Lecture 5:

Self-Organising Maps

Dr. Roman V Belavkin

Middlesex University

BIS4435

Euclidean Space and Euclidean Distance (Examples)

The Clustering Problem

SOM Architecture and Principles

Training Procedure

Contextual Maps

Applications of SOM

HISTORICAL BACKGROUND

- 1960s Vector quantisation problems studied by mathematicians (Glienn, 1964; Stratonowitch, 1966).
 - 1973 von der Malsburg did the first computer simulation demonstrating self-organisation.
 - 1976 Willshaw and von der Malsburg suggested the idea of SOM.
- 1980s Works by Kohonen further developed and studied computational algorithms for SOM.

• Points in Euclidean space have coordinates, represented by real numbers **R** (e.g. x, y and z or x_1 , x_2 and x_3).

- Points in Euclidean space have coordinates, represented by real numbers **R** (e.g. x, y and z or x_1 , x_2 and x_3).
- We denote m-dimensional space by \mathbb{R}^m .

- Points in Euclidean space have coordinates, represented by real numbers **R** (e.g. x, y and z or x_1 , x_2 and x_3).
- We denote m-dimensional space by \mathbf{R}^m .
- Every point in \mathbf{R}^m is defined by m coordinates:

$$\{{\color{red}x_1,\ldots,x_m}\}$$

or by an m-dimensional vector

$$\mathbf{x} = (x_1, \ldots, x_m)$$

.

- Points in Euclidean space have coordinates, represented by real numbers **R** (e.g. x, y and z or x_1 , x_2 and x_3).
- We denote m-dimensional space by \mathbb{R}^m .
- Every point in \mathbf{R}^m is defined by m coordinates:

$$\{{\color{red}x_1,\ldots,x_m}\}$$

or by an m-dimensional vector

$$\mathbf{x} = (x_1, \dots, x_m)$$

.

• How can we compute the distance between different points in such a space?

Example

In \mathbb{R}^1 (one–dimensional space or a line) points are represented by just one number, such as $\mathbf{a} = (2)$ or $\mathbf{b} = (-1)$.

Example

In \mathbb{R}^1 (one-dimensional space or a line) points are represented by just one number, such as $\mathbf{a} = (2)$ or $\mathbf{b} = (-1)$.

Example

In \mathbb{R}^3 (three–dimensional space) points are represented by three coordinates x, y and z (or x_1 , x_2 and x_3), such as $\mathbf{a} = (2, -1, 3)$.

EUCLIDEAN DISTANCE

The distance $\rho(\mathbf{a}, \mathbf{b})$ between two points

$$\mathbf{a} = (a_1, \dots, a_m)$$
 and $\mathbf{b} = (b_1, \dots, b_m)$

in Euclidean space \mathbf{R}^m is calculated as:

$$\|\mathbf{a} - \mathbf{b}\| = \sqrt{\sum_{i=1}^{m} (a_i - b_i)^2}$$

= $\sqrt{(a_1 - b_1)^2 + \dots + (a_m - b_m)^2}$

EUCLIDEAN DISTANCE

The distance $\rho(\mathbf{a}, \mathbf{b})$ between two points

$$\mathbf{a} = (a_1, \dots, a_m)$$
 and $\mathbf{b} = (b_1, \dots, b_m)$

in Euclidean space \mathbf{R}^m is calculated as:

$$\|\mathbf{a} - \mathbf{b}\| = \sqrt{\sum_{i=1}^{m} (a_i - b_i)^2}$$

= $\sqrt{(a_1 - b_1)^2 + \dots + (a_m - b_m)^2}$

Remark

Note that Euclidean distance is

- **1** Positive: $\rho(\mathbf{a}, \mathbf{b}) \geq 0$, and $\rho(\mathbf{a}, \mathbf{b}) = 0$ iff $\mathbf{a} = \mathbf{b}$
- **2** Symmetric: $\rho(\mathbf{a}, \mathbf{b}) = \rho(\mathbf{b}, \mathbf{a})$.
- **3** Triangle inequality: $\rho(\mathbf{a}, \mathbf{c}) \leq \rho(\mathbf{a}, \mathbf{b}) + \rho(\mathbf{b}, \mathbf{c})$

Such functions are called metrics, and sets with metrics are called metric spaces.

Example

Let $\mathbf{a} = (2)$ and $\mathbf{b} = (-1)$ in \mathbf{R}^1 . Then

Example

Let
$$\mathbf{a} = (2)$$
 and $\mathbf{b} = (-1)$ in \mathbf{R}^1 . Then

$$\|\mathbf{a} - \mathbf{b}\| = \sqrt{(2+1)^2} = 3$$

Example

Let
$$\mathbf{a} = (2)$$
 and $\mathbf{b} = (-1)$ in \mathbf{R}^1 . Then

$$\|\mathbf{a} - \mathbf{b}\| = \sqrt{(2+1)^2} = 3$$

Example

Let
$$\mathbf{a} = (2, -3)$$
 and $\mathbf{b} = (4, 1)$ in \mathbf{R}^2 .
Then

Example

Let $\mathbf{a} = (2)$ and $\mathbf{b} = (-1)$ in \mathbf{R}^1 . Then

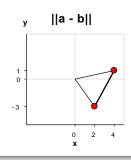
$$\|\mathbf{a} - \mathbf{b}\| = \sqrt{(2+1)^2} = 3$$

Example

Let $\mathbf{a} = (2, -3)$ and $\mathbf{b} = (4, 1)$ in \mathbf{R}^2 . Then

$$\|\mathbf{a} - \mathbf{b}\| = \sqrt{(2-4)^2 + (-3-1)^2}$$

= $\sqrt{20} \approx 4.47$



MULTIDIMENSIONAL DATA IN BUSINESS

• A bank gathered information about its customers:

Case:	Age	Gender	Income	Expenses	Home	Credit
			(\$K p.m.)	(\$K p.m.)	owner	score
1	21	0	2	1	0	3
2	18	1	1	2	0	1
3	50	1	6	2	1	5
4	23	0	3	1	1	4
5	40	1	3	2	0	2

MULTIDIMENSIONAL DATA IN BUSINESS

• A bank gathered information about its customers:

Case:	Age	Gender	Income	Expenses	Home	Credit
			(\$K p.m.)	(\$K p.m.)	owner	score
1	21	0	2	1	0	3
2	18	1	1	2	0	1
3	50	1	6	2	1	5
4	23	0	3	1	1	4
5	40	1	3	2	0	2

• We may consider each variable (age, gender, income, etc) as a coordinate x_i and each case as a point in an m-dimensional space.

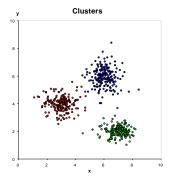
MULTIDIMENSIONAL DATA IN BUSINESS

• A bank gathered information about its customers:

Case:	Age	Gender	Income	Expenses	Home	Credit
			(\$K p.m.)	(\$K p.m.)	owner	score
1	21	0	2	1	0	3
2	18	1	1	2	0	1
3	50	1	6	2	1	5
4	23	0	3	1	1	4
5	40	1	3	2	0	2

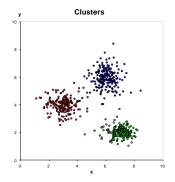
- We may consider each variable (age, gender, income, etc) as a coordinate x_i and each case as a point in an m-dimensional space.
- How far should be similar cases from each other?

CLUSTERS



- **Clusters** are groups of points close to each other.
- One of the main goals of multivariate analysis is to find clusters of points.

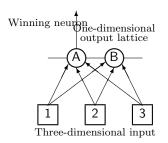
CLUSTERS

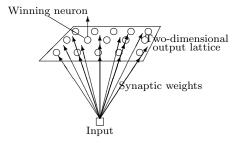


- **Clusters** are groups of points close to each other.
- One of the main goals of multivariate analysis is to find clusters of points.
- 'Similar' customers would have small Euclidean distance between them and would belong to the same group (cluster).

SOM ARCHITECTURE

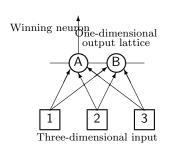
 SOM uses a single layer network of neurons competing with each other, so that only one neuron can fire at a time.

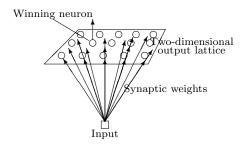




SOM ARCHITECTURE

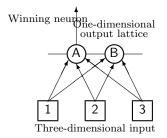
- SOM uses a single layer network of neurons competing with each other, so that only one neuron can fire at a time.
- The algorithm consists of three phases: competition, cooperation and adaptation.

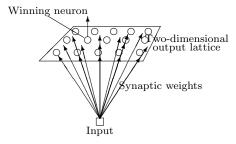




INPUT TOPOLOGY

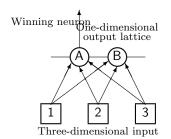
• The input layer has m nodes, so the input pattern is point $\mathbf{x} = (x_1, \dots, x_m)$ in m-dimensional input space \mathbf{R}^m .

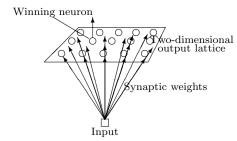




INPUT TOPOLOGY

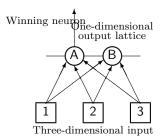
- The input layer has m nodes, so the input pattern is point $\mathbf{x} = (x_1, \dots, x_m)$ in m-dimensional input space \mathbf{R}^m .
- Each neuron j has m weights, so the weights represent point $\mathbf{w}_j = (\mathbf{w}_{1j}, \dots, \mathbf{w}_{mj})$ in the same input space \mathbf{R}^m .

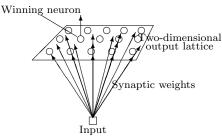




INPUT TOPOLOGY

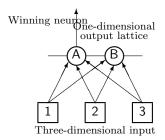
- The input layer has m nodes, so the input pattern is point $\mathbf{x} = (x_1, \dots, x_m)$ in m-dimensional input space \mathbf{R}^m .
- Each neuron j has m weights, so the weights represent point $\mathbf{w}_j = (\mathbf{w}_{1j}, \dots, \mathbf{w}_{mj})$ in the same input space \mathbf{R}^m .
- 'Closeness' (neighbourhood) in the *m*-dimensional input space \mathbf{R}^m is computed by the Euclidean distance $\rho(\mathbf{x}, \mathbf{w})$.

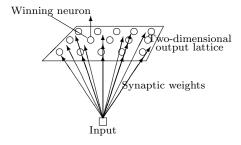




OUTPUT TOPOLOGY

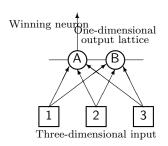
• The outputs of the nodes of an SOM are arranged in a lattice, which is usually a 1 or 2-dimensional space (i.e. a line ${\bf R}^1$ or a plane ${\bf R}^2$).

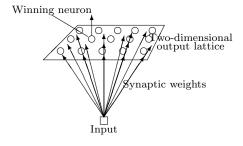




OUTPUT TOPOLOGY

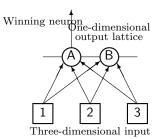
- The outputs of the nodes of an SOM are arranged in a lattice, which is usually a 1 or 2-dimensional space (i.e. a line ${\bf R}^1$ or a plane ${\bf R}^2$).
- The lattice represents the output space, where different points correspond to the outputs of different nodes *i* and *j*.

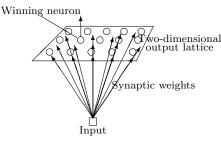




OUTPUT TOPOLOGY

- The outputs of the nodes of an SOM are arranged in a lattice, which is usually a 1 or 2-dimensional space (i.e. a line \mathbf{R}^1 or a plane \mathbf{R}^2).
- The lattice represents the output space, where different points correspond to the outputs of different nodes *i* and *j*.
- 'Closeness' (neighbourhood) in this 1 or 2-dimensional output space is computed by abother distance function d(ij).



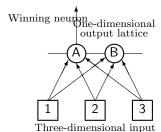


• SOM $f: \mathbb{R}^m \to \mathbb{R}^n$ maps m-dimensional input space \mathbb{R}^m onto the n-dimensional output space \mathbb{R}^n (usually $m \gg n$).

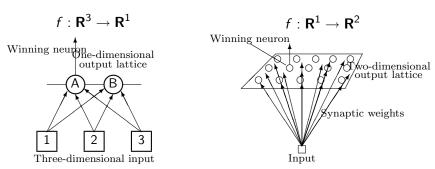
- SOM $f: \mathbb{R}^m \to \mathbb{R}^n$ maps m-dimensional input space \mathbb{R}^m onto the n-dimensional output space \mathbb{R}^n (usually $m \gg n$).
- SOM is designed to preserve topology so that 'closeness' in the input space corresponds to 'closeness' in the output space (i.e. in the lattice), and vice verse.

- SOM $f: \mathbb{R}^m \to \mathbb{R}^n$ maps m-dimensional input space \mathbb{R}^m onto the n-dimensional output space \mathbb{R}^n (usually $m \gg n$).
- SOM is designed to preserve topology so that 'closeness' in the input space corresponds to 'closeness' in the output space (i.e. in the lattice), and vice verse.

 $f: \mathbf{R}^3 \to \mathbf{R}^1$



- SOM $f: \mathbb{R}^m \to \mathbb{R}^n$ maps m-dimensional input space \mathbb{R}^m onto the n-dimensional output space \mathbb{R}^n (usually $m \gg n$).
- SOM is designed to preserve topology so that 'closeness' in the input space corresponds to 'closeness' in the output space (i.e. in the lattice), and vice verse.



COMPETITION

• Input pattern $\mathbf{x} = (x_1, \dots, x_m)$ is compared with each weight pattern $\mathbf{w}_j = (\mathbf{w}_{1j}, \dots, \mathbf{w}_{mj})$.

COMPETITION

- Input pattern $\mathbf{x} = (x_1, \dots, x_m)$ is compared with each weight pattern $\mathbf{w}_i = (\mathbf{w}_{1i}, \dots, \mathbf{w}_{mi})$.
- The winner is the node whose weight w_j is the closest to the input x in terms of Euclidean distance:

$$\|\mathbf{x} - \mathbf{w}_1\| = \sqrt{(x_1 - w_{11})^2 + \dots + (x_m - w_{m1})^2}$$

$$\vdots \qquad \vdots$$

$$\|\mathbf{x} - \mathbf{w}_n\| = \sqrt{(x_1 - w_{1n})^2 + \dots + (x_m - w_{mn})^2}$$

COMPETITION

- Input pattern $\mathbf{x} = (x_1, \dots, x_m)$ is compared with each weight pattern $\mathbf{w}_j = (\mathbf{w}_{1j}, \dots, \mathbf{w}_{mj})$.
- The winner is the node whose weight w_j is the closest to the input x in terms of Euclidean distance:

$$\|\mathbf{x} - \mathbf{w}_1\| = \sqrt{(x_1 - w_{11})^2 + \dots + (x_m - w_{m1})^2}$$

$$\vdots \qquad \vdots$$

$$\|\mathbf{x} - \mathbf{w}_n\| = \sqrt{(x_1 - w_{1n})^2 + \dots + (x_m - w_{mn})^2}$$

• Thus, nodes 'compete' in the sense which of the nodes \mathbf{w}_j is more 'similar' to a give input pattern \mathbf{x} .

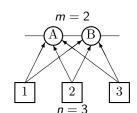
Example

Consider SOM with three inputs and two output nodes (A and B). Let

$$\mathbf{w}_A = (2, -1, 3), \quad \mathbf{w}_B = (-2, 0, 1)$$

Find which node is the winner for the input

$$\mathbf{x} = (1, -2, 2)$$

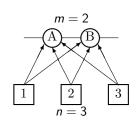


Consider SOM with three inputs and two output nodes (A and B). Let

$$\mathbf{w}_A = (2, -1, 3), \quad \mathbf{w}_B = (-2, 0, 1)$$

Find which node is the winner for the input

$$\mathbf{x} = (1, -2, 2)$$



$$\|\mathbf{x} - \mathbf{w}_A\| = \sqrt{(1-2)^2 + (-2+1)^2 + (2-3)^2} = \sqrt{3}$$

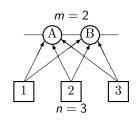
 $\|\mathbf{x} - \mathbf{w}_B\| = \sqrt{(1+2)^2 + (-2-0)^2 + (2-1)^2} = \sqrt{14}$

Consider SOM with three inputs and two output nodes (A and B). Let

$$\mathbf{w}_{A} = (2, -1, 3), \quad \mathbf{w}_{B} = (-2, 0, 1)$$

Find which node is the winner for the input

$$\mathbf{x} = (1, -2, 2)$$



$$\|\mathbf{x} - \mathbf{w}_A\| = \sqrt{(1-2)^2 + (-2+1)^2 + (2-3)^2} = \sqrt{3}$$

 $\|\mathbf{x} - \mathbf{w}_B\| = \sqrt{(1+2)^2 + (-2-0)^2 + (2-1)^2} = \sqrt{14}$

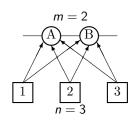
• Node A is the winner because it is 'closer' ($\sqrt{3} < \sqrt{14}$)

Consider SOM with three inputs and two output nodes (A and B). Let

$$\mathbf{w}_A = (2, -1, 3), \quad \mathbf{w}_B = (-2, 0, 1)$$

Find which node is the winner for the input

$$\mathbf{x} = (1, -2, 2)$$



$$\|\mathbf{x} - \mathbf{w}_A\| = \sqrt{(1-2)^2 + (-2+1)^2 + (2-3)^2} = \sqrt{3}$$

 $\|\mathbf{x} - \mathbf{w}_B\| = \sqrt{(1+2)^2 + (-2-0)^2 + (2-1)^2} = \sqrt{14}$

- Node A is the winner because it is 'closer' $(\sqrt{3} < \sqrt{14})$
- What if $\mathbf{x} = (-1, -2, 0)$?

ADAPTATION

 After the input x has been presented to SOM, the weights of all nodes are adapted (adjusted) so that they become more 'similar' to the input x.

ADAPTATION

- After the input x has been presented to SOM, the weights of all nodes are adapted (adjusted) so that they become more 'similar' to the input x.
- The adaptation formula for node j is:

$$\mathbf{w}_{j}^{\text{new}} = \mathbf{w}_{j}^{\text{old}} + \alpha \, h_{ij} \left[\mathbf{x} - \mathbf{w}_{j}^{\text{old}} \right] ,$$

where

- \mathbf{w}_{j} is the weight vector of node j;
- α is the learning rate coefficient;
- h_{ij} is the neighbourhood of node j with respect to the winner i.

ADAPTATION (cont.)

To understand better the adaptation formula, let us check how the weights change for different values of α and h_{ij} .

$$\mathbf{w}_{j}^{\text{new}} = \mathbf{w}_{j}^{\text{old}} + \alpha \, h_{ij} \left[\mathbf{x} - \mathbf{w}_{j}^{\text{old}} \right] ,$$

ADAPTATION (cont.)

To understand better the adaptation formula, let us check how the weights change for different values of α and h_{ij} .

$$\mathbf{w}_{j}^{\text{new}} = \mathbf{w}_{j}^{\text{old}} + \alpha \, h_{ij} \left[\mathbf{x} - \mathbf{w}_{j}^{\text{old}} \right] ,$$

• Suppose $\alpha = 0$ or $h_{ij} = 0$. Then

$$\mathbf{w}_{j}^{\mathrm{new}} = \mathbf{w}_{j}^{\mathrm{old}} + 0 \cdot 0 \left[\mathbf{x} - \mathbf{w}_{j}^{\mathrm{old}} \right] = \mathbf{w}_{j}^{\mathrm{old}}$$

The weight does not change $(\mathbf{w}_j^{\text{new}} = \mathbf{w}_j^{\text{old}})$.

ADAPTATION (cont.)

To understand better the adaptation formula, let us check how the weights change for different values of α and h_{ij} .

$$\mathbf{w}_{j}^{\text{new}} = \mathbf{w}_{j}^{\text{old}} + \alpha \, \mathbf{h}_{ij} \left[\mathbf{x} - \mathbf{w}_{j}^{\text{old}} \right] ,$$

• Suppose $\alpha = 0$ or $h_{ij} = 0$. Then

$$\mathbf{w}_{j}^{\mathrm{new}} = \mathbf{w}_{j}^{\mathrm{old}} + 0 \cdot 0 \left[\mathbf{x} - \mathbf{w}_{j}^{\mathrm{old}} \right] = \mathbf{w}_{j}^{\mathrm{old}}$$

The weight does not change $(\mathbf{w}_i^{\text{new}} = \mathbf{w}_i^{\text{old}})$.

• Suppose $h_{ij} = 1$ and $\alpha = 1$. Then

$$\mathbf{w}_{j}^{\mathrm{new}} = \mathbf{w}_{j}^{\mathrm{old}} + \mathbf{x} - \mathbf{w}_{j}^{\mathrm{old}} = \mathbf{x}$$

The new weight is equal to the input $(\mathbf{w}_i^{\text{new}} = \mathbf{x})$.

Although weights of *all* nodes are adapted, they do not adapt equally. Adaptation depends on how close the nodes are from the winner in the output lattice.

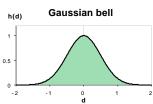
Although weights of *all* nodes are adapted, they do not adapt equally. Adaptation depends on how close the nodes are from the winner in the output lattice.

• If the winner is node i, then the level of adaptation for node j is defined by the neighbourhood function $h = h_{ij}(d_{ij})$, where d(i,j) is the distance in the lattice.

Although weights of *all* nodes are adapted, they do not adapt equally. Adaptation depends on how close the nodes are from the winner in the output lattice.

- If the winner is node i, then the level of adaptation for node j is defined by the neighbourhood function $h = h_{ij}(d_{ij})$, where d(i,j) is the distance in the lattice.
- The neighbourhood is defines in such a way that it is smaller as the distance d(i,j) gets larger. For example, the Gaussian bell function

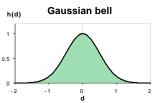
$$h_{ij}(d) = e^{-\frac{d^2}{2\sigma^2}}$$



Although weights of *all* nodes are adapted, they do not adapt equally. Adaptation depends on how close the nodes are from the winner in the output lattice.

- If the winner is node i, then the level of adaptation for node j is defined by the neighbourhood function $h = h_{ij}(d_{ij})$, where d(i,j) is the distance in the lattice.
- The neighbourhood is defines in such a way that it is smaller as the distance d(i,j) gets larger. For example, the Gaussian bell function

$$h_{ij}(d) = e^{-\frac{d^2}{2\sigma^2}}$$



• The winner 'helps' mostly its neighbours to adapt. Note also that the winner is adapted more than any other node (i.e. because d(i, i) = 0).

Let $\alpha=0.5$ and h=1, and let us adapt the winning node A from previous example:

$$\mathbf{w}_A = (2, -1, 3), \quad \mathbf{x} = (1, -2, 2)$$

We use adaptation formula: $\mathbf{w}_{i}^{\text{new}} = \mathbf{w}_{i}^{\text{old}} + \alpha \, h_{ij}[\mathbf{x} - \mathbf{w}_{i}^{\text{old}}]$

Let $\alpha=0.5$ and h=1, and let us adapt the winning node A from previous example:

$$\mathbf{w}_A = (2, -1, 3), \quad \mathbf{x} = (1, -2, 2)$$

We use adaptation formula: $\mathbf{w}_{i}^{\text{new}} = \mathbf{w}_{i}^{\text{old}} + \alpha \, h_{ij}[\mathbf{x} - \mathbf{w}_{i}^{\text{old}}]$

$$\mathbf{w}_{A} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + 0.5 \cdot 1 \cdot \left[\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \right]$$

$$= \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + 0.5 \cdot \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1.5 \\ -1.5 \\ 2.5 \end{pmatrix}$$

• Initially set all the weights to some random values

- Initially set all the weights to some random values
- Repeat

Until the network stabilises

- Initially set all the weights to some random values
- Repeat
 - Feed an input pattern from the set of data

Until the network stabilises

- Initially set all the weights to some random values
- Repeat
 - Feed an input pattern from the set of data
 - Find the winner
- Until the network stabilises

- Initially set all the weights to some random values
- Repeat
 - Feed an input pattern from the set of data
 - Find the winner
 - Adapt the weights of the winner and its neighbours
- Until the network stabilises

• Initially, there is no relation between closeness (similarity) in the input space and closeness in the output lattice.

- Initially, there is no relation between closeness (similarity) in the input space and closeness in the output lattice.
- After training, nodes close to each other in the lattice correspond to points close to each other in the input space.

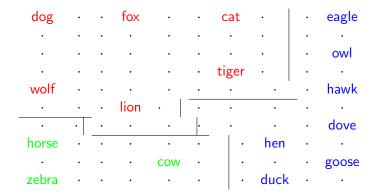
- Initially, there is no relation between closeness (similarity) in the input space and closeness in the output lattice.
- After training, nodes close to each other in the lattice correspond to points close to each other in the input space.
- The number of input dimensions (m) is usually very large (e.g. m = 100), so we cannot see the clusters directly.

- Initially, there is no relation between closeness (similarity) in the input space and closeness in the output lattice.
- After training, nodes close to each other in the lattice correspond to points close to each other in the input space.
- The number of input dimensions (m) is usually very large (e.g. m = 100), so we cannot see the clusters directly.
- The output lattice is usually one or two dimensional, so we can visualise and 'see' the clusters.

EXAMPLE OF SOM

	d o v e	h e n	d u c k	g0 0 s e	o W 	h a W k	e a gel	f o x	d o g	w o f	c a t	t i ge r	l o n	h o r s e	z e b r a	C O W
small medium big	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	0 1 0	0 1 0	0 1 0	0 1 0	1 0 0	0 0 1	0 0 1	0 0 1	0 0 1	0 1
2 legs 4 legs hair hooves mane feathers	1 0 0 0 0 1	0 1 0 0	0 1 0 0 0	0 1 1 0 1	0 1 0 0 0	0 1 0 0 0	0 1 0 1 0	0 1 1 1 0	0 1 1 1 0	0 1 1 0 0						
hunt run fly swim	0 0 1 0	8	0 0 1	0 1 1	1 0 1 0	1 0 1 0	1 0 1 0	1 0 0	0 1 0	1 0 0	1 0 0	1 0 0	1 0 0	0 1 0	0 1 0	8

FEATURE MAP



• Reducing dimensions (Indeed, SOM is a map $f: \mathbf{R}^m \to \mathbf{R}^n$)

- Reducing dimensions (Indeed, SOM is a map $f: \mathbf{R}^m \to \mathbf{R}^n$)
- Visualisation of clusters

- ullet Reducing dimensions (Indeed, SOM is a map $f: \mathbf{R}^m o \mathbf{R}^n$)
- Visualisation of clusters
- Ordered display (preserving the topology)

- Reducing dimensions (Indeed, SOM is a map $f: \mathbf{R}^m \to \mathbf{R}^n$)
- Visualisation of clusters
- Ordered display (preserving the topology)
- Handles missing data

- Reducing dimensions (Indeed, SOM is a map $f : \mathbf{R}^m \to \mathbf{R}^n$)
- Visualisation of clusters
- Ordered display (preserving the topology)
- Handles missing data
- The learning algorithm is unsupervised.

 SOM can be very useful during the intelligence phase of decision making. It helps to visualise very complex and highly-dimensional data.

- SOM can be very useful during the intelligence phase of decision making. It helps to visualise very complex and highly-dimensional data.
- Visualisation of multi-dimensional data can be used for presentations and reports.

- SOM can be very useful during the intelligence phase of decision making. It helps to visualise very complex and highly-dimensional data.
- Visualisation of multi-dimensional data can be used for presentations and reports.
- Identifying clusters in the data (e.g. typical groups of customers) can help in optimising busibess operations.

- SOM can be very useful during the intelligence phase of decision making. It helps to visualise very complex and highly-dimensional data.
- Visualisation of multi-dimensional data can be used for presentations and reports.
- Identifying clusters in the data (e.g. typical groups of customers) can help in optimising busibess operations.
- Can be used for pattern recognition (e.g. to identify credit—card fraud, errors in data, etc).