
Electronic Notes in Theoretical Computer Science 85 No. 1 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume85.html 14 pages

Intensionality of Modal Logic for Robust
Ambient Calculus

Taolue Chen 1,2

State Key Laboratory of Novel Software Technology
Nanjing University
Nanjing, P.R.China

Tingting Han 3

State Key Laboratory of Novel Software Technology
Nanjing University
Nanjing, P.R.China

Jian Lu 4

State Key Laboratory of Novel Software Technology
Nanjing University
Nanjing, P.R.China

Abstract

Computation with mobility becomes a novel distributed computation paradigm with
the development of network technology. The calculus of Mobile Ambient is a widely
studied formal mechanism for describing both mobile computing and mobile com-
putation. To improve this process calculus, Robust Mobile Ambient is introduced
by providing co-actions. This paper deals with the modal logic for finite fragment
of this calculus without communication primitives. In details, we compare standard
behavioral equivalence with the equivalence induced by the logic (=L) and with the
structural congruence. As a result, we prove the intensionality of the logic and at
the same time, an axiomatization for =L is given.
Key words: Concurrent theory, Process algebra, Mobile ambient, Modal logic,
Intensionality

1 Supported by NNSFC (No.60273034, No.60233010), the 863 Hi-Tech Project
(No.2002AA116010), the 973 Program of China (No.2002CB312002)
2 Email: ctl@softlab.nju.edu.cn
3 Email: hantt@softlab.nju.edu.cn
4 Email: lj@nju.edu.cn

c©2003 Published by Elsevier Science B. V.

Chen, Han and Lu

1 Introduction

Computation with mobility is a kind of new distributed computation paradigm
with the development of network technology. There are two distinct areas of
work in mobility: mobile computing and mobile computation ([2]), the former
concerns computation that is carried out in mobile devices based on wireless
network while the latter concerns mobile code based on Web, e.g. applet,
agent, etc. The calculus of mobile ambient ([2], MA in short), introduced
by Cardelli and Gordon, is a formalism which can describe both of the two
aspects of mobility within a single framework, and is one of the hottest topics
in the area of mobile process calculi after π-calculus ([14]).

However, in [12], Levi and Sangiorgi have pointed out that there exists a
kind of dangerous interference in the original ambient calculus, which shows
some deficiency of original design for MA. To settle this problem, a new cal-
culus called Mobile Safe Ambient ([12], SA in short) is presented in order
to eliminate this kind of interferences by adding the corresponding co-action
primitive to the original action primitives of MA. However, as pointed out
by Guan et al ([7][8]), the co-actions introduced in SA are very vulnerable
to tampering in that some malicious third parties may easily consume them.
Thus a variant of SA, called Robust Ambient (ROAM in short), is introduced,
which can explicitly name the ambient that can participate in the reduction
and eliminate grave interference problem, too. At the same time, it allows a
finer grained and more natural access control.

Recently, because of the deficiency of using algebra method to model and
describe related properties of systems, e.g. mobility, safety, a lot of research
has focused on modal logic of MA. Modal logic (temporal logic especially) is
thought as a good compromise between description convenience and abstrac-
tion. In addition, many modal logics support useful computational applica-
tions, such as model-checking ([3]). In [3][5], Cardelli and Gordon introduce
a (branch time) temporal logic called ambient logic. In contrast to tradi-
tional process logic, such as the well-known Hennessy-Milner logic ([10]), it
has strong expressing power while only provides few modal operators; the
ambient logic has also been advocated as a foundation of query language for
semi-structured data ([1][5]). A lot of research has given insight into some
properties of ambient logic itself and related model checking algorithms, such
as [6][9][11][16].

However, within our knowledge, the research on modal logic for ROAM
has not been reported. One work of this paper is to adapt the related work of
Cardelli et al on MA to ROAM. We provide a modal logic for this important
calculi, which is significant to utilize the control ability of ROAM better and
model checking related problems.

For a logic system, extensionality and intensionality is a fundamental ques-
tion, especially for process logic, which can tell us whether the logic fits the
intended semantics of the calculus or model on which the logic is defined. A

2

Chen, Han and Lu

logic, defined on the terms of a calculus or of a model, is extensional if it can
only separate terms that have different behaviors: processes with the same
behaviors satisfy the same sets of formulas; the logic is intensional if it can
separate terms on the basis of their internal structure, even though their be-
haviors are the same ([16]). In the research on traditional modal logic, the
topic is well understood, such as Hennessy-Milner logic for CCS ([13]), the
discussion can be found in [10][13]. In [16], Sangiorgi deals with this problem
in the setting of a fragment of MA. However in ROAM, it is not immedi-
ately clear whether his result can be adapted, which is mainly due to two
reasons. First, in [16], the calculus has no restriction operators. Correspond-
ingly, modality which is used to handle restriction has not been considered in
the logic. Second, the co-action is introduced in ROAM while it is not in MA,
thus is not considered in [16]. The main work of this paper is to study the
extensionality and intensionality of modal logic for the finite fragment of pure
ROAM. Since in contrast, the conclusion for the former is obvious, we focus
on the latter. In detail, we compare three relations on process: the equiva-
lence induced by the ambient logic =L, behavioral equivalence and structural
congruence. It is worth pointing out that the calculus studied in this paper
is so-called pure calculus, i.e. it does not contain communication primitives.
Our starting point lies in that on one hand, in theory this kind of calculus
has adequate expressing power, and can encode synchronous π-calculus ([7]);
on the other hand, using existing conclusion, it is not difficult to extend our
results. We defer detailed explanations to Section 5; at the same time, we
exclude recursive or replicate operator in the calculus, due to a lack of mature
method dealing with recursive operator in modal logic. In the rest of this
paper, except pointing out otherwise, the ROAM refers to finite fragment of
pure calculus.

The rest of this paper is organized as follows: Section 2 introduces the
syntax and semantics of ROAM in brief and presents the modal logic for it;
Section 3 gives the co-inductive characterization for =L by introducing two
congruence relations; Section 4 compares three relations of process, and proves
the intensionality of the logic. As a byproduct, it also gives the axiomatization
for =L; Section 5 concludes the paper and discusses the related work.

2 ROAM and Modal Logic

In this section, we review the syntax and semantics for ROAM in brief and
will present the modal logic.

3

Chen, Han and Lu

2.1 Syntax and Semantics

2.1.1 Syntax

We assume that N is countable name set and is ranged over by m,n. Π is
process set (in general, ranged by P,Q) and is recursively defined as follows:

P ::= 0|(νn)P |P |Q|M.P |n[P]

where, M is element of capability sets (denoted by CAP) which is recursively
defined as:

M ::= in〈n〉|out〈n〉|open〈n〉|in〈n〉|out〈n〉|open
where, n ∈ N . Due to space restriction, we refer reader to [7][8] for the
intended meaning of these operators. As in common process calculi, (νn)P
introduces the distinction of bound names and free names. In common, we use
fn(P) to denote the set of free names appearing in process P ; for capability
M, every name appearing in it is a free name. A process P is called closed if
fn(P) = ∅. In general, we denote that P is a process expression by P : Π.
Note that the well-known α-convention is used implicitly so as to avoid name
capturing.

2.1.2 Reduction Semantics

The reduction relation→ of processes is given by the following reduction rules:

(R-in)

n[in〈m〉.P1|P2]|m[in〈n〉.Q1|Q2]→ n[P1|P2|m[Q1|Q2]]

(R-out)

n[out〈m〉.P1|P2|m[out〈n〉.Q1|Q2]]→ n[P1|P2]|m[Q1|Q2]

(R-open)

open〈n〉.P |n[open.Q1|Q2]→ P |Q1|Q2

(R-Par)

P → P ′

P |Q→ P ′|Q
(R-Res)

P → P ′

(νn)P → (νn)P ′

(R-Amb)

P → P ′

n[P]→ n[P ′]

(R-≡)
P ≡ P ′ P ′ → P ′′ P ′′ ≡ P ′′′

P → P ′′′

As usual, pure reduction semantics can’t describe process behavior com-
pletely, so we introduce structural congruence, denoted by ≡, which is defined

4

Chen, Han and Lu

as the smallest binary relation satisfying the following rules:

(Struct Ref) P ≡ P

(Struct Symm) Q ≡ P if P ≡ Q

(Struct Trans) P ≡ R if P ≡ Q and Q ≡ R

(Struct Res) (νn)P ≡ (νn)Q if P ≡ Q

(Struct Par) P |R ≡ Q|R if P ≡ Q

(Struct Amb) m[P] ≡ m[Q] if P ≡ Q

(Struct Act) M.P ≡ M.Q if P ≡ Q

(Struct Par Comm) P |Q ≡ Q|P
(Struct Par Assoc) (P |Q)|R ≡ P |(Q|R)

(Struct Res Res) (νn)(νm)P ≡ (νm)(νn)P

(Struct Res Par) (νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P)

(Struct Res Amb) (νn)m[P] ≡ m[(νn)P] if n
= m

(Struct Zero Par) P |0 ≡ P

(Struct Zero Res) (νn)0 ≡ 0

we also refer reader to [7][8] for intuition explanation. In general, we use
⇒ to denote the reflective and transitive closure of →.

2.1.3 Behavior equivalence relation

In the research of equation theory for ROAM, the notion of behavior equiv-
alence can be formalized in two ways: one is the context equivalence used in
[7] which is based on testing, the other is barbed congruence based on context
([15]). In fact, in the context of ROAM, the latter is stricter than the former,
and has clearer intuition sense and neater proof. Due to these advantages,
we regard it as our definition for behavior equivalence. Further more, due to
Lemma 2.5 and results of Section 4 in this paper, in contrast to using context
equivalence in [7] as the definition for ≈, our conclusion is stronger.

Definition 2.1(i) For name n, P ↓n if there exists p̃,M, P1, such that M ∈
{in〈n〉, in〈n〉, out〈n〉, open|n ∈ N}, (fn(M) ∪ {n}) ∩ {p̃} = ∅, and P ≡
(νp̃)(n[M.P1|P2]|P3).

(ii) P ⇓n if there exists P ′ such that P ⇒ P ′ and P ′ ↓n.

Definition 2.2 (Barbed bisimulation)

Barbed bisimulation is the largest symmetric relation on Π, denoted by ≈̇,
5

Chen, Han and Lu

which satisfies: if P ≈̇Q, then

(i) If P ⇒ P ′, then Q′ exits, such that Q⇒ Q′ and P ′≈̇Q′.

(ii) For any name n, P ⇓n if and only if Q ⇓n.

Definition 2.3 (Barbed congruence)

Process P,Q are barbed congruence, denoted by P ≈ Q, if for any context
C[.], C[P]≈̇C[Q]. Where, the definition for context is standard in literature.

Definition 2.4 (Context equivalence, c.f. [7])

Process P,Q are context equivalence, denoted by P ≈c Q , if for any
context C[.] and ambient name n, C[P] ⇓n⇔ C[Q] ⇓n.

The following lemma can be derived directly from definition:

Lemma 2.5 ≈⊆≈c.

2.2 Modal logic

In this section, based on the results of [3][4], we introduce a modal logic and
refer the reader to above literatures for intended meanings.

2.2.1 Logic formula

We assume countable infinite variable set V, in general, V = {x, y, z, · · ·}.
Note that it is different from name set N for process expression. In general,
we assume that V ∩ N = ∅ and η ranges over V or name set N . The well-
formed formula of modal logic is defined by BNF as follows:

A,B ::= T |¬A|A ∨ B|0|A|B|A � B|η[A]|A@η|η r©A|A� η|∀x.A| � A

We denote the set of all logic formulas by ∅. Note that for a formula A, the
notion of bound names is of no sense, but because of the existence of ∀x.A,
we must introduce the notion of bound variable, which coincides with the
traditional definition. In this paper, we denote the free variable and bound
variable of formula A by fv(A) and bv(A) respectively. A formula is closed if
fv(A) = ∅.

It is worth noting that the logic introduced in this section is actually iden-
tical to the original Ambient Logic([3][4]), since the difference in operational
semantics on ROAM is all hidden by the temporal diamond operator �.

2.2.2 Satisfy relation

In general, the semantics of modal logic can be defined by satisfy relation
P |= A as follows, where A is closed.

P |= T

P |= ¬A def
= ¬(P |= A)

P |=A ∨B
def
= P |= A ∨ P |= B

P |= 0
def
= P ≡ 0

6

Chen, Han and Lu

P |= A|B def
= ∃P1, P2.P ≡ P1|P2 ∧ P1 |= A ∧ P2 |= B

P |= A � B
def
= ∀R.R |= A⇒ R|P |= B

P |= n[A]
def
= ∃P1.P ≡ n[P1] ∧ P1 |= A

P |= A@n
def
= n[P] |= A

P |= n r©A
def
= ∃P1.P ≡ (νn)P1 ∧ P1 |= A

P |=A� n
def
= (νn)P |= A

P |= ∀x.A def
= ∀n.n ∈ N ⇒ P |= A{n/x}

P |= �A def
= ∃P1.P ⇒ P1 ∧ P1 |= A

As in [3], we have:

Lemma 2.6 If P ≡ Q and P |= A, then Q |= A.

Definition 2.7 (Equivalence induced by logic =L) For any process P,Q,
P =L Q, if for any closed formula A, P |= A if and only if Q |= A.

For convenience, we introduce the some dual modalities. They also appear
in standard modal logic.

A ∝ B
def
= ¬(A � ¬B)

◦A def
= ¬ � ¬A

∃x.A def
= ¬(∀x.¬A)

A ∧ B
def
= ¬(¬A ∨ ¬B)

In intuition, P |= A ∝ B, if there exists process R, R |= A, P |R |= B;
P |= ◦A, if for any process P ′, P ⇒ P ′, P ′ |= A. The other two dual modalities
are the standard forms in first order logic, we omit the explanations.

3 Co-inductive Characterization for =L

As mentioned above, we need to compare three equivalence relations on pro-
cess. However, if we use the definition for =L directly, it is difficult to attain
our goal. Under this circumstance, we wish to give the co-inductive character-
ization for =L. In this section, inspired by [16], we will give two bisimulation
relations which coincide with =L.

3.1 Intension Bisimulation

Definition 3.1 Let P be a process, then

(i) P
µ→ P ′, if P ≡ µ.P1|P2 and P ′ ≡ P1|P2, where µ ∈ CAP .

7

Chen, Han and Lu

(ii) P
µ⇒ P ′, if P ⇒ µ→⇒ P ′.

Definition 3.2 (Intension bisimulation) Intension bisimulation, denoted
by ∼=, is the largest symmetric relation on processes satisfying the following
conditions: if P ∼= Q, then

(i) If P ≡ P1|P2, then there exists Q1, Q2, such that Q ≡ Q1|Q2 and Pi
∼= Qi,

where i = 1, 2.

(ii) If P ≡ 0, then Q ≡ 0.

(iii) If P → P ′, then Q′ exists, such that Q⇒ Q′ and P ′ ∼= Q′.

(iv) If P
µ→ P ′, then Q′ exists, such that Q

µ⇒ Q′ and P ′ ∼= Q′, where µ ∈ CAP .

(v) If P ≡ n[P ′], then Q′ exists, such that Q ≡ n[Q′] and P ′ ∼= Q′.

(vi) If P ≡ (νn)P ′, then Q′ exists, such that Q ≡ (νn)Q′ and P ′ ∼= Q′.

In order to prove the congruence property of intension bisimulation, we
introduce another characterization denoted by ∼=′ for =L.

Definition 3.3 (Variant of intension bisimulation) Variant of intension
bisimulation, denoted by ∼=′, is the largest symmetric relation on processes
satisfying the following conditions: if P ∼=′ Q, then

(i) If P = P1|P2, then there exists Q1, Q2, such that Q ≡ Q1|Q2 and Pi
∼=′ Qi,

where i = 1, 2.

(ii) If P = 0, then Q ≡ 0.

(iii) If P = µ.P ′, then Q′ exists, such that Q
µ⇒ Q′ and P ′ ∼=′ Q′, where

µ ∈ CAP .

(iv) If P = n[P ′], then Q′ exists, such that Q ≡ n[Q′] and P ′ ∼=′ Q′.

(v) If P = (νn)P ′, then Q′ exists, such that Q ≡ (νn)Q′ and P ′ ∼=′ Q′.

In the below, we will prove that the two relations coincide. We use the
same way as [16]. First, we give some lemmas whose proofs are trivial. Due
to space restriction, we omit the details.

Lemma 3.4 If P ∼=′ Q, then for any context C[.], C[P] ∼=′ C[Q].

Proof. Induction on the structure of C[.]. ✷

Lemma 3.5 If P ≡ P ′ ∼=′ P ′′, then P ∼=′ P ′′.

Proof. Induction on the derivation of P ≡ P ′. ✷

Lemma 3.6 If P ∼=′ Q and P → P ′, then there exists Q′, such that Q⇒ Q′

and P ′ ∼=′ Q′.

Proof. Induction on the derivation of P → P ′. ✷

Based on the above work, it is easy to show the following theorem.

Theorem 3.7 ∼==∼=′, and they are congruence relations.

8

Chen, Han and Lu

3.2 Co-inductive Characterization

In this section, we will show that the intention bisimulation introduced in
Section 3.1 coincides with =L.

Theorem 3.8 If P ∼= Q, then P =L Q.

Proof. It is enough to show that if P ∼= Q, then P |= A if and only if Q |= A,
which can be shown by induction on the structure of formula A. ✷

It is rather difficult to prove the converse of Theorem 3.8. In standard
modal logic, there are abound temporal modalities. However, in our logic
system, we don’t introduce corresponding modality for each capability, which
may make it difficult to use some standard techniques (e.g. the proof for
Hennessy-Milner logic characterizes the strong bisimulation of CCS process
[12][15]). To settle this problem, we define this kind of modality in our logic
first, and then standard techniques can be used. The following definition is
taken from [16].

Definition 3.9(i) Process P is non-trivial, if ¬(P ≡ 0).

(ii) Process P is single threaded , if for some P ′, P ≡ P ′, the outmost operator
of P ′ is not parallel |.
Obviously, we have

(i) Process P is non-trivial if and only if ¬(P |= 0).

(ii) Process P is single threaded, if and only if P |= 1comp
def
= ¬(¬0|¬0).

Definition 3.10(i) 1proc
def
= 1comp ∧ ¬∃x.x[T].

(ii) 〈open〉.A def
= ∀x.((1proc ∝ �¬x[T] ∧ A)@x) ∧ 1proc.

(iii) 〈open〈n〉〉.A def
= ∀x.(n[x[0]|〈open〉] � �(x[0]|A)) ∧ 1proc.

(iv) 〈in〈n〉〉.A def
= ∀x((n[1proc] ∝ �x[n[T]|A])@x) ∧ 1proc.

(v) 〈in〈n〉〉.A def
= ∀x.((n[〈in〈x〉〉] � �n[x[A]])@x) ∧ 1proc.

(vi) 〈out〈n〉〉.A def
= ∀x.(n[1proc] ∝ �(x[T]|n[A])@x) ∧ 1proc.

(vii) 〈out〈n〉〉.A def
= ∀x.((�(x[A]|n[out〈n〉]@n@x) ∧ 1proc.

Lemma 3.11 P |= 〈µ〉.A if and only if there exists P ′, P ′′ such that P ≡ µ.P ′,
P ′ ⇒ P ′′ and P ′′ |= A, where µ ∈ CAP .

Proof. (Sketch) Due to space restriction, we only choose a pair of cases to
prove, e.g. open.A, and 〈open〈n〉〉.A. Define

〈open〉 def
= ∀x.((1proc ∝ �¬x[T])@x) ∧ 1proc

It is enough to show that P |= 〈open〉 if and only if there exits P ′ such that
P ≡ open.P ′.

9

Chen, Han and Lu

By the definition of satisfy relation, we have: if P |= 1proc, then P is
single threaded and is not an ambient, so P is only structure congruence to
0, open.P ′, open〈n〉.P ′, in〈n〉.P ′, in〈n〉.P ′, out〈n〉.P ′, out〈n〉.P ′. Think of the
remainder of formulas, we have: for any x, there exists Q such that Q is single
threaded and not an ambient, and x[P]|Q can reduce to an ambient containing
no x, so we can conclude that there exists P ′ such that P ≡ open.P ′. In the

same way, define 〈open〈n〉〉 def
= n[x[0]|〈open〉] ∝ �(x[0]|T)∧1proc. It is enough

to show P |= 〈open〈n〉〉 if and only if there exists P ′, such that P ≡ open〈n〉.P ′.
By the definition of satisfy relation, we have: if P |= 1proc, then P is single
threaded and not an ambient, so P can only be structure congruence to 0,
open.P ′, open〈n〉.P ′, in〈n〉.P ′, in〈n〉.P ′, out〈n〉.P ′, out〈n〉.P ′. Think of the
remainder of formula, we have: there exists Q, Q |= 〈open〉, and P |n[x[0]|Q]
can reduce to a process R such that R |= x[0], and then we can conclude that
P ≡ open〈n〉.P ′ for some P ′.

The remainder of the theorem can be proved in the same way, here, we
give some important definitions used by the proof.

〈in〈n〉〉 def
= (n[1proc] ∝ �x[n[T]|A])@x ∧ 1proc.

〈in〈n〉〉 def
= (n[〈in〈x〉〉] ∝ �n[x[A]])@x ∧ 1proc.

〈out〈n〉〉 def
= (n[1proc] ∝ �x[T]|n[A])@x ∧ 1proc.

〈out〈n〉〉 def
= (�(x[A]|n[out〈x〉]))@n@x ∧ 1proc

✷

Based on the above work, we can apply some standard proof techniques
([13]).

Definition 3.12(1) ∼=′
0= Π× Π.

(2) P ∼=′
i+1 Q iff

(i) If P = P1|P2, then there exists Q1, Q2, such that Q ≡ Q1|Q2 and P1
∼=′

k

Q1, P2
∼=′

l Q2, where i = max(k, l).
(ii) If P = 0, then Q ≡ 0.

(iii) If P = µ.P ′, then there exists Q′, such that Q
µ⇒ Q′ and P ′ ∼=′

i Q
′, where

µ ∈ CAP .
(iv) If P = n[P ′], then there exists Q′, such that Q ≡ n[Q′] and P ′ ∼=′

i Q
′.

(v) If P = (νn)P ′, then there exists Q′, such that Q ≡ (νn)Q′ and P ′ ∼=′
i Q

′

(3) ∼=′
i=

⋂
j<i
∼=′

j.

The following lemma can be proved easily:

Lemma 3.13 ∼=′=
⋂

j
∼=′

j.

Due to Definition 3.10, we can use some special logic formula to discrimi-
nate processes. we will abuse the notion of formula a little which is defined as
A,B ::= 0|〈µ〉.A|A|B|η[A]|η r©A. Note that the formula can be derived from
the original modal logic in Section 2. So we don’t extend the syntax of modal

10

Chen, Han and Lu

logic.

Definition 3.14(1) The depth of formula A can be defined recursively:

dep(0) = 0

dep(〈µ〉.A) = dep(A) + 1 µ ∈ CAP

dep(A|B) = max(dep(A), dep(B)) + 1

dep(η[A]) = dep(A) + 1

dep(η r©A) = dep(A) + 1

(2) PLk
def
= {A|dep(A) ≤ k}

Lemma 3.15 For any A ∈ PLk, if P |= A⇔ Q |= A, then P ∼=′
k Q.

Proof. Induction on k. ✷

Theorem 3.16 If P =L Q, then P ∼= Q.

Proof. Note that PL
def
=

⋃
k PLk. By Lemma 3.13 and Lemma 3.15, it can

be easily obtained. ✷

By Theorem 3.7, Theorem 3.8 and Theorem 3.16, we can conclude that
intension bisimulation characterizes =L.

4 Comparison of Three Relations

In this section, we will compare three relations on process: the equivalence
induced by the ambient logic =L, behavioral equivalence ≈ and structural
congruence ≡. Since the relation of ≈ and =L is easily derived, we focus the
discussion on the relation between =L and ≡.
Theorem 4.1 =L⊂≈.

Proof. It is easy to prove that ∼=⊆≈. By Theorem 3.16, =L⊆≈. Think of
P = in〈n〉.in〈m〉 and Q = in〈n〉|in〈m〉, obviously, P
=L Q, however, P ≈ Q,
so the inclusion relation is strict. ✷

In the below, we will discuss the relation between =L and ≡.
Lemma 4.2 If P ∼= Q, then Prefix(P) = Prefix(Q), where Prefix(P) is
the number of prefix in process P .

Proof. By induction on the structure of P , it is easy to show that Prefix(P) >
Prefix(Q) will lead to contradiction. We omit the details. ✷

The intuition of above lemma lies in that in the definition of ∼=, the weak
bisimulation

µ⇒ can only be
µ→, namely in essence it is a strong bisimulation.

Strictly speaking, we have the following lemma, which can be derived from
Lemma 4.2 directly.

11

Chen, Han and Lu

Lemma 4.3 If P ∼= Q and P
µ→ P ′, then Q′ exists, such that Q

µ→ Q′ and
P ′ ∼= Q′, where µ ∈ CAP .

Lemma 4.4 If P ∼= Q, then P ≡ Q.

Proof. Note that by Theorem 3.7, we have P ∼=′ Q. Apply induction on
the structure of P , we only give the proof for one case. Suppose P = µ.P ′,
by definition, there exists Q′, Q′′, Q′′′, such that Q ⇒ Q′ ≡ µ.Q′′, Q′′ ⇒
Q′′′, Q′′′ ∼=′ P ′. By Lemma 4.3, we have Q = Q′ and Q′′ = Q′′′. Then by
induction hypothesis, the proposition is correct. ✷

Theorem 4.5 =L=≡
Proof. It is enough to show that ∼==≡. Obviously, ≡⊆∼= and by Lemma 4.4,
∼=⊆≡. The proof is complete. ✷

Now, we can conclude that ≡==L⊂≈, which shows that the modal logic
introduced in this paper is an intensional logic. As a byproduct, we give an
axiomatization for =L, which is the structural congruence rules in Section 2.1.

5 Conclusion and Related Work

We summarize our main contributions as follows: in the setting of finite frag-
ment of pure ROAM, a modal (temporal) logic is introduced; at the same time,
three relations on process, that is, the equivalence induced by the ambient logic
=L, behavior equivalence ≈ and structural congruence ≡ are compared. We
conclude that ≡==L⊂≈. This result tells us that the logic introduced in
this paper is intensional, which is just what we want. In the proof for this
result, we find that although the logic only contains a few modalities, the stan-
dard modality corresponding to process action in common process logic (e.g.
Hennessy-Milner Logic) can be defined in the system, which shows the strong
expressing power of our logic system. Besides that, the axiomatization for =L

is given as a byproduct. The proof in this paper follows the pattern of [16],
however, we focus on handling restriction operator and co-actions. In con-
trast to [16], some definitions are neater due to the introduction of co-actions,
and the restriction operator needs careful attentions. The main result of this
paper strengthens the findings of Sangiorgi ([16]) significantly, and shows the
robustness against variations of the mobile ambient calculus.

The related works on this paper are mainly [3][4][7][8][9][16]. [7][8] give de-
tailed discussion on type system and algebra theory of ROAM. [3][4] introduce
modal logic called ambient logic in the setting of mobile ambient. Because the
form of this logic has noting to do with concrete actions (capability), our
modal logic has the same form as theirs. [16] deals with the intensionality
and extensionality of ambient logic while [9] deals with the property and ax-
iomatization of =L for two Turing complete sub-calculus. The main idea and
method are inspired by [16], however, different from it, the robust ambient cal-
culus introduces co-actions, which brings the difficulties for defining extended

12

Chen, Han and Lu

modalities. We settled this problem in the setting of ROAM; further more, in
[16], the restriction operator is not considered, we study this operator based
on [4], which can extend the result of [16] to the full finite calculus. Besides
that, due to the similarity of ROAM and SA, our results can be easily adapted
to the setting of safe ambient calculus (SA [12]).

As mentioned in Section 1, we don’t introduce communication primitives.
Due to the similarity of communication mechanism in ROAM and MA, we can
apply the method used in [16] and obtain the similar result. Since the goal of
this paper is to settle the difficulties induced by the restriction operator and
co-actions, we do not report the trivial extension.

In the setting of SA, Merro and Hennessy also give a characterization of
barbed congruence ([11]), since the SA and ROAM both have co-actions, it
is sensible to compare their techniques and results with ours. And the work
in [11] is in the weak setting, there is an obvious question that how much of
the work in this paper can also be carried over to that setting. We leave it
as our future work. Besides that, [3][6] introduce model-checking algorithm in
the setting of ambient logic, which can be adapted to modal logic discussed in
this paper directly. However, how to improve the efficiency of the algorithm
according to the character of our logic is worth studying further.

Acknowledgement

The authors thank the three referees for many constructive suggestions and
comments.

References

[1] L.Cardelli. Semistructured computations. Proc.7th Intl. Workshop on Data
Base Programming Languages, 1999.

[2] L.Cardelli, A.Gordon. Mobile ambients. Theoretical Computer Science,
240(2000), pp.177-213, 2000.

[3] L.Cardelli, A.Gordon. Anytime, Anywhere: Modal logics for mobile ambients.
POPL’2000, pp.365-377. ACM Press, 2000.

[4] L.Cardelli, A.Gordon. Logical properties of name restriction. Typed Lambda
Calculi and Applications, volume 2044 of LNCS, Springer-Verlag, 2001.

[5] L.Cardelli, G.Ghelli. A query language for semistructured data based on the
ambient logic ESOP’2001, volume 2028 of LNCS, pp.1-22. Springer-Verlag,
2001.

[6] W.Charatonik, J.Talbot. The decidability of model checking mobile ambients.
15th Annual Conf of European Association for Computer Science Logic. Volume
2142 of LNCS, pp.339-354. Springer-Verlag, 2001.

13

Chen, Han and Lu

[7] X.Guan. Type system and algebraic theory of Robust Ambiens, Phd thesis,
ShangHai Jiaotong University, 4,2002.

[8] X.Guan, Y.Yang, J.You. Typing evolving ambients. Information Processing
Letters, 80(5), pp.265-270, Nov.2001.

[9] D.Hirschkoff, E.Lozes, D.Sangiorgi. Separability, expressiveness, and
decidability in the ambient logic. LNCS, Springer-Verlag, 2002.

[10] M.Hennessy, R.Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32:137-161, 1985.

[11] M.Merro and M.Hennessy. Bisimulation Congruence in Safe Ambients. In
Proc.POPL’02, ACM Press, 2002.

[12] F.Levi, D.Sangiorgi. Controlling interference in ambients. In Proc. POPL’00,
pp.352-364, Boston, Massachusetts, 2000.

[13] R.Milner. Communication and Concurrency, Prentice Hall, 1989.

[14] R.Milner, J.Parrow, D.Walker. A Calculus of Mobile Process, part I/II. Journal
of Information and Computation, 100:1-77,Sept.1992.

[15] R.Milner, D.Sangiorgi. Barbed bisimulation. In W.Kuich, editor, Proceedings
of ICALP’92, volume 623 of LNCS, pp.685-695, Springer-Verlag, 1992.

[16] D.Sangiorgi. Extensionality and intensionality of the ambient logic. POPL’2001,
pp.4-13, ACM Press, 2001.

14

