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1 Classical differential df and the rule dt*> = 0
Classical differential df

e Let F(t) be a function of time ¢ € [0, T].

e The increment of the value of f during At is

AF(t) = F(t+ At) — F(t)

e Recall that the derivative dF'(t)/dt is lima;—.o AF(t)/At

e The differential dF(t) can be thought of as the increment AF(t) during
infinitessimal dt:
dF(t) = F(t+dt) — F(t)

e We can show that this corresponds to the formal rule dt? = 0.

Newton’s rule dt? =0
e Assume that F(t + At) can be computed as Taylor series at time t:

F(t+ At) = F(t) + AF() n,  LEF() (o 1F(D)

A3+ ...
dt 2 dt? 6 dt3 e




e This gives the following formula for the increment AF(t):

dF(t) Ld*F(t) o 1d3F(t) , 45
F At) — F(t) = —ZA — A — A .
(t+ At) (t) 7 t+ 5 a2 t T t° +
e Now consider the limit At — dt:
_dF(t) Ld*F(t) ., 1d3F(t) 4

=0

e Observe that the rule dt? = 0 above corresponds to the formula for the
differential below:

F(t+dt)— F(t) =dF(t)
Differential dF(z,t)

e Let F(x,t) be a function of ¢ and signal z(t), and denote by F,F, F, ...
time derivatives, and by F’, F"', F'" ... derivatives over x.

e Assume that F(x(t + dt),t + At) has Taylor expansion at (z,t):
F(z(t+dt),t +dt) =
) 1.
F(z,t) + F(x,t)dt + 5F(ac,t) > + ...

dt2=0
1 1.
+F'(z,t) do + 5F”(a:,t) + 5F’(ar;,t) dtdr 4+ ---
dt de=0
e Observe that rules dt?> = 0 and dt d» = 0 lead to the following formula for

the differential dF'(z,t) = F(x(t + dt),t + dt) — F(z,t):

. 1
dF(x,t) = F(x,t)dt + F'(z,t) dx + 5F”(a:, t) da?
e Can we assume also dz? = 0?

2 Stochastic differential dz? # 0 and dw? = dt
Stochastic differential dz? # 0
e If signal z(¢) has time derivative z(t) = dz(t)/dt, then dz(t) = &(t) dt and

da?(t) = [#(t) dt)* = &%(t) dt* = 0



If, on the other hand, x(¢) is nowhere differentiable (e.g. stochastic), then
generally dz?(t) # 0.

For example, if z(t) is described by an SDE:

dz(t) = f(z,t) dt + g(z,t) dw

then for dz? we have

de’(t) = [f(z,t)dt+ g(z,t) dw)?
2 2 a2 2
fo(xz,t) dt® +2f(x,t) g(x, t) dt dw+g°(x,t) dw
=0 =0 =dt
= ¢*(x,t)dt

Where we used the Levy’s substitution rule dw? = dt.

The Levy rule dw? = dt

Theorem 1 (Levy). The following substitutions are valid in the difference
schemes

Aw?(t) — E{Aw?(t)} = At
Az?(t) — B{Az%(t)} = ¢*(z(t),t) At + O(At)

and differentials

dw?(t) +— E{dw’(t)} =dt
dz®(t) — E{dz?(t)} = g*(x(t),t)dt

e The proof is based on the property E{w?(t)} =t of the Wiener process.

e Notice the use of the expected values E, which means that, strictly speak-
ing, these substitutions should be understood in the ‘almost sure’ sense.

3 Ito’ lemma
Ito’s lemma

e Because dz?(t) # 0 in general, we have to use the following formula for
the differential dF'(z,t):

: 1
dF(z,t) = Fdt + F'dx(t) + 5F” da?(t)

o We also derived that for x(¢) satistying SDE dx(t) = f(x,t) dt+g(x,t) dw(t):

de’(t) = ¢*(x,t) dt



e Substituting dx(t) and dx?(t) into dF (z,t) we obtain:

Lemma 2 (Ito).

dF (z,t)

-1
[F + §F” gQ(x,t)] dt + F' dx(t)

— [F + F' f(x,t) + %F” g2(x,t)] dt + F' g(z,t) dw(t)

Generalised differentiation rule

e If we use general difference schemes dyx such that z(t) satisfies general
SDE
dax(t) = f(z,t) dt + g(x,t) dyw(t)

e then the differentiation rule is:

dyF(z,t) = [F + (; — )\> ol gZ(m,t)} dt + F' dyz(t)

e In the Stratonovich case A\ = %
dyF(x,t) = Fdt + F' dy(t)

Example

Find SDE for y(¢) = Inz(t), where dx(t) = f(x,t) dt + g(z,t) dw.

For F(z,t) = Inx(t) we have:

: 1
F=0, Fl=—, F'=-
’ w(t)’ 2*(t)

Applying Ito’s lemma

fa,t) 1g2<m,t>} o)

dlnz(t) = [ w2 20 o) dw(t)

Let f(z,t) = ax(t) and g(z,t) = bx(t). Then

dlna(t) = [a _ ;bﬂ dt + bdw(?)

e Therefore z(t) = e(@=0*/2t+bw(®) z(0).

Reading

e Chapter 6, Sec. 6.4 (Elliott & Kopp, 2004).
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