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Question 1

Give a definition of Markov stochastic process. What is a continuous Markov
process?

Answer: A process x(t) is Markov, if for any t1, . . . , tn, tn+1 the condi-
tional probability density has the property:

p(x(tn+1) | x(tn), . . . , x(t1)) = p(x(tn+1) | x(tn))

This is sometimes referred as a process with no memory or with no afteref-
fect.

Markov process is called continuous, if for all moments E{(∆x(t))n |
x(t)} = 0 with n > 2 the following coefficients tend to zero:

Kn(x, t) = lim
∆t→0

1

∆t
E{(∆x(t))n | x(t)} = 0 , ∀n > 2

The first and the second coefficients are called drift and diffusion coefficients:

K1(x, t) = lim
∆t→0

1

∆t
E{∆x(t) | x(t)} , K2(x, t) = lim

∆t→0

1

∆t
E{(∆x(t))2 | x(t)}

Continuous Markov processes are described by the Fokker-Planck equation:

∂p(x, t)

∂t
= − ∂

∂x
[K1(x, t)p(x, t)] +

1

2

∂2

∂x2
[K2(x, t)p(x, t)]

Question 2

Let {xn}n∈N be a sequence of independent identically distributed random
variables. Which of the following processes is Markov?
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a) yn = x1 + · · ·+ xn

b) yn = x1 × · · · × xn

c) yn = max{0, x1, . . . , xn}

d) yn =
(
n, x1+···+xn

n

)
Hint: convert to iteration yn+1 = f(yn).

Answer: All of the processes {yn}n∈N are Markov, as they can be repre-
sented by the following iterations:

a) yn+1 = yn + xn+1, y1 = 0.

b) yn+1 = yn × xn+1, y1 = 1.

c) yn+1 = max{yn, xn+1}, y1 = 0.

d) yn+1 = (zn+1, vn+1) =
(
zn + 1,

(
vn+xn+1

zn+1

))
, y1 = (1, x1).

Question 3

Let {xn}n∈N be a sequence of independent identically distributed random
variables. Why is the following process not Markov?

yn = [x1 + · · ·+ xn]

where [·] means rational part.

Answer: Although the sum of independent random variables is Markov
(see previous example), the rational part yn+1 of the sum x1 + · · · + xn
depends on all elements of the sequence, not just xn+1. Therefore, yn+1

cannot be computed from yn and xn+1.

Question 4

Let {m(t)}t≥0 be a stochastic process defined by

m(t) =
n(t)− νt√

ν

where n(t) is the value of a stationary Poisson process {n(t)}t≥0 with ex-
pected value E{n(t)} = νt (see Appendix A). Use properties of the Poisson
process to

a) Show that the expected value and variance of m(t) are:

E{m(t)} = 0 , σ2(m(t)) = t
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Answer: Expected value:

E{m(t)} = E
{
n(t)− νt√

ν

}
=

E{n(t)} − νt√
ν

=
νt− νt√

ν
= 0

Variance:

σ2(m(t) = E{m2(t)} − (E{m(t)})2 = E{m2(t)} (by E{m(t)} = 0)

= E

{[
n(t)− νt√

ν

]2
}

= E
{
n2(t)− 2n(t)νt+ (νt)2

ν

}
=

E{n2(t)} − 2E{n(t)}νt+ (νt)2

ν

=
E{n2(t)} − 2(νt)2 + (νt)2

ν
(by E{n(t)} = νt)

=
E{n2(t)} − (νt)2

ν

=
E{n2(t)} − E{n(t)}2

ν
(by E{n(t)} = νt)

=
νt

ν
= t (by σ2(n(t)) = νt)

b) Prove that the differential dm(t) = m(t+ dt)−m(t) has the property

lim
ν→∞

(dm2) = dt

Answer: The differential dm is

dm(t) = m(t+dt)−m(t) =
n(t+ dt)− ν(t+ dt)√

ν
−n(t)− νt√

ν
=
dn(t)− νdt√

ν
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The formula for dm2 is

dm2 =
(dn− νdt)2

ν

=
dn2 − 2dnνdt+ ν2dt2

ν

=
dn2

ν
(by dn = 0 a.e. and dt2 = 0)

=
dn

ν
(by dn2 = dn)

=
dn

ν
− dt+ dt

=
1√
ν

(
dn− νdt√

ν

)
+ dt

=
1√
ν
dm+ dt

Using dm2 = dm√
ν

+ dt

lim
ν→∞

(dm2) = lim
ν→∞

(
dm√
ν

+ dt

)
= dt

c) The stochastic process {m(t)}t≥0 becomes Wiener process as ν →∞.

Answer: Recall that Wiener process {w(t)}t≥0 is a stationary Gaus-
sian stochastic process with independent increments ∆w(t) and with
the expected value and variance equal to

E{w(t)} = 0 , σ2(w(t)) = t

and with stochastic differentials dw(t) having the property:

dw2 = dt

We have shown that the expected value and variance of stochastic
process {m(t)}t≥0 are also equal to

E{m(t)} = 0 , σ2(m(t)) = t

The increments

∆m(t) =
∆n(t)− ν∆t√

ν

are independent, because ∆n(t) are independent increments of the
Poisson process.
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We have shown also that as the rate of events increases ν → ∞, the
differentials dm2 tend to dt, which agrees with the property dw2 = dt
of the Wiener process.

It only remains to show that the probability distribution of m(t)
tends to Gaussian distribution as ν → ∞. This follows form the
fact that m(t) is a transformation of the values n(t) of a Poisson pro-
cess, so that the distribution of m(t) is a push-forward probability
P (n(t) =

√
νm(t) + νt), where P (n(t)) is the Poisson distribution

with the expected rate ν. It is well-known that the Poisson distribu-
tion with large rate ν (and hence large E{n(t)} = νt) can be approxi-
mated by Gaussian distribution with the mean and variance equal to
ν. This can be understood from the fact that both the Poisson and
the Gaussian distributions can be obtained from binomial distribution
in the limit n → ∞ (these facts are known as the Poisson theorem
and the De Moivre-Laplace theorems respectively). Therefore, in the
limit ν →∞, stochastic process m(t) becomes Gaussian with expected
value E{m(t)} = 0 and variance σ2(m(t)) = t.

A Poisson process

The Poisson point process {n(t)}t≥0 is a discrete-valued stochastic process
counting the number n ∈ N0 = {0, 1, 2, 3, . . .} of occurrences of some event
during time interval [0, t], and satisfying the following properties:

Independent increments : The number ∆n(∆t) = n(t + ∆t) − n(t) of
events in the interval ∆t is independent of the number of events in
any other interval non-overlapping with ∆t (e.g. [0, t]). This property
implies {n(t)}t≥0 is a Markov process.

Orderliness : The probability of two or more events during sufficiently
small interval ∆t is essentially zero:

P{∆n(∆t) ≥ 2} = o(∆t)

(note the use of the small ‘o’ notation.)

These two properties imply that the number n(t) of events in [0, t] has
Poisson distribution. For stationary (or homogeneous) Poisson process this
distribution is

P (n(t)) =
(νt)n

n!
e−νt

where ν is the expected rate or intensity parameter (the expected number of
events in a unit interval). The expected value and the variance for stationary
Poisson process are respectively

E{n(t)} = νt , σ2(n(t)) = νt
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The orderliness property implies also that differential dn(t) = n(t+dt)−n(t)
can have only two values: dn(t) = 0 (almost everywhere) or dn(t) = 1 (in
a set of measure zero). This means that the differential dn of a Poisson
process satisfies the property

dn2 = dn


