candidate source files are calculated, and then
an initial ranking list will be produced. It’s highly impor-
tant that the part-of-speech must be tagged before the text
preprocessing, namely. the inputs to the POS tagger are all
complete sentences. We use the-state-of-the-art POS tagger
Stanford-Posttagger1 to mark all the terms of the bug re-
ports. Figure 3 shows the tagging results for the summary
of AspectJ (Bug ID: 29769). We can see that the word-
s “Ajde”, “AspectJ”, “complier” and “options” are all noun
terms. We duplicate the terms marked as“NN (Noun, singu-
lar or mass)”, “NNS (Noun, plural)”, “NNP (Proper noun,
singular)” and “NNPS (Proper noun, plural)” three times
and other terms twice to increase the weights of noun-based
terms. Moreover, this weighting strategy wouldn’t increase
the dimension of Vector Space Model and thus needn’t keep
the markings untill the calculation step.

The importance of summary and description of bug re-

1http://nlp.stanford.edu/software/tagger.shtml

ports is different [13], but we treat them together as a query.
In order to highlight the summary, we follow the heuristics
from [29] and increase its terms’ frequency twice to descrip-
tion. For source files, we filter the source code before pre-
processing, and set a parameter ran to determine whether
to reserve class names and method names only. Because the
three experimental projects are programmed in Java, we use
API of Eclipse JDT named Abstract Syntax Tree (AST) to
parse the source code. ASTParser can analyze the main
components of a source file, such as classes, methods, state-
ments and annotations. The source code can be parsed as
a compilation unit. By calling the methods of this API,
we can remove some useless elements in the source code. In
our approach, all annotations of source code are filtered out.
Moreover, if the parameter ran is set to be true, only the
class names and method names of the source files will be re-
served. We take the filtered source code files as documents
and the weight-processed bug reports as queries, and build
a Vector Space Model to represent both texts based on in-
dex terms of bug reports. The weight wt,d of a term t in a
document d is computed based on the term frequency (tf)
and the inverse document frequency (idf), which are defined
as follows:

wt,d = tft,d × idft (3)

where tft,d and idft are computed as:

tft,d =
ft,d
td

(4)

idft = log(
nd

nt
) (5)

Here, ft,d is the number of the occurrences of term t in doc-
ument d and td is the total number of terms document d
includes. nd refers to the number of all documents and nt is
the number of documents containing term t. Thus, wt,d is
high if the occurrence frequency of term t in document d is
high and the term t seldom exists in other documents. Ob-
viously, if a term appears 5 times in a document, its impor-
tance shouldn’t be 5 times compared to the ones appearing
once [18]. In view of this point, we use the logarithm variant
to revise the tft,d [6]:

tft,d = log(ft,d) + 1 (6)

The similarity score between a query and a document is the
cosine similarity calculated by their vector representations
computed above:

Simt,d =

∑m
i=1 wti,q × wti,d√∑m

i=1 w
2
ti,q
×

√∑m
i=1 w

2
ti,d

(7)

where m is the dimension of the two vectors and wti,q (re-
sp. wti,d) represents the weight of term ti in query q (resp.
document d).

Previous work has shown that large source code files have
a high possibility to be defective [20, 34]. Our approach also
takes file length into account and sets a coefficient lens based
on file length to adjust the similarity scores. The range of
lengths of source code files is usually large and we must map
the lengths to an interval, namely (0.5, 1.0), which makes the
coefficient most effective. To this aim, we first compute the
average length avg of all source files and then calculate the



standard deviation sd as:

sd =

√∑n
i=1(li − avg)2

n
(8)

where n is the total number of source files. li is the length of
source code file i. We have an interval ∈ (low, high) which
is defined as:

low = avg − 3× sd, high = avg + 3× sd (9)

and the length li of the source file will be normalized as
norm:

norm =


0.5, li ≤ low, (10)

6.0× (li − low)

high− low , low < li < high,(11)

1.0, li ≥ high. (12)

The coefficient lens is computed as:

lens =
enorm

1 + enorm
(13)

Finally, the similarity score between a bug report (a query)
and a source code file (a document) can be calculated as:

Simt,d = lens×
∑m

i=1 wti,q × wti,d√∑m
i=1 w

2
ti,q
×

√∑m
i=1 w

2
ti,d

(14)

We then obtain all the similarity scores of source files and
the new bug report and form a ranking list according to the
scores.

3.2 Module 2 – Invocation based calibration
As usual, the summary only depicts one obvious defect file

and seldom contains methods of other buggy files, resulting
in poor performance of locating the other buggy files. In or-
der to increase the ranking of all buggy files and improve the
overall performance, we also leverage the invocation infor-
mation between high-ranking buggy files to increase scores
of other buggy files.

The textual information of a bug report has explicitly di-
rectionality and may include one or more class-name (file-
name) terms. We define the source files corresponding to the
file-name terms as hitting files and the source file of hitting
files which ranks highest in initial ranking list produced by
Module 1 as hf . We believe that the hf has a higher pos-
sibility to be the defective one. Figure 4 shows the detailed
processing of the invoking method. First, we extract all file-
name terms of a new bug report r and collect the hitting files
corresponding to these terms. Next, we select the highest
ranking source file hf of the hitting files. We then review hf
to search the files it invokes as invocation files. At last, the
final score (FScorer,inf ) of the invoking file inf in Module
2 is calibrated as follows:

FScorer,inf = a× Simr,hf + (1− a)× Simr,inf (15)

where Simr,hf is the similarity score between the highest
scoring file hf of the hitting file and the bug report r, and
Simr,inf is the similarity score between the file inf invoked
by hf and the bug report r. a is the coefficient of the formula
and we set a = 0.3 in our approach.

3.3 Adaptive Strategy

New Bug Report

Similarity 

Scores of 

Module 1

File-name Terms

Invoking Files

Highest Scoring 

Files

 Revised 

Similarity Scores

Hitting Files
Source Code Files

Figure 4: The Detail of Module 2: Invoking Method

As mentioned before, top 1 recommendation and other
top N (e.g., N = 5, 10) recommendations use different i-
dentification strategies. We have considered two common
situations: If the developers only want a decisive file, the
accuracy of top 1 will get preferential treatment. In this sit-
uation, we remove all the elements of the source files except
the class names and method names. Otherwise, the devel-
opers need N (for example, N = 5, 10) candidate files, and
thus the overall performance of top N (N = 5, 10) must be
considered and we find that keeping all the elements of the
source files except annotation is better.

On top of that, we propose an adaptive approach which
can maximize the performance of bug localization recom-
mendation. We set a parameter ran to realize this. If ran
is set to be true which means developers want a decisive file
to the bug, other elements of source files except for class
names and method names must be removed before text pre-
processing. The output of our recommendation is a single
file. Otherwise if ran is set to be false which means a list of
N (N = 5, 10) files would be provided. The output of the
our recommendation is then N candidate files.

4. EXPERIMENTS
To evaluate our approach, we conduct an empirical study

and use three cases as in [35], i.e., AspectJ, Eclipse, and
SWT, and the dataset are bug reports of fixed bugs. The
information of the dataset is given in Table 1. We compare
our approach with the rVSM model of BugLocator (α = 0)
proposed in [35].

Table 1: The Details of Dataset
Projects #Bugs #Source Files Period
AspectJ 286 6485 07/2002-10/2006

Eclipse 3.1 3075 12863 10/2004-03/2011
SWT 3.1 98 484 10/2004-04/2010

Table 2 depicts the results achieved by our approach for all
the three projects. If the value of ran is set to be true, about
114 AspecJ bugs (39.86%), 946 Eclipse bugs (30.76%) and
46 SWT bugs (46.94%) are successfully located and their
fixed files can be found at the top 1 in recommendation. If
the value of ran is set to be false, our approach can locate
76 AspecJ bugs (26.57%), 912 Eclipse bugs (29.66%) and



39 SWT bugs (39.79%) whose fixed files are at the top 1,
135 AspecJ bugs (47.20%), 1571 Eclipse bugs (51.09%) and
72 SWT bugs (73.47%) whose fixed files are at the top 5
and 168 AspecJ bugs (58.74%), 1854 Eclipse bugs (60.29%)
and 81 SWT bugs (82.65%) whose fixed files are at the top
10. Besides, the results of MRR and MAP with ran = true
are better than the ones with ran = false in AspectJ and
SWT. Because, the result of top 1 contributes more to the
performance of MRR and MAP than the results of top 5
and top 10.

Table 2: The Performance of Our Approach
Project Method TOP 1 TOP 5 TOP 10 MRR MAP

AspectJ
ran=true

114
(39.86%)

N/A N/A 0.44 0.24

ran=false
76

(26.57%)
135

(47.20%)
168

(58.74%)
0.37 0.21

Eclipse
ran=true

946
(30.76%)

N/A N/A 0.36 0.23

ran=false
912

(29.66%)
1571

(51.09%)
1854

(60.29%)
0.40 0.30

SWT
ran=true

46
(46.94%)

N/A N/A 0.62 0.56

ran=false
39

(39.79%)
72

(73.47%)
81

(82.65%)
0.55 0.49

Method 1 defines the process of locating the bugs in our
approach when ran is set to be true and Method 2 represents
another process of locating the bugs when ran is set to be
false. Method 1 takes the advantage of the localized bug
reports and filters out more noisy data, contributing more to
the accuracy of top 1. From the results of top 1 for the three
projects with the two methods, we have observed that the
results of top 1 with Method 1 are better than the results of
top 1 with Method 2 for all the three projects which confirms
the above idea. With the increasing scale of bug reports, the
localized bug reports increased and play a dominant role in
bug localization leading to the best performance of top 1.

As aforementioned, the description part of bug reports is
more noisy. It may involve many nouns, verbs and adjectives
with or without discrimination. The discriminating terms
lead to a good localization. Moreover, reserving the class
names and method names of source files is beneficial for
localizing the bug reports with specific class-name terms and
method-name terms but damages the localization of the bug
reports without these terms.

Table 3: The Execution Time of BugLocator (α = 0)
and Module 1 of Our Approach

````````Approach
Projects

AspectJ Eclipse SWT

BugLocator 56s 57min7s 6s
Our Approach 49s 8min51s 12s

Because our approach has filtered the source code in the
beginning, particularly when ran = true, the Module 1
seems more time-saving comparing to BugLocator without
similar bugs module. Table 3 displays the execution time of
rSVM model and Module 1 of our approach. The execution
time of BugLocator (α = 0) for AspectJ, Eclipse and SWT
is 56 seconds, 57 minutes 7 seconds and 6 seconds. The ex-
ecution time of the Module 1 of our approach is 49 seconds,
8 minutes 51 seconds and 12 seconds. Figure 5 reveals the
trend of execution time for the two approaches of compar-
ison with the increase of data size. Because the execution

0

0.5

1

1.5

2

2.5

AspectJ Eclipse SWT

BugLocator

Our Approach

Figure 5: The Trend of Execution time for The Two
Approaches of Comparison

time of the three projects is not at the same level, we set the
execution time of all the projects using BugLocator without
similar bugs as unit time 1 and represent the other as the
proportion of it. We can discover that the Module 1 rela-
tively decreases the execution time and more efficient except
for SWT because of the small dataset. Thus, the larger the
source code and bug reports are, the more time-saving the
Module 1 is.

In our approach, we have made use of the saving time to
execute the Module 2 which is considerably time-consuming.
It is generally known that extracting the invocation relation-
ship of a large project like Eclipse is very complex and of
course costs much time. Although our approach needn’t
obtain the invocation relationship of all the source files, it
also needs to spend time reviewing thousands of highest s-
coring source files hf to get the invoking files. Therefore,
how to improve the efficiency of executing the Module 2 is
important for saving the time of executing our approach.
We implement our approach in a Intel(R)Core(TM)i7-4790
32G machine with Win7 operating system and the version
of JDK is 1.8.0.

We have compared the performance of our approach to
BugLocator without similar bugs because we try to empha-
size the importance of part-of-speech and invocation rela-
tionship between source files and don’t combine the similar
bugs as many researchers do. Table 4 compares the accuracy
of our approach with BugLocator. As we can see, the perfor-
mance of our approach is better than BugLocator without
using similar bugs.

When ran’s value is set true, our approach recommends
one file with the highest similarity score to the developer-
s and actually the accuracy of recommended file is sharply
high. All the results have a considerable enhancement. For
example, the accuracy of top of this method for AspectJ
almost improves twice. The performance of Method 1 are
39.86% for AspectJ comparing to 22.73% of rVSM, 30.76%
for Eclipse comparing to 24.36% and 46.94% for SWT com-
paring to 31.63%. Although this method just provides one
file, the statistics of MRR and MAP are based on the rank-
ing lists Method 1 produced inside. Despite this method
sacrifices the results of top 5 and top 10, the metric values
of MRR and MAP are also higher than BugLocator without
using similar bugs.

When ran’s value is set false, our approach recommends
n candidate files based on the ranking list of a bug report to
the developers. More defect files ranked at top N (N=5,10)



0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

TOP 1 TOP 2 TOP 3 TOP 4 TOP 5 TOP 6 TOP 7 TOP 8 TOP 9 TOP 10

AspectJ‐True AspectJ‐False
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may give right inspiration to the developers for finding the
location of buggy files. Our approach increases the precision
of defect files in top N (N=5,10) effectively which are about
3.84% in top 1, 6.29% in top 5 and 3.15% in top 10 for
AspectJ, about 5.30% in top 1, 4.94% in top 5 and 4.39% in
top 10 for Eclipse and about 8.16% in top 1, 8.16% in top 5
and 5.10% in top 10 for SWT. It is interesting to discovered
that our approach improves most in top 5.

Table 4: The Comparison of BugLocator(α = 0) and
Our Approach
Project Method TOP 1 TOP 5 TOP 10 MRR MAP

AspectJ
ran=true

114
(39.86%)

N/A N/A 0.44 0.24

ran=false
76

(26.57%)
135

(47.20%)
168

(58.74%)
0.37 0.21

BugLocator
65

(22.73%)
117

(40.91%)
159

(55.59%)
0.33 0.17

Eclipse
ran=true

946
(30.76%)

N/A N/A 0.36 0.23

ran=false
912

(29.66%)
1571

(51.09%)
1854

(60.29%)
0.40 0.30

BugLocator
749

(24.36%)
1419

(46.15%)
1719

(55.90%)
0.35 0.26

SWT
ran=true

46
(46.94%)

N/A N/A 0.62 0.56

ran=false
39

(39.79%)
72

(73.47%)
81

(82.65%)
0.55 0.49

BugLocator
31

(31.63%)
64

(63.31%)
76

(77.55%)
0.47 0.40

To further explain the performance of the two selective
methods in our approach, we calculate the top N (N=1,2
...9,10) of AspectJ and Eclipse. Figure 6 shows the perfor-
mance of AspectJ with 286 bug reports from top 1 to top
10. AspectJ-True means Method 1 and AspectJ-False means
Method 2. It is obvious that the performance of Method 1
increases sharply at top 1 and then slows down. For the
Method 2, the results increase quickly from top 1 to top 10
at almost the same speed and get better after top 5 than
Method 1.

But for the Eclipse with 3075 bug reports, only the top
1 of Method 1 is better than the top 1 of Method 2. The
results of Method 1 from top 2 to top 10 are all worse than
the Method 2. The discovery above is shown in Figure 7. As
we can see, only the top 1 of Method 1 is better even though
the scale of bug reports increase from 286 of AspectJ to 3075
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Figure 7: The Performance for Method 1 and
Method 2 in Eclipse

of Eclipse. Thus, if the developers want a recommended file,
our approach makes use of Method 1 and if the developers
want N (N=5,10) recommended files, our approach makes
use of Method 2.

5. THREATS TO VALIDITY
In this section, we discuss the possible threats to validity

in our approach, mainly the concerns of data validity and
invocation validity.

1. Data Validity. The experimental dataset we used are
all programmed by Java and the keywords of bug re-
ports are mainly class names or method names which
make the VSM model more effective than other IR-
based models. The performance of top 1 gets better
when we only reserve class names and method names
in source code and the results of top 5, top 10 de-
crease at this situation and we can get the rule that
class names and method names contribute to the re-
sults of top 1. But we just used the dataset of Zhou et
al [35] to assure the fair comparison. Thus, whether or
not this heuristic fits all the Java projects is still left
to be further studied in future.

2. Invocation Validity. The call graph of the projects we
used is of large scale, especially for Eclipse, and the
granularity of call graph produced by other tools are
at method level which isn’t suitable for our approach.
The Module 2 of our approach just needs file invo-
cation relationship. Thus, we have used the simple
string-based searching technique to find the invoca-
tion files of a certain source file. Despite the fact that
the simple searching method is easy to implement, it
may decrease the performance of Module 2 to some
degree because of the introduced noisy files. But, we
will try to use the JDT’s plug-in called Call Hierarchy
to extract the invocation relationship between source
files [19, 15].

6. RELATED WORK
Software debugging is time-consuming but also crucial in

software life cycles. Software defect localization becomes
one of the most difficult tasks in the debugging activity [30].



Therefore, automatic defect localization techniques that can
guide programmers are much-needed. Dynamic bug local-
ization approaches can help developers find defects based on
spectrum [2]. A commonly-used method of these approaches
is to produce many sets of successful runs and failed runs for
computing suspiciousness of program elements via program
slicing. The granularity of suspiciousness elements can be a
method or a statement. Although the dynamical approach
can locate the defect to a statement, the generation of test
cases and its selection are also complex [3].

Many researchers have tried to use static information of
bugs and source code for coarse-grained localization [17, 21].
They proposed some IR-based approaches combining with
some useful attributes of software artifacts and defined the
suspicious buggy files depending on the similarity scores be-
tween bug reports and source files. Usually, IR-based mod-
els are used to represent the textual information of the bug
report and source code, such as Latent Sematic Indexing
(LSI), Latent Dirichlet Allocation (LDA) and Vector Space
Model (SVM), which is feasible for numerical calculation [10,
22, 27]. But these works do not consider the POS features
of the underlying reports.

Apart from the efforts in defect localization, there is an-
other thread of relevant work on the bug report classifica-
tion. Before applying the bug localization techniques, it
must be confirmed that the selected bug reports describe
the real bugs and then their fixed files are extracted for e-
valuation, which may save much time and reduce potential
noise [14]. A lot of research has been conducted for reducing
the noise in bug reports [12]. They used the text of the bug
reports and predicted the bug reports to be bug or non-bug
with many techniques [7]. Zhou et al. proposed a hybrid
approach by combining both text mining and data mining
techniques to automate the prediction process [36].

In resent years, Zhou et al. have used the Vector Space
Model to represent the texts and take source files’ length
into consideration combining the similar bugs to revise the
ranking list. After then many other non-textual attributes
are used to enhance the performance, such as version his-
tory [25]. Saha et al. found that the code construct is im-
portant for bug localization, so they proposed a structure
information retrieval approach [23] . Wang et al. have com-
bined the above three discoveries to increase the results [28].
Moreover, Ye et al. have used the domain knowledge to cover
all accessible features to enhance the IR-based bug location
technique [33]. In order to help the developers pick an ef-
fectiveness approach proposed in the literature, Le et al.
presented the approach APRILE to predict the effectiveness
of the localization tools [16].

Our approach leverages nature language processing tech-
niques adjusting the weight of terms depending on their
part-of-speech, and takes advantage of heuristics in bug re-
ports to balance the importance of summary and descrip-
tion. Kochhar et al. discovered that the existence of class
names in summary or description of bug reports makes con-
tributions to bug localization, which inspires us to propose
the Method 1 of our adaptive approach [14].

7. CONCLUSION AND FUTURE WORK
In software life cycles, maintenance is the most time-consuming

and highly cost phase. An in-time bug fixing is of crucial
importance. To mitigate the work of software developers, in
this paper, we propose an adaptive approach which provides

the potential defective source files according to the develop-
ers’ demand, based on the value of parameter ran. We take
the advantage of POS tagging techniques and the logical
invocation relationship between source files and present an
automatic weighting method to further improve the perfor-
mance. As far as we know, this is the first work considering
the underlying POS features in bug reports for defect local-
ization. The evaluation results on three open-source projects
demonstrate the feasibility of our adaptive approach and it
indicates a better performance compared with the baseline
work, i.e., BugLocator.

In the future, we plan to integrate more features to our
approach, such as similar bugs and version history. We want
to propose a more adaptive approach for more complex user
demands and the Module 2 will be refined to decrease the
number of noisy files which may result in a more exciting
improvement. Besides, our approach will be expanded to u-
tilize other kind of dataset, such as bug reports of unresolved
bugs.
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