Problems 4: Gaussian white noise and Wiener process

Roman Belavkin

Middlesex University

Question 1

Compute characteristic function $\theta(u)$ of the uniform density function $p(x) = \frac{1}{b-a}$ if $x \in [a, b]$, and p(x) = 0 otherwise. Hint: use the inverse Fourier transform

$$\theta(u) = \mathcal{F}[p(x)](u) := \int_{-\infty}^{\infty} e^{iux} p(x) \, dx$$

Answer: Because the function p(x) is zero outside the interval [a, b], we only need take the integral from a to b:

$$\theta(u) = \int_{a}^{b} e^{iux} \frac{1}{b-a} \, dx = \left. \frac{1}{b-a} \frac{1}{iu} \, e^{iux} \right|_{a}^{b} = \frac{e^{iub} - e^{iua}}{iu(b-a)}$$

Question 2

The characteristic function of Gaussian density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ is

$$\theta(u) = \int_{-\infty}^{\infty} e^{iux} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = e^{iu\mu - \frac{\sigma^2}{2}u^2}$$

Compute all derivatives of the cumulant generating function $\Gamma(u) = \ln \theta(u)$.

Answer: The cumulant generating function is $\Gamma(u) = iu\mu - \frac{\sigma^2}{2}u^2$. Its derivatives are:

 $\Gamma'(u)=i\mu-\sigma^2 u\,,\qquad \Gamma''(u)=-\sigma^2=i^2\sigma^2\,,\qquad \Gamma^{(n)}(u)=0\,,\quad \forall\,n>2$

Question 3

Use the property $f(0) = \int f(x)\delta(x) dx$ of the Dirac δ -function to show that its Fourier transform is a constant function $\mathcal{F}[\delta(x)](y) = 1$.

Answer: Applying the Fourier transform $\hat{g}(y) = \int g(x)e^{-ixy} dx$ to $g(x) = \delta(x)$, and using the property of δ -function with $f(x) = e^{-ixy}$, we have:

$$\mathcal{F}[\delta(x)](y) = \int_{-\infty}^{\infty} \delta(x)e^{-ixy} \, dx = e^{-i0y} = 1$$

Question 4

The Dirac δ -function can be approximated by a Gaussian density function with small variance:

$$\delta(x) = \lim_{\sigma \to 0} \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} \right)$$

Use this property to prove that Fourier transform of $\delta(x)$ is a constant function.

Answer: Fourier transform of the Gaussian distribution is

$$\mathcal{F}[p(x)](t) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma^2} - ixt} \, dx = \frac{\sigma\sqrt{2\pi}}{\sigma\sqrt{2\pi}} e^{-\frac{t^2\sigma^2}{2}} = e^{-\frac{t^2\sigma^2}{2}}$$

Taking the limit under the integral and moving it outside the integral gives:

$$\mathcal{F}[\lim_{\sigma \to 0} p(x)](t) = \lim_{\sigma \to 0} \mathcal{F}[p(x)](t) = \lim_{\sigma \to 0} e^{-\frac{t^2 \sigma^2}{2}} = 1, \quad \forall t \in \mathbb{R}$$

Question 5

Prove that a δ -correlated process has constant spectral density, and therefore an unbounded (i.e. infinite) variance σ^2 . Hint: use the definition of the spektral density as the Fourier transform of the correlation function (in this case $k(\tau) = K\delta(\tau)$, where K is a constant), and the fact that $\sigma^2 = k(0)$.

Answer: The spektral density of a δ -correlated process is:

$$S(\lambda) = \int k(\tau) e^{-i\tau\lambda} d\tau = \int K\delta(\tau) e^{-i\tau\lambda} d\tau = K \int \delta(\tau) e^{-i\tau\lambda} d\tau = K \cdot 1$$

The auto-correlation function $k(\tau)$ is the inverse Fourier transform of the spektral density:

$$k(\tau) = \frac{1}{2\pi} \int S(\lambda) e^{i\lambda\tau} \, d\lambda$$

The fact that the variance is unbounded follows from the property $\sigma^2 = k(0)$ and the fact that $S(\lambda)$ is a constant:

$$\sigma^2 = k(0) = \frac{1}{2\pi} \int S(\lambda) e^{i\lambda 0} \, d\lambda = \frac{1}{2\pi} \int K \, d\lambda \to \infty$$

Question 6

Consider the following probability density function for the values x_1 and x_2 of a stochastic process at two moments in time:

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - R_{12}^2}} e^{-\frac{1}{2(1 - R_{12}^2)} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} + 2R_{12}\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2}\right]}{\sigma_1\sigma_2}$$

Prove that x_1 and x_2 are independent if and only if they have zero correlation $R_{12} = 0$.

Answer: The joint density $p(x_1, x_2)$ is a product of two Gaussian densities if and only if $R_{12} = 0$:

$$p(x_1, x_2) = \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{\sigma_1^2}} \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{1}{2} \frac{(x_2 - \mu_2)^2}{\sigma_2^2}}$$

Question 7

Give the definitions of a Gaussian white noise, standard white noise and the Wiener process.

Answer: Gaussian white noise is a stationary stochastic process with autocorrelation function $k(\tau) = N\delta(\tau)$ (i.e. δ -correlated Gaussian process). It is called standard white noise if it has zero mean and N = 1, that is:

$$\mathbb{E}\{\xi(t)\} = 0, \quad \mathbb{E}\{\xi(t)\xi(t+\tau)\} = k(\tau) = \delta(\tau)$$

The Wiener process is the process w(t) with independent increments $\Delta w(t) = w(t + \Delta t) - w(t)$, which have Gaussian distribution with zero mean and variance $\mathbb{E}\{(w(t + \Delta t) - w(t))^2\} = \Delta t$. Because the increments $\Delta w(t)$ are independent, they are δ -correlated, and therefore they represent a Gaussian white noise.

Question 8

Prove that the Wiener process w(t) is nowhere differentiable in probability (i.e. the probability that time derivative of w(t) exists for some t is zero). Hint: Use the definition of a derivative as the limit of the quotient $\Delta w/\Delta t$ for $\Delta t \to 0$, and the fact that the variance $\mathbb{E}\{(\Delta w)^2\}$ of the increments $\Delta w = w(t + \Delta t) - w(t)$ of the Wiener process w(t) is Δt .

Answer: Recall the definition of the derivative of w(t):

$$\frac{dw(t)}{dt} = \lim_{\Delta t \to 0} \frac{w(t + \Delta t) - w(t)}{\Delta t}$$

Because w(t) is the Wiener process, $\Delta w = w(t + \Delta t) - w(t)$ has Gaussian distribution with zero mean and variance Δt . This means that the quotient $\Delta w(t)/\Delta t$ has Gaussian distribution with zero mean and variance $1/\Delta t$:

$$\mathbb{E}\left\{\frac{(\Delta w(t))^2}{\Delta t^2}\right\} = \frac{\Delta t}{\Delta t^2} = \frac{1}{\Delta t}$$

The above value does not have a limit at $\Delta t \to 0$. Therefore, as $\Delta t \to 0$, the probability that the quotient is less than some λ converges to zero:

$$\lim_{\Delta t \to 0} P\left\{\frac{\Delta w(t)}{\Delta t} < \lambda\right\} = 0$$

Thus, w(t) is not differentiable at any t in probability.

Question 9

What is the spektral density of a stationary process with auto-correlation $k(\tau) = \sigma^2 e^{-\beta|\tau|}$ with $\sigma^2 = 1$ (i.e. Gaussian exponentially correlated process)? For which values of β can we model such a process by a standard white noise?

Answer: The spektral density is the Fourier transform of $k(\tau)$:

$$S(\lambda) = \int_{-\infty}^{\infty} e^{-\beta|\tau|} e^{-i\tau\lambda} d\tau$$

$$= \int_{-\infty}^{0} e^{\tau(\beta-i\lambda)} d\tau + \int_{0}^{\infty} e^{-\tau(\beta+i\lambda)} d\tau$$

$$= \frac{e^{\tau(\beta-i\lambda)}}{\beta-i\lambda} \Big|_{-\infty}^{0} + \frac{e^{-\tau(\beta+i\lambda)}}{\beta+i\lambda} \Big|_{0}^{\infty}$$

$$= \frac{1}{\beta-i\lambda} + \frac{1}{\beta+i\lambda}$$

$$= \frac{2\beta}{\beta^{2}+\lambda^{2}}$$

For large β the spektral density does not depend much on the frequencies λ , and so for small λ it can be considered as constant and modelled by a white noise. In fact, for $\beta \to \infty$ the correlation function $k(\tau) = e^{-\beta|\tau|} \to \delta(\tau)$ (i.e. the process becomes δ -correlated).

Question 10

What is the correlation time of a stationary process with auto-correlation $k(\tau) = \sigma^2 e^{-\beta|\tau|}$ (i.e. Gaussian exponentially correlated process)? For which time intervals can we model such a process by a standard white noise?

Answer: The correlation time is the following integral of the correlation function: 1 + 1 = 1

$$\tau_{\rm cor} = \frac{1}{\sigma^2} \int_0^\infty |k(\tau)| \, d\tau = \int_0^\infty e^{-\beta|\tau|} \, d\tau = \frac{1}{\beta}$$

The correlation time tends to zero $\tau_{\rm cor} \to 0$ as $\beta \to \infty$. If time intervals between events in a system are significantly larger than $\tau_{\rm cor}$, then the process can be modelled by a Gaussian white noise.

Question 11

Which two properties completely characterise a stationary Gaussian stochastic process?

Answer: The expected (mean) value $\mu = \mathbb{E}\{x(t)\}$ and the auto-correlation function $k(\tau) = \mathbb{E}\{x(t)x(t+\tau)\} - \mu^2$.