Lecture 1: Options and rational pricing

Dr. Roman V Belavkin

MSO4112

Contents

1	Futures, forwards and options	1
2	Terminal payoffs and payoffs curves	3
3	Riskless assets	3
4	No arbitrage and risk-neutral pricing	4
5	Call-put parity	4
R	References	

Notation

- $\mathbb N$ the set of natural numbers $\{1,2,3,\ldots\}.$
- \mathbb{R} the field of real numbers $(-\infty, \infty)$.
- t time measured in years $t \in \mathbb{R}$.
- T a specific moment in time (e.g. the expiration time).
- x(t) a value of $x \in X$ depending on time (i.e. x(t) is a function of t).
- S(t) stock price at $t \leq T$.
- V(t) value of a derivative (e.g. an option) at $t \leq T$.
 - K strike price at t = T.
 - r anual rate of return.

1 Futures, forwards and options

Futures, forwards and options

Definition 1 (Forward Contract). An *obligation* to buy (or to sell) stock S at t = T for the *strike price* K.

Definition 2 (Option European (resp. American)). A contract giving the *right* (but not an obligation) to buy (or sell) S at t = T (resp. $t \in [0, T]$) for K.

Call — an option to buy S.

Put — an option to sell S.

Long position means buying a contract (buyer).

Short position means selling a contract (seller / writer).

Definition 3 (Pricing problem). Given information on stock price S(t), strike price K, expiration time T, what is a fair price V(t) of a contract (e.g. option or forward) at $t \leq T$?

Stock exchanges

- The largest is Chicago Board of Options Exchange (CBOE).
- An option series:

where K = 50, T = Jan.

• An example of a Call option symbol for IBM with K =\$125, T = Jan 23, 2015:

IBM150123C00125000

The purpose of options

Hedging

- An investment to protect from a risk of changing S.
- Example: Buying a protective put (*long put*) to protect from a price drop of S.

Speculation

- An investment to gain from a changing S.
- Example: Buying speciative call (long call) to gain from a price rise of S.

Question 1. What would be the purpose of

- Selling a call (short call)?
- Selling a put (short call)?

Leverage

- Suppose you have £1000 to invest.
- Let $S(t) = \pounds 100$ per share, so that you can buy 10 shares at t.
- If $S(T) = \pounds 105$ after T-t = 1 year, then your profit is $10 \times (S(T) S(t)) = \pounds 50$ and the return

$$\frac{S(T) - S(t)}{S(t)} = \frac{\pounds 5}{\pounds 100} = 0.05$$

- Let the cost of a call option $C(t) = \pounds 4$ with $K = \pounds 100$, so that you can buy 250 calls at t.
- If $S(T) = \pounds 105$ after T t = 1 year, then your profit is $250 \times (\pounds S(T) (K + C(t))) = \pounds 250$ and the return

$$\frac{S(T) - (K + C(t))}{C(t)} = \frac{\pounds 1}{\pounds 4} = 0.25$$

Question 2. What if $S(T) = \pounds 95$?

2 Terminal payoffs and payoffs curves

Terminal payoffs and payoffs curves

Long call :

$$V_{\text{call}}(T) = \max[0, S(T) - K]$$

Short call :

 $-V_{\text{call}}(T) = -\max[0, S(T) - K]$

Long put :

 $V_{\rm put}(T) = \max[0, K - S(T)]$

Short put :

$$-V_{\text{put}}(T) = -\max[0, K - S(T)]$$

3 Riskless assets

Riskless assets

- Let r be the annual rate of return (APR) offered by a bank.
- If the dividents are compounded n times per year, then:

$$S(t+1) = \left(1 + \frac{r}{n}\right)^n S(t)$$

• Continuously compounded dividents

$$S(t+1) = \lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^n S(t) = e^r S(t)$$

• Up to T years:

$$S(T) = e^{r(T-t)}S(t), \qquad r = \frac{1}{T-t}\ln\frac{S(T)}{S(t)}$$

• The effective annual rate of return (EAR) is:

$$EAR = e^r - 1$$

No arbitrage and risk-neutral pricing 4

No arbitrage and market equilibrium

- The opportunity of generating riskless profit is *arbitrage*.
- The pricing theory assumes that the market offers no arbitrage opportunities.
- A market at an *equilibrium* (supply = demand) implies no arbitrage.

Risk-neutral pricing and arbitrage

Theorem 4. No arbitrage implies that a forward price F(t,T) at T of a stock with no dividents is -(T +)

$$F(t,T) = e^{r(T-t)}S(t)$$

where r is riskless APR, and S(t) is the price at $t \leq T$.

- If $F(t,T) < e^{r(T-t)}S(t)$, then sell S at t, save and buy F at T. Proof.
 - If $F(t,T) > e^{r(T-t)}S(t)$, then borrow to buy S at t, sell F and repay at T.

Current value of options

Current value of options

$$V(t) = \mathbb{E}\{e^{-r(T-t)}V(T)\} = e^{-r(T-t)}\mathbb{E}\{V(T)\}$$
where $V(T) = \max[0, S(T) - K]$ or $V(T) = \max[0, K - S(T)]$.

5 Call-put parity

Call-put parity

- Let C(t), P(t) denote prices at $t \leq T$ of call and put options respectively with strike price K.
- At expiration time T we have

$$C(T) - P(T) = \max[0, S(T) - K] - \max[0, K - S(T)] = S(T) - K$$

• And at $t \leq T$

$$C(t) - P(t) = S(t) - e^{-r(T-t)}K$$

• Therefore

 $C(t) + e^{-r(T-t)}K = S(t) + P(t)$

• This means that call can be expressed using put and vice versa:

$$C(t) = S(t) - e^{-r(T-t)}K + P(t)$$

$$P(t) = e^{-r(T-t)}K - S(t) + C(t)$$

• CBOE opened in 1973, and did not trade puts until 1977.

Reading

- Chapter 1, Sec. 1.1, 1.2 (Elliott & Kopp, 2004).
- Chapter 1, 2 (Roman, 2012)
- Chapter 1, 3 (Crack, 2014)

References

Crack, T. F. (2014). Basic Black-Scholes: Option pricing and trading (3rd ed.). Timothy Crack.

- Elliott, R. J., & Kopp, P. E. (2004). *Mathematics of financial markets* (2nd ed.). Springer.
- Roman, S. (2012). Introduction to the mathematics of finance: Arbitrage and option pricing. Springer.