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Abstract. We prove that the equational theory of the process algebra
BCCSP modulo completed simulation equivalence does not have a finite
basis. Furhermore, we prove that with a finite alphabet of actions, the
equational theory of BCCSP modulo ready simulation equivalence does
not have a finite basis. In contrast, with an infinite alphabet, the latter
equational theory does have a finite basis.

1 Introduction

Labeled transition systems constitute a fundamental model of concurrent com-
putation which is widely used in light of its flexibility and applicability. They
model processes by explicitly describing their states and their transitions from
state to state, together with the actions that produce them. Several notions
of behavioral equivalence have been proposed, with the aim to identify those
states of labeled transition systems that afford the same observations. The lack
of consensus on what constitutes an appropriate notion of observable behav-
ior for reactive systems has led to a large number of proposals for behavioral
equivalences for concurrent processes.

Van Glabbeek [6] presented the linear time - branching time spectrum of
behavioral preorders and equivalences for finitely branching, concrete, sequential
processes. In this paper we focus on two semantics in this spectrum. A relation
R between processes is a simulation if s0 R s1 and s0

a→ s′0 implies s1
a→ s′1 with

s′0 R s′1. Such a relation is a completed simulation if whenever s0 cannot perform
any transition, the same holds for s1. It is a ready simulation if s0 and s1 can
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Fig. 1. The linear time - branching time spectrum

perform exactly the same initial actions. Simulation semantics is coarser than
completed simulation semantics (meaning that it distinguishes fewer processes),
which in turn is coarser than ready simulation semantics. Other semantics in the
linear time - branching time spectrum are also based on simulation notions, or
on decorated traces. Figure 1 depicts the linear time - branching time spectrum,
where a directed edge from one equivalence to another means that the source of
the edge is finer than the target.

Van Glabbeek [6] studied the semantics in his spectrum in the setting of the
process algebra BCCSP, which contains only basic process algebraic operators
from CCS and CSP, but is sufficiently powerful to express all finite synchroniza-
tion trees. Van Glabbeek gave axiomatizations for the semantics in the spectrum,
such that two closed BCCSP terms can be equated by the axioms if and only if
they are equivalent.

Having defined a model of an axiomatization for a process algebra in terms of
LTSs, it is natural to study the connection between the equations that are valid
in the chosen model, and those that are derivable from the axioms using the rules
of equational logic. A key question here is whether there is a finite axiomatization
that is ω-complete. That is, if all closed instances of an equation can be derived,
does this imply that the equation itself can be derived from the axiomatization
using the rules of equational logic? (We also refer to an ω-complete axiom system
as a basis for the algebra it axiomatizes.) An ω-complete axiomatization of a
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behavioral congruence yields a purely syntactic characterization, independent
of LTSs and of the actual details of the definition of the chosen behavioral
equivalence, of the semantics of the process algebra. This bridge between syntax
and semantics plays an important role in both the practice and the theory of
process algebras. From the point of view of practice, these proof systems can
be used to perform system verifications in a purely syntactic way using general
purpose theorem provers or proof checkers, and form the basis of purpose-built
axiomatic verification tools like, e.g., PAM [8].

A notable example of an ω-incomplete axiomatization in the literature is the
equational theory of CCS [9]. Therefore laws such as commutativity of paral-
lelism, which are valid in the initial model but which cannot be derived, are
often added to the latter equational theory. For such extended equational the-
ories, ω-completeness results were presented in the setting of CCS [10] and
ACP [3].

A number of positive and negative results regarding finite ω-complete axioma-
tizations for BCCSP occur in the literature. Moller [10] proved that the finite ax-
iomatization for BCCSP modulo bisimulation equivalence is ω-complete. Groote
[7] presented a similar result for completed trace equivalence, for trace equiv-
alence (in case of an alphabet with more than one element), and for readiness
and failures equivalence (in case of an infinite alphabet). Fokkink and Nain [5]
obtained a finite ω-complete axiomatization for BCCSP modulo failures equiv-
alence in case of a finite alphabet, by adding one extra axiom that uses the
cardinality of the alphabet. In [4] they proved that in case of a finite alphabet
of at least two elements, BCCSP modulo any semantics in between readiness
and possible worlds equivalence does not have a finite basis. Blom, Fokkink and
Nain [2] proved that in case of an infinite alphabet, BCCSP modulo ready trace
equivalence does not have a finite sound and ground-complete axiomatization.
Aceto, Fokkink, van Glabbeek and Ingolfsdottir [1] proved a similar negative
result for 2-nested simulation and possible futures equivalence, independent of
the cardinality of the alphabet.1

In this paper we consider BCCSP modulo completed simulation and ready
simulation semantics. We prove that no finite sound and ground-complete axiom-
atization for BCCSP modulo completed simulation preorder and equivalence is
ω-complete. To be more precise, we prove that the infinite family of inequations

anx � an0 + an(x + y) (n ≥ 1)

which are sound modulo completed simulation preorder, cannot be axiomatized
in a finite fashion. This result is surprising in the sense that completed simulation
is the only semantics in the linear time - branching time spectrum that in case
of an infinite alphabet has a finite sound and ground-complete axiomatization
for BCCSP, but no finite ω-complete axiomatization.

1 In case of an infinite alphabet, occurrences of action names in axioms should be inter-
preted as variables, as else most of the axiomatizations mentioned in this paragraph
would be infinite.
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Next we prove that in case of a finite alphabet {b1, . . . , bk}, no finite sound and
ground-complete axiomatization for BCCSP modulo ready simulation preorder
and equivalence is ω-complete. To be more precise, we prove that the infinite
family of inequations

anx � an0 + an(x + b10) + · · · + an(x + bk0) (n ≥ 1)

which are sound modulo ready simulation preorder, cannot be axiomatized in a
finite fashion.

Finally, we prove, using the technique of inverted substitutions from [7], that
in case of an infinite alphabet, the equational theory of BCCSP modulo ready
simulation equivalence does have a finite basis.

This paper is set up as follows. Section 2 presents basic definitions regard-
ing simulation semantics, the process algebra BCCSP, and (in)equational logic.
Section 3 contains the proofs of the negative results for completed simulation
preorder and equivalence. And Section 4 contains the proofs of the negative and
positive results for ready simulation preorder and equivalence.

2 Preliminaries

Simulation semantics: A labeled transition system contains a set of states, with
typical element s, and a set of transitions s

a→ s′, where a ranges over some set A
of labels. The set I(s) consists of those a ∈ A for which there exists a transition
s

a→ s′.

Definition 1 (Simulation). Assume a labeled transition system.

– A binary relation R on states is a simulation if s0 R s1 and s0
a→ s′0 imply

s1
a→ s′1 with s′0 R s′1.

– A simulation R is a completed simulation if s0 R s1 and I(s0) = ∅ imply
I(s1) = ∅.

– A simulation R is a ready simulation if s0 R s1 and a �∈ I(s0) imply a �∈
I(s1).

We write s0 �CS s1 or s0 �RS s1 if s0 R s1 with R a completed or ready
simulation, respectively. The kernels of �CS and �RS are denoted by �CS and
�RS, respectively.

Syntax of BCCSP: BCCSP(A) is a basic process algebra for expressing finite
process behavior. Its syntax consists of closed (process) terms p, q that are con-
structed from a constant 0, a binary operator + called alternative composition,
and unary prefix operators a , where a ranges over some nonempty set A of ac-
tions. Open terms t, u, v, w can moreover contain variables from a countably
infinite set V (with typical elements x, y, z).
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Transition rules: Intuitively, closed BCCSP(A) terms represent finite process
behaviors, where 0 does not exhibit any behavior, p + q is the nondeterministic
choice between the behaviors of p and q, and ap executes action a to transform
into p. This intuition is captured, in the style of Plotkin, by the transition rules
below, which give rise to A-labeled transitions between closed terms.

ax
a→ x

x
a→ x′

x + y
a→ x′

y
a→ y′

x + y
a→ y′

Completed simulation preorder �CS and ready simulation preorder �RS con-
stitute a precongruence for closed BCCSP(A)-terms. That is, p1 �N q1 and
p2 �N q2 implies ap1 �N aq1 for a ∈ A and p1 + p2 �N q1 + q2, where N ranges
over {CS, RS}.

We extend the operational interpretation above to open terms by assuming
that variables do not exhibit any behavior. For open terms t and u, we define
t �N u (or t �N u) if for any closed substitution σ, σ(t) �N σ(u) (or σ(t) �N
σ(u), respectively).

Equations and inequations: Let axiomatization E be a collection of either in-
equations t � u or equations t ≈ u. We write E � t � u or E � t ≈ u if this
(in)equation can be derived from the (in)equations in E using the standard rules
of (in)equational logic, where the rule for symmetry can be applied for equational
derivations but not for inequational ones. A collection E of (in)equations is sound
modulo a preorder � or equivalence � on closed terms if (E � p � q) ⇒ p � q or
(E � p ≈ q) ⇒ p � q, respectively, for all closed terms p and q. Vice versa, E is
ground-complete modulo � or � if p � q ⇒ (E � p � q) or p � q ⇒ (E � p ≈ q),
respectively, for all closed terms p and q. Finally, E is ω-complete modulo � or
� if t � u ⇒ (E � t � u) or t � u ⇒ (E � t ≈ u), respectively for all open terms
t and u.

The core axioms A1-4 [9] for BCCSP(A) below are ω-complete, and sound
modulo bisimulation equivalence, which is the finest semantics in van Glabbeek’s
linear time - branching time spectrum (see Fig. 1).

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

In the remainder of this paper, process terms are considered modulo A1-2 and
A4. A term x or at is a summand of each term x + u or at + u, respectively. We
use summation

∑
i∈{i1,...,ik} ti (with k ≥ 0) to denote ti1 + · · · + tik

, where the
empty sum denotes 0.

As binding convention, alternative composition and summation bind weaker
than prefixing. A (closed) substitution maps variables in V to (closed) terms.
For every term t and substitution σ, the term σ(t) is obtained by replacing every
occurrence of a variable x in t by σ(x).
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3 Completed Similarity

In [6], van Glabbeek gave a finite equational axiomatization that is sound and
ground-complete for BCCSP(A) modulo �CS. It consists of axioms A1-4 together
with

CS a(bx + y + z) ≈ a(bx + y + z) + a(bx + z)

where a, b range over A. Likewise, a finite sound and ground-complete axiomati-
zation for BCCSP(A) modulo �CS is obtained by adding bx + z �CS bx + y + z
to A1-4.

In this section we present a proof that the (in)equational theory of BCCSP(A)
modulo completed similarity does not have a finite basis.

3.1 Completed Simulation Preorder

We start with proving that the inequational theory of BCCSP(A) modulo �CS
does not have a finite basis. The corner stone for this negative result is the
infinite family of inequations

anx � an0 + an(x + y)

for n ≥ 1. Here ant denotes n prefixes of a: a0t = t and an+1t = a(ant). It is
not hard to see that these inequations are sound modulo �CS. The idea is that
either x cannot perform any action, in which case anx is completed simulated
by an0, or x can perform some action, in which case anx is completed simulated
by an(x + y).

The depth of a term t, denoted by depth(t), is the maximal number of transi-
tions in sequence that t can exhibit. It is defined by: depth(0) = 0, depth(x) = 0,
depth(t + u) = max{depth(t), depth(u)}, and depth(at) = depth(t) + 1.

Proposition 1. Let E be a finite collection of inequations over BCCSP(A) that
is sound modulo �CS. Let n be larger than the depth of any term in E. Then
from E we cannot derive the inequation

anx � an0 + an(x + y).

The main part of this section is devoted to proving Proposition 1. We start with
two basic lemmas.

Let t
a1···ak→ t′ (with k ≥ 0) denote that there is a trace t = t0

a1→ t1
a2→ · · · ak→

tk = t′. If moreover t′ = x + t′′, then we say that x occurs at depth k in t. If t′

cannot perform any transitions (meaning that each summand of t′ is a variable
or 0), then t

a1···ak→ t′ is called a termination trace of t.

Lemma 1. Let t �CS u. If t
a1···ak→ x + t′, then u

a1···ak→ x + u′.

Proof. Let d > depth(u) and ρ a closed substitution such that ρ(x) = ad0 and
ρ(y) = 0 for any variable y �= x. By assumption, t

a1···ak→ x+ t′, so ρ(t)
a1···ak+d→ 0
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(with ak+1 · · · ak+d = ad). Since ρ(t) �CS ρ(u), it follows that ρ(u)
a1···ak+d→ v

with 0 �CS v, which implies v �CS 0. Since d > depth(u), clearly u
a1···ai→ y + u′

where ρ(y)
ai+1···ak+d→ v. We have i ≤ depth(u) < d, so ρ(y) �= 0, and hence y = x

and i = k. Concluding, u
a1···ak→ x + u′. ��

Lemma 2. If at �CS an0+an(x+y), then at is completed similar to an0, anx,
any or an(x + y).

Proof. By assumption, at �CS an0 + an(x + y). Then clearly every termination
trace of t has length n − 1, and executes only a’s. Moreover, by Lemma 1,
t can only contain the variables x and y. It follows that for every trace of t

such that t
an−1

→ t′, t′ is completed similar to either 0, x, y or x + y. Suppose,

towards a contradiction, that t
an−1

→ t1 and t
an−1

→ t2 with t1 ��CS t2. In each of
the six possible cases (modulo symmetry) we give a closed substitution ρ with
ρ(at) ��CS ρ(an0 + an(x + y)).

– Cases 1,2,3: t1 �CS 0 and t2 �CS x, y or x + y. Let ρ(x) ��CS 0 and

ρ(y) ��CS 0. Then ρ(t) ��CS an−10 (because ρ(t) an−1

→ ρ(t2) ��CS 0) and

ρ(t) ��CS an−1ρ(x + y) (because ρ(t) an−1

→ ρ(t1) �CS 0 and ρ(x + y) ��CS 0).

– Cases 4,5: t1 �CS x and t2 �CS y or x + y. Let ρ(x) = 0 and ρ(y) ��CS

0. Then ρ(t) ��CS an−10 (because ρ(t) an−1

→ ρ(t2) ��CS 0) and ρ(t) ��CS

an−1ρ(x + y) (because ρ(t) an−1

→ ρ(t1) �CS 0 and ρ(x + y) ��CS 0).

– Case 6: t1 �CS y and t2 �CS x + y. Let ρ(x) ��CS 0 and ρ(y) = 0. Then

ρ(t) ��CS an−10 (because ρ(t) an−1

→ ρ(t2) ��CS 0) and ρ(t) ��CS an−1ρ(x + y)

(because ρ(t) an−1

→ ρ(t1) �CS 0 and ρ(x + y) ��CS 0).

We conclude that the six cases above all contradict at �CS an0 + an(x + y).

Hence it must be the case that for each pair of traces t
an−1

→ t1 and t
an−1

→ t2,
t1 �CS t2. Moreover, by Lemma 1, t does not contain variables at depths smaller
than n − 1. It is not hard to see that this implies the lemma. ��

The following key lemma paves the way for the proof of Proposition 1.

Lemma 3. Let E be a finite collection of inequations over BCCSP(A) that is
sound modulo �CS. Let n be greater than the depth of any term in E. Assume
that:

– E � t � u;
– u �CS an0 + an(x + y); and
– t has a summand completed similar to anx.

Then u has a summand completed similar to anx.
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Proof. By induction on the depth of the proof of the inequation t � u from E.
We proceed by a case analysis on the last rule used in the proof of t � u from E.

– Case 1: E � t � u because σ(v) = t and σ(w) = u for some v � w ∈ E and
substitution σ.
Since t = σ(v) has a summand completed similar to anx, we can distinguish
two cases.

• Case 1.1: v has as summand some variable z where σ(z) has a summand
completed similar to anx.
Since v has z as summand, and soundness of E yields v �CS w, by
Lemma 1, w also has z as summand. Then clearly u = σ(w) has a sum-
mand completed similar to anx.

• Case 1.2: v has a summand av′ where σ(av′) �CS anx.
Since n is larger than the depth of v, depth(av′) < n. So, since σ(av′) �CS

anx, av′ ak

→ z+v′′ where 1 ≤ k < n and σ(z) �CS an−kx. Since v �CS w,

by Lemma 1, w has a summand aw′ such that w′ ak−1

→ z + w′′, and

consequently σ(w′) an−1

→ w′′′ with w′′′ �CS x. Furthermore, aσ(w′) �CS
σ(w) �CS an0+an(x+y). Then Lemma 2 yields σ(w′) �CS an−1x. Hence
σ(aw′) �CS anx. So u = σ(w) has a summand completed similar to anx.

– Case 2: E � t � u by reflexivity. Then t = u, so u trivially has a summand
completed similar to anx.

– Case 3: E � t � u by transitivity.
Then E � t � v and E � v � u for some term v. By the soundness of E,
v �CS u �CS an0+ an(x+ y). So by induction, v has a summand completed
similar to anx. Hence, again by induction, u has a summand completed sim-
ilar to anx.

– Case 4: E � t � u because t = t′ + t′′ and u = u′ + u′′ for some t′, u′, t′′, u′′

such that E � t′ � u′ and E � t′′ � u′′.
Since t has a summand completed similar to anx, so does either t′ or t′′.
Assume, without loss of generality, that t′ has a summand completed similar
to anx. Then clearly u′ ��CS 0. So, since u �CS an0 + an(x + y), it follows
that u′ �CS an0 + an(x + y). By induction, u′ (and thus u) has a summand
completed similar to anx.

– Case 5: E � t � u because t = at′ and u = au′ for some t′, u′ such that
E � t′ � u′.
Since t = at′ consists of a single summand, at′ �CS anx. By the soundness
of E, anx �CS au′. Since moreover au′ �CS an0+an(x+y), Lemma 2 yields
u = au′ �CS anx. ��

Now we are in a position to prove Proposition 1.

Proof. Let E be a finite collection of inequations over BCCSP(A) that is sound
modulo �CS. Let n be larger than the depth of any term in E.
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an0 + an(x + y) does not contain a summand completed similar to anx. So
according to Lemma 3, the inequation anx � an0 + an(x + y), which is sound
modulo �CS, cannot be derived from E. ��

Theorem 1. �CS is not finitely based over BCCSP(A).

Proof. By Proposition 1, no finite collection of inequations over BCCSP(A) that
is sound modulo �CS proves all inequations that are sound modulo �CS. ��

3.2 Completed Simulation Equivalence

Following the same line as in Section 3.1, we can prove that the equational theory
of BCCSP(A) modulo �CS does not have a finite basis. The proofs are similar
to the proofs of the corresponding results in the previous section.

Lemma 4. Let E be a finite collection of equations over BCCSP(A) that is
sound modulo �CS. Let n be greater than the depth of any term in E. Assume
that:

– E � t ≈ u;
– u �CS an0 + an(x + y); and
– t has a summand completed similar to anx.

Then u has a summand completed similar to anx.

Proof. By induction on the depth of the proof of the equation t ≈ u from E. First
note that by postulating that for each axiom in E also its symmetric counterpart
is present in E, one may assume that, without loss of generality, applications
of symmetry happen first in equational proof. Thus in the proof, we can tacitly
assume that equational axiomatization E is closed with respect to symmetry.

Now the proof proceeds by a case analysis on the last rule used in the proof
of t ≈ u from E, similar to the proof of Lemma 3. This case analysis is omitted
here. ��

Proposition 2. Let E be a finite collection of equations over BCCSP(A) that
is sound modulo �CS. Let n be larger than the depth of any term in E. Then
from E we cannot derive the equation

anx + an0 + an(x + y) ≈ an0 + an(x + y)

Proof. an0 + an(x + y) does not contain a summand completed similar to anx.
So according to Lemma 4, the equation anx+an0+an(x+y) ≈ an0+an(x+y),
which is sound modulo �CS, cannot be derived from E. ��

Theorem 2. �CS is not finitely based over BCCSP(A).

Proof. By Proposition 2, no finite collection of equations over BCCSP(A) that
is sound modulo �CS proves all equations that are sound modulo �CS. ��
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4 Ready Similarity

Blom, Fokkink and Nain [2] gave a finite equational axiomatization that is sound
and ground-complete for BCCSP(A) modulo �RS. It consists of axioms A1-4
together with

RS a(bx + by + z) ≈ a(bx + by + z) + a(bx + z)

where a, b range over A. If A is infinite, then Groote’s technique of inverted sub-
stitutions from [7] can be applied in a straightforward fashion to prove that this
axiomatization is ω-complete. So in this case, ready simulation equivalence is
finitely based over BCCSP(A). This finite basis can be adapted in a straightfor-
ward fashion to a finite basis for BCCSP(A) modulo ready simulation preorder
(simply add bx + z �RS bx + by + z to A1-4).

In this section we prove that if A is finite, then ready simulation preorder
and equivalence are not finitely based over BCCSP(A). The infinite family of
equations, and the structure of the proof, are very similar to the case of com-
pleted similarity in the previous section (where we obtained a negative result for
arbitrary alphabets).

4.1 Ready Simulation Preorder with |A| < ∞

First we present a proof that if A is finite, then the inequational theory of
BCCSP(A) modulo �RS does not have a finite basis. The corner stone for this
negative result is the infinite family of inequations

anx � an0 +
∑

b∈A

an(x + b0)

for n ≥ 1. It is not hard to see that these inequations are sound modulo �RS.
The idea is that either x cannot perform any action, in which case anx is ready
simulated by an0, or x can perform some action b, in which case anx is ready
simulated by an(x + b0).

Proposition 3. Let |A| < ∞. Let E be a finite collection of inequations over
BCCSP(A) that is sound modulo �RS. Let n be larger than the depth of any
term in E. Then from E we cannot derive the inequation

anx � an0 +
∑

b∈A

an(x + b0).

The main part of this section is devoted to proving Proposition 3. Note that
Lemma 1 also applies to ready simulation preorder, as it is finer than completed
simulation preorder.

Lemma 5. Let |A| < ∞. If at �RS an0 +
∑

b∈A an(x + b0), then at is ready
similar to an0, anx or an(x + b0) for some b ∈ A.
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Proof. By assumption, at �RS an0 +
∑

b∈A an(x + b0). Then clearly every ter-

mination trace of t is of the form t
an−1

→ t′ or t
an−1b→ t′. Moreover, by Lemma 1,

t can only contain the variable x, and x cannot occur at depth n in t. It follows

that for every trace of t such that t
an−1

→ t′, t′ is ready similar to either 0, x or

x + b00 for some b0 ∈ A. Suppose, towards a contradiction, that t
an−1

→ t1 and

t
an−1

→ t2 with t1 ��RS t2. In each of the four possible cases (modulo symmetry)
we give a closed substitution ρ with ρ(at) ��RS ρ(an0 +

∑
b∈A an(x + b0)).

– Cases 1,2: t1 �RS 0 and t2 �RS x or x+ b00 for some b0 ∈ A. Let ρ(x) ��RS

0. Then ρ(t) ��RS an−10 (because ρ(t) an−1

→ ρ(t2) ��RS 0) and ρ(t) ��RS

an−1ρ(x + b0) for each b ∈ A (because ρ(t) an−1

→ ρ(t1) �RS 0 and ρ(x +
b0) ��RS 0).

– Case 3: t1 �RS x and t2 �RS x + b00 for some b0 ∈ A. Let ρ(x) = 0. Then

ρ(t) ��RS an−10 (because ρ(t) an−1

→ ρ(t2) ��RS 0) and ρ(t) ��RS an−1ρ(x + b0)

for each b ∈ A (because ρ(t) an−1

→ ρ(t1) �RS 0 and ρ(x + b0) ��RS 0).

– Case 4: t1 �RS x+ b00 and t2 �RS x+ b10 for some b0, b1 ∈ A with b0 �= b1.

Let ρ(x) = 0. Then ρ(t) ��RS an−10 (because ρ(t) an−1

→ ρ(t1) ��RS 0) and
ρ(t) ��RS an−1ρ(x + b0) for each b ∈ A (because b �= bi for i = 0 or i = 1, so

that ρ(t) an−1

→ ρ(ti) �RS bi0 and ρ(x + b0) ��RS bi0).

We conclude that the four cases above all contradict at �RS an0+
∑

b∈A an(x+

b0). Hence it must be the case that for each pair of traces t
an−1

→ t1 and t
an−1

→ t2,
t1 �RS t2. Moreover, by Lemma 1, t does not contain variables at depths smaller
than n − 1. It is not hard to see that this implies the lemma. ��

The following key lemma paves the way for the proof of Proposition 3.

Lemma 6. Let |A| < ∞. Let E be a finite collection of inequations over BCCSP
(A) that is sound modulo �RS. Let n be greater than the depth of any term in
E. Assume that:

– E � t � u;
– u �RS an0 +

∑
b∈A an(x + b0); and

– t has a summand ready similar to anx.

Then u has a summand ready similar to anx.

Proof. By induction on the depth of the proof of the inequation t � u from E.
We proceed by a case analysis on the last rule used in the proof of t � u from E.

– Case 1: E � t � u because σ(v) = t and σ(w) = u for some v � w ∈ E and
substitution σ.
Since t = σ(v) has a summand ready similar to anx, we can distinguish two
cases.
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• Case 1.1: v has as summand some variable z where σ(z) has a summand
ready similar to anx.
Since v has z as summand, and soundness of E yields v �RS w, by
Lemma 1, w also has z as summand. Then clearly u = σ(w) has a sum-
mand ready similar to anx.

• Case 1.2: v has a summand av′ where σ(av′) �RS anx.
Since n is larger than the depth of v, depth(av′) < n. So, since σ(av′) �RS

anx, av′ ak

→ z + v′′ where 1 ≤ k < n and σ(z) �RS an−kx. Since

v �RS w, by Lemma 1, w has a summand aw′ such that w′ ak−1

→
z + w′′, and consequently σ(w′) an−1

→ w′′′ with w′′′ �RS x. Furthermore,
aσ(w′) �RS σ(w) �RS an0 +

∑
b∈A an(x + b0). Then Lemma 5 yields

σ(w′) �RS an−1x. Hence σ(aw′) �RS anx. So u = σ(w) has a summand
ready similar to anx.

– Case 2: E � t � u by reflexivity. Then t = u, so u trivially has a summand
ready similar to anx.

– Case 3: E � t � u by transitivity.
Then E � t � v and E � v � u for some term v. By the soundness of E,
v �RS u �RS an0 +

∑
b∈A an(x + b0). So by induction, v has a summand

ready similar to anx. Hence, again by induction, u has a summand ready
similar to anx.

– Case 4: E � t � u because t = t′ + t′′ and u = u′ + u′′ for some t′, u′, t′′, u′′

such that E � t′ � u′ and E � t′′ � u′′.
Since t has a summand ready similar to anx, so does either t′ or t′′. Assume,
without loss of generality, that t′ has a summand ready similar to anx. Then
clearly u′ ��RS 0. So, since u �RS an0 +

∑
b∈A an(x + b0), it follows that

u′ �RS an0+
∑

b∈A an(x+b0). By induction, u′ (and thus u) has a summand
ready similar to anx.

– Case 5: E � t � u because t = at′ and u = au′ for some t′, u′ such that
E � t′ � u′.
Since t = at′ consists of a single summand, at′ �RS anx. By the soundness of
E, anx �RS au′. Since moreover au′ �RS an0 +

∑
b∈A an(x + b0), Lemma 5

yields u = au′ �RS anx. ��

Now we are in a position to prove Proposition 3.

Proof. Let E be a finite collection of inequations over BCCSP(A) that is sound
modulo �RS. Let n be larger than the depth of any term in E.

an0+
∑

b∈A an(x+ b0) does not contain a summand ready similar to anx. So
according to Lemma 6, the inequation anx � an0 +

∑
b∈A an(x + b0), which is

sound modulo �RS, cannot be derived from E. ��

Theorem 3. Let |A| < ∞. Then �RS is not finitely based over BCCSP(A).

Proof. By Proposition 3, no finite collection of inequations over BCCSP(A) that
is sound modulo �RS proves all inequations that are sound modulo �RS. ��
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4.2 Ready Simulation Equivalence with |A| < ∞

Following the same line as in Section 4.1, we can prove that if A is finite, then
the equational theory of BCCSP(A) modulo �RS does not have a finite basis.
The proofs are similar to the proofs of the corresponding results in the previous
section.

Lemma 7. Let |A| < ∞. Let E be a finite collection of equations over BCCSP
(A) that is sound modulo �RS. Let n be greater than the depth of any term in
E. Assume that:

– E � t ≈ u;
– u �RS an0 +

∑
b∈A an(x + b0); and

– t has a summand ready similar to anx.

Then u has a summand ready similar to anx.

Proof. By induction on the depth of the proof of the equation t ≈ u from E.
Recall that as in the proof of Lemma 4, without loss of generality, we may assume
that applications of symmetry happen first in equational proof, i.e. E is closed
with respect to symmetry.

Now the proof proceeds by a case analysis on the last rule used in the proof
of t ≈ u from E, similar to the proof of Lemma 6. This case analysis is omitted
here. ��

Proposition 4. Let |A| < ∞. Let E be a finite collection of equations over
BCCSP(A) that is sound modulo �RS. Let n be larger than the depth of any
term in E. Then from E we cannot derive the equation

anx + an0 +
∑

b∈A

an(x + b0) ≈ an0 +
∑

b∈A

an(x + b0)

Proof. Let E be a finite collection of equations over BCCSP(A) that is sound
modulo �RS. Let n be larger than the depth of any term in E.

an0 +
∑

b∈A an(x + b0) does not contain a summand ready similar to anx.
So according to Lemma 7, the equation anx + an0 +

∑
b∈A an(x + b0) ≈ an0 +∑

b∈A an(x + b0), which is sound modulo �RS, cannot be derived from E. ��

Theorem 4. Let |A| < ∞. Then �RS is not finitely based over BCCSP(A).

Proof. By Proposition 4, no finite collection of equations over BCCSP(A) that
is sound modulo �RS proves all equations that are sound modulo �RS. ��

4.3 Ready Simulation Equivalence with |A| = ∞

In this section we prove that if A is infinite, then the axiomatization A1-4
together with

RS a(bx + by + z) ≈ a(bx + by + z) + a(bx + z)
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from [2], which is ground-complete for BCCSP(A) modulo �RS, is ω-complete.
The proof is based on inverted substitutions; this technique, which is due to
Groote [7], works as follows. Consider an axiomatization E. For each equation
t ≈ u of which all closed instances can be derived from E, one must define a
closed substitution ρ and a mapping R : T(BCCSP) → T(BCCSP) such that:

(1) E � R(ρ(t)) ≈ t and E � R(ρ(u)) ≈ u;

(2) for each function symbol f (with arity n), E ∪ {pi ≈ qi, R(pi) ≈ R(qi) |
i = 1, . . . , n} � R(f(p1, . . . , pn)) ≈ R(f(q1, . . . , qn)) for all closed terms
p1, . . . , pn, q1, . . . , qn; and

(3) E � R(σ(v)) ≈ R(σ(w)) for each v ≈ w ∈ E and closed substitution σ.

Then, as proved in [7], E is ω-complete.

Theorem 5. If |A| = ∞, then A1-4+RS is ω-complete.

Proof. Consider two terms t, u ∈ T(BCCSP). Define ρ : V → T(BCCSP) by
ρ(x) = ax0, where ax is a unique action for x ∈ V that occurs in neither t nor u.
Such actions exist because A is infinite. We define R : T(BCCSP) → T(BCCSP)
as follows: ⎧

⎪⎪⎨

⎪⎪⎩

R(0) = 0
R(at) = aR(t) if a �= ax for all x ∈ V
R(axt) = x
R(t + u) = R(t) + R(u)

We now check the three properties from [7]:

(1) Since t and u do not contain actions of the form ax, clearly R(ρ(t)) = t.

(2) Consider the operator + . From R(p1) ≈ R(q1) and R(p2) ≈ R(q2) we
derive R(p1 + p2) = R(p1) + R(p2) ≈ R(q1) + R(q2) = R(q1 + q2).
Consider the prefix operator a . We distinguish two cases.

• a �= ay for all y ∈ V . Then from R(p1) ≈ R(q1) we derive R(ap1) =
aR(p1) ≈ aR(q1) = R(aq1).

• a = ay for some y ∈ V . Then R(ayp1) = y = R(ayq1).

(3) For A1-4, the proof is trivial. We check the remaining case RS. Let σ be a
closed substitution. We consider three cases.

• a = ay for some y ∈ V .
Then R(ay(bσ(x1) + bσ(x2) + σ(x3))) = y ≈ y + y = R(ay(bσ(x1) +
bσ(x2) + σ(x3)) + ay(bσ(x1) + σ(x3))).

• a �= ay for all y ∈ V and b = bz for some z ∈ V .
Then R(a(bzσ(x1) + bzσ(x2) + σ(x3))) = a(z + z + R(σ(x3))) ≈ a(z +
z + R(σ(x3))) + a(z + R(σ(x3))) = R(a(bzσ(x1) + bzσ(x2) + σ(x3)) +
a(bzσ(x1) + σ(x3))).

• a �= ay for all y ∈ V and b �= bz for all z ∈ V .
Then R(a(bσ(x1)+bσ(x2)+σ(x3)))=a(bR(σ(x1))+bR(σ(x2))+R(σ(x3)))
≈ a(bR(σ(x1)) + bR(σ(x2)) + R(σ(x3))) + a(bR(σ(x1)) + R(σ(x3))) =
R(a(bσ(x1) + bσ(x2) + σ(x3)) + a(bσ(x1) + σ(x3))). ��
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