
Lecture 4:

Feed–Forward Neural Networks

Dr. Roman V Belavkin

Middlesex University

BIS4435

Biological neurons and the brain

A Model of A Single Neuron

Neurons as data-driven models

Neural Networks

Training algorithms

Applications

Benefits, limitations and applications

HISTORICAL BACKGROUND

1943 McCulloch and Pitts proposed the first
computational model of a neuron

1949 Hebb proposed the first learning rule

1958 Rosenblatt’s work on perceptrons

1969 Minsky and Papert’s paper exposed limitations of the
theory

1970s Decade of dormancy for neural networks

1980–90s Neural network return (self–organisation,
back–propagation algorithms, etc)

SOME FACTS

Human brain contains ≈ 1011 neurons

SOME FACTS

Human brain contains ≈ 1011 neurons

Each neuron is connected to ≈ 104 others

SOME FACTS

Human brain contains ≈ 1011 neurons

Each neuron is connected to ≈ 104 others

Some scientists compared the brain with a ‘complex,
nonlinear, parallel computer’.

SOME FACTS

Human brain contains ≈ 1011 neurons

Each neuron is connected to ≈ 104 others

Some scientists compared the brain with a ‘complex,
nonlinear, parallel computer’.

The largest modern neural networks achieve the complexity
comparable to a nervous system of a fly.

NEURONS

Dendrite

Synapse
Axon

Nucleus

Cell body

Evidence suggests that neurons receive, analyse and
transmit information.

NEURONS

Dendrite

Synapse
Axon

Nucleus

Cell body

Evidence suggests that neurons receive, analyse and
transmit information.

The information in transmitted in a form of electro-chemical
signals (pulses).

NEURONS

Dendrite

Synapse
Axon

Nucleus

Cell body

Evidence suggests that neurons receive, analyse and
transmit information.

The information in transmitted in a form of electro-chemical
signals (pulses).

When a neuron sends the information we say that a neuron
‘fires’.

EXCITATION AND INHIBITION

The receptors of a neuron are called synapses, and they are
located on many branches, called dendrites.

There are many types of synapses, but roughly they can be
divided into two classes:

Excitatory a signal received at this synapse ‘encourages’ the
neuron to fire

Inhibitory a signal received at this synapse inhibits the
neuron (as if asking to ‘shut up’)

The neuron analyses all the signals received at its synapses. If
most of them are ‘encouraging’, then the neuron gets ‘excited’
and fires its own message along a single wire, called axon.

The axon may have branches to reach many other neurons.

A MODEL OF A SINGLE NEURON (UNIT)

McCulloch and Pitts (1943) proposed the ‘integrate and fire’
model:

x1

w1

��?
??

??
??

??

...
// /.-,()*++ // y = f (

∑

x iwi)

xm

wm

??���������

A MODEL OF A SINGLE NEURON (UNIT)

McCulloch and Pitts (1943) proposed the ‘integrate and fire’
model:

x1

w1

��?
??

??
??

??

...
// /.-,()*++ // y = f (

∑

x iwi)

xm

wm

??���������

Denote the m input values by x1, x2, . . . , xm.

A MODEL OF A SINGLE NEURON (UNIT)

McCulloch and Pitts (1943) proposed the ‘integrate and fire’
model:

x1

w1

��?
??

??
??

??

...
// /.-,()*++ // y = f (

∑

x iwi)

xm

wm

??���������

Denote the m input values by x1, x2, . . . , xm.

Each of the m inputs (synapses) has a weight w1, w2, . . . , wm.

A MODEL OF A SINGLE NEURON (UNIT)

McCulloch and Pitts (1943) proposed the ‘integrate and fire’
model:

x1

w1

��?
??

??
??

??

...
// /.-,()*++ // y = f (

∑

x iwi)

xm

wm

??���������

Denote the m input values by x1, x2, . . . , xm.

Each of the m inputs (synapses) has a weight w1, w2, . . . , wm.

The input values are multiplied by their weights and summed

v = w1x1 + w2x2 + · · · + wmxm =
m

∑

i=1

w ix i

A MODEL OF A SINGLE NEURON (UNIT)

McCulloch and Pitts (1943) proposed the ‘integrate and fire’
model:

x1

w1

��?
??

??
??

??

...
// /.-,()*++ // y = f (

∑

x iwi)

xm

wm

??���������

Denote the m input values by x1, x2, . . . , xm.

Each of the m inputs (synapses) has a weight w1, w2, . . . , wm.

The input values are multiplied by their weights and summed

v = w1x1 + w2x2 + · · · + wmxm =
m

∑

i=1

w ix i

The output is some function y = f (v) of the weighted sum

A MODEL OF A SINGLE NEURON (UNIT)

McCulloch and Pitts (1943) proposed the ‘integrate and fire’
model:

x1

w1

��?
??

??
??

??

...
// /.-,()*++ // y = f (

∑

x iwi)

xm

wm

??���������

Example

Let x = (0, 1, 1) and w = (1,−2, 4). Then

v = 1 · 0 − 2 · 1 + 4 · 1 = 2

ACTIVATION FUNCTION

The output of a neuron (y) is a function of the weighted sum

y = f (v)

This function is often called the activation function.

What function is it and how is it computed?

ACTIVATION FUNCTION

The output of a neuron (y) is a function of the weighted sum

y = f (v)

This function is often called the activation function.

What function is it and how is it computed?

Linear function:

f (v) = a + v = a +
∑

w ixi

where parameter a is called bias.
Noice that in this case, a neuron
becomes a linear model with bias a

being the intercept and the weights,
w1, . . . ,wm, being the slopes.

Linear

- 2 - 1 0 1 2
- 2

0

2

v

y

ACTIVATION FUNCTION

The output of a neuron (y) is a function of the weighted sum

y = f (v)

This function is often called the activation function.

What function is it and how is it computed?

Heviside step function:

f (v) =

{

1 if v ≥ a

0 otherwise

Here a is called the threshold

Example

If a = 0 and v = 2 > 0, then f (2) = 1,
the neuron fires

Step

- 2 - 1 0 1 2
0

0.5

1

v

y

ACTIVATION FUNCTION

The output of a neuron (y) is a function of the weighted sum

y = f (v)

This function is often called the activation function.

What function is it and how is it computed?

Sigmoid function:

f (v) =
1

1 + e−v

Sigmoid

- 2 - 1 0 1 2
0

0.5

1

v

y

NEURONS AS DATA-DRIVEN MODELS

We use data to create models representing the relation
between the input x and the output y variables (e.g. between
income and credit score)

y = f (x) + Error

NEURONS AS DATA-DRIVEN MODELS

We use data to create models representing the relation
between the input x and the output y variables (e.g. between
income and credit score)

y = f (x) + Error

If we use data to adjust parameters (the weights) to reduce
the error, then a neuron becomes a data-driven model

NEURONS AS DATA-DRIVEN MODELS

We use data to create models representing the relation
between the input x and the output y variables (e.g. between
income and credit score)

y = f (x) + Error

If we use data to adjust parameters (the weights) to reduce
the error, then a neuron becomes a data-driven model

If we use only linear activation functions, then a neuron is just
a linear model with weights corresponding to slopes (i.e.
related to correlations)

f (x1, . . . , xm) = a + w1x1 + · · · + wmxm

SO, WHAT IS DIFFERENT FROM LINEAR MODELS?

The linear mean–square regression is a good technique, but it
relies heavily on the use of quadratic cost function

c(y , f (x)) = |y − f (x)|2

SO, WHAT IS DIFFERENT FROM LINEAR MODELS?

The linear mean–square regression is a good technique, but it
relies heavily on the use of quadratic cost function

c(y , f (x)) = |y − f (x)|2

Neurons can be ‘trained’ to using other cost functions, such
as the absolute deviation:

c(y , f (x)) = |y − f (x)|

SO, WHAT IS DIFFERENT FROM LINEAR MODELS?

The linear mean–square regression is a good technique, but it
relies heavily on the use of quadratic cost function

c(y , f (x)) = |y − f (x)|2

Neurons can be ‘trained’ to using other cost functions, such
as the absolute deviation:

c(y , f (x)) = |y − f (x)|

Networks of many neurons can be seen as sets of multiple and
competing models.

SO, WHAT IS DIFFERENT FROM LINEAR MODELS?

The linear mean–square regression is a good technique, but it
relies heavily on the use of quadratic cost function

c(y , f (x)) = |y − f (x)|2

Neurons can be ‘trained’ to using other cost functions, such
as the absolute deviation:

c(y , f (x)) = |y − f (x)|

Networks of many neurons can be seen as sets of multiple and
competing models.

Neural networks can be used to model non-linear relations in
data.

FEED-FORWARD NEURAL NETWORKS

A collection of neurons connected together in a network can be
represented by a directed graph:

�
��
�
��

����1
PPPPq

PPPPq@
@

@
@@R

����1
�

�
�

���

-

-

-

-

-

1

2

3

4

5

FEED-FORWARD NEURAL NETWORKS

A collection of neurons connected together in a network can be
represented by a directed graph:

�
��
�
��

����1
PPPPq

PPPPq@
@

@
@@R

����1
�

�
�

���

-

-

-

-

-

1

2

3

4

5

Nodes represent the neurons, and
arrows represent the links between
them.

FEED-FORWARD NEURAL NETWORKS

A collection of neurons connected together in a network can be
represented by a directed graph:

�
��
�
��

����1
PPPPq

PPPPq@
@

@
@@R

����1
�

�
�

���

-

-

-

-

-

1

2

3

4

5

Nodes represent the neurons, and
arrows represent the links between
them.

Each node has its number, and a
link connecting two nodes will have
a pair of numbers (e.g. (1, 4)
connecting nodes 1 and 4).

FEED-FORWARD NEURAL NETWORKS

A collection of neurons connected together in a network can be
represented by a directed graph:

�
��
�
��

����1
PPPPq

PPPPq@
@

@
@@R

����1
�

�
�

���

-

-

-

-

-

1

2

3

4

5

Nodes represent the neurons, and
arrows represent the links between
them.

Each node has its number, and a
link connecting two nodes will have
a pair of numbers (e.g. (1, 4)
connecting nodes 1 and 4).

Networks without cycles (feedback
loops) are called a feed-forward
networks (or perceptron).

INPUT AND OUTPUT NODES

�
��
�
��

����1
PPPPq

PPPPq@
@

@
@@R

����1
�

�
�

���

-

-

-

-

-

1

2

3

4

5

Input nodes of the network (nodes 1, 2
and 3) are associated with the
input variables (x1, . . . , xm).
They do not compute anything,
but simply pass the values to the
processing nodes.

Output nodes (4 and 5) are associated
with the output variables
(y1, . . . , yn).

HIDDEN NODES AND LAYERS

A neural network may have hidden nodes — they are not
connected directly to the environment (‘hidden’ inside the
network):

�
��

�
��
�
��

�
��

����1
PPPPq

PPPPq@
@

@
@@R

����1
�

�
�

���
@

@
@@R�

�
���

-

-

-

-

--

-

1

2

3

4

5

6

7

HIDDEN NODES AND LAYERS

A neural network may have hidden nodes — they are not
connected directly to the environment (‘hidden’ inside the
network):

�
��

�
��
�
��

�
��

����1
PPPPq

PPPPq@
@

@
@@R

����1
�

�
�

���
@

@
@@R�

�
���

-

-

-

-

--

-

1

2

3

4

5

6

7

We may organise nodes in layers: input (nodes 1,2 and 3),
hidden (4 and 5) and output (6 and 7) layers.

HIDDEN NODES AND LAYERS

A neural network may have hidden nodes — they are not
connected directly to the environment (‘hidden’ inside the
network):

�
��

�
��
�
��

�
��

����1
PPPPq

PPPPq@
@

@
@@R

����1
�

�
�

���
@

@
@@R�

�
���

-

-

-

-

--

-

1

2

3

4

5

6

7

We may organise nodes in layers: input (nodes 1,2 and 3),
hidden (4 and 5) and output (6 and 7) layers.

Neural networks can have several hidden layers.

NUMBERING THE WEIGHTS

Each jth node in a network has a set of weights w ij .

�
��

�
��
�
��

�
��

����1
PPPPq

PPPPq@
@

@
@@R

����1
�

�
�

���
@

@
@@R�

�
���

-

-

-

-

--

-

1

2

3

4

5

6

7

For example, node 4 has weights w14, w24 and w34.

NUMBERING THE WEIGHTS

Each jth node in a network has a set of weights w ij .

�
��

�
��
�
��

�
��

����1
PPPPq

PPPPq@
@

@
@@R

����1
�

�
�

���
@

@
@@R�

�
���

-

-

-

-

--

-

1

2

3

4

5

6

7

For example, node 4 has weights w14, w24 and w34.

A network is completely defined if we know its topology (its
graph), the set of all weights w ij and the activation functions,
f , of all the nodes.

Example

��
�� ��

����
��

-
S

S
S

SSw

PPPPPPq

�
�

�
��7

- �����* -

W13

W23

W24

W35

W45

W14

2

1 3

4

5

w13 = 2
w23 = −3 w35 = 2
w14 = 1 w45 = −1
w24 = 4

f (v) =

{

1 if v ≥ 0
0 otherwise

What is the network output, if the inputs are x1 = 1 and x2 = 0?

SOLUTION

1 Calculate weighted sums in the first hidden layer:

v3 = w13x1 + w23x2 = 2 · 1 − 3 · 0 = 2

v4 = w14x1 + w24x2 = 1 · 1 + 4 · 0 = 1

SOLUTION

1 Calculate weighted sums in the first hidden layer:

v3 = w13x1 + w23x2 = 2 · 1 − 3 · 0 = 2

v4 = w14x1 + w24x2 = 1 · 1 + 4 · 0 = 1

2 Apply the activation function:

y3 = f (2) = 1 , y4 = f (1) = 1

SOLUTION

1 Calculate weighted sums in the first hidden layer:

v3 = w13x1 + w23x2 = 2 · 1 − 3 · 0 = 2

v4 = w14x1 + w24x2 = 1 · 1 + 4 · 0 = 1

2 Apply the activation function:

y3 = f (2) = 1 , y4 = f (1) = 1

3 Calculate the weighted sum of node 5:

v5 = w35y3 + w45y4 = 2 · 1 − 1 · 1 = 1

SOLUTION

1 Calculate weighted sums in the first hidden layer:

v3 = w13x1 + w23x2 = 2 · 1 − 3 · 0 = 2

v4 = w14x1 + w24x2 = 1 · 1 + 4 · 0 = 1

2 Apply the activation function:

y3 = f (2) = 1 , y4 = f (1) = 1

3 Calculate the weighted sum of node 5:

v5 = w35y3 + w45y4 = 2 · 1 − 1 · 1 = 1

4 The output is y5 = f (1) = 1

TRAINING NEURAL NETWORKS

Let us invert the previous problem:

Suppose that the inputs to the network are x1 = 1 and x2 = 0,
and f is a step function.
Find values of the weights, w ij , such that the output of the
network y5 = 0?

TRAINING NEURAL NETWORKS

Let us invert the previous problem:

Suppose that the inputs to the network are x1 = 1 and x2 = 0,
and f is a step function.
Find values of the weights, w ij , such that the output of the
network y5 = 0?

This problem is more difficult, because there are more
unknowns (weights) than knowns (input and output). In
general, there is an infinite number of solutions.

TRAINING NEURAL NETWORKS

Let us invert the previous problem:

Suppose that the inputs to the network are x1 = 1 and x2 = 0,
and f is a step function.
Find values of the weights, w ij , such that the output of the
network y5 = 0?

This problem is more difficult, because there are more
unknowns (weights) than knowns (input and output). In
general, there is an infinite number of solutions.

The process of finding a set of weights such that for a given
input the network produces the desired output is called
training.

SUPERVISED LEARNING

Algorithms for training neural networks can be supervised

(i.e. with a ‘teacher’) and unsupervised (self–organising).

SUPERVISED LEARNING

Algorithms for training neural networks can be supervised

(i.e. with a ‘teacher’) and unsupervised (self–organising).

Supervised algorithms use a training set — a set of pairs
(x , y) of inputs with their corresponding desired outputs.

We may think of a training set as a set of examples.

SUPERVISED LEARNING

Algorithms for training neural networks can be supervised

(i.e. with a ‘teacher’) and unsupervised (self–organising).

Supervised algorithms use a training set — a set of pairs
(x , y) of inputs with their corresponding desired outputs.

We may think of a training set as a set of examples.

An outline of a supervised learning algorithm:
1 Initially, set all the weights w ij to some random values
2 Repeat

1 Feed the network with an input x from one of the examples in
the training set

2 Compute the network’s output f (x)
3 Change the weights w ij of the nodes

3 Until the error c(y , f (x)) is small

DISTRIBUTED MEMORY

After training, the weights represent properties of the training
data (similar to the covariance matrix, slopes of a linear
model, etc)

DISTRIBUTED MEMORY

After training, the weights represent properties of the training
data (similar to the covariance matrix, slopes of a linear
model, etc)

Thus, the weights form the memory of a neural network.

DISTRIBUTED MEMORY

After training, the weights represent properties of the training
data (similar to the covariance matrix, slopes of a linear
model, etc)

Thus, the weights form the memory of a neural network.

The knowledge in this case is said to be distributed across
the network. Large number of nodes not only increases the
storage ‘capacity’ of a network, but also ensures that the
knowledge is robust.

DISTRIBUTED MEMORY

After training, the weights represent properties of the training
data (similar to the covariance matrix, slopes of a linear
model, etc)

Thus, the weights form the memory of a neural network.

The knowledge in this case is said to be distributed across
the network. Large number of nodes not only increases the
storage ‘capacity’ of a network, but also ensures that the
knowledge is robust.

By changing the weights in the network we may store new
information.

GENERALISATION

By memorising patterns in the data during training, neural
networks may produce reasonable answers for input patterns
not seen during training (generalisation).

Function with noise

0 2 4 6 8 10
0

1

2

3

Time

Data Function without noise

0 2 4 6 8 10
0

1

2

3

Time

Data

GENERALISATION

By memorising patterns in the data during training, neural
networks may produce reasonable answers for input patterns
not seen during training (generalisation).

Generalisation is particularly useful for classification of noisy
data, the ‘what-if’ analysis and prediction (e.g. time-series
forecast)

Function with noise

0 2 4 6 8 10
0

1

2

3

Time

Data Function without noise

0 2 4 6 8 10
0

1

2

3

Time

Data

APPLICATION OF ANN

Include:

Function approximation (modelling)

Pattern classification (analysis of time–series, customer
databases, etc).

Object recognition (e.g. character recognition)

Data compression

Security (credit card fraud)

PATTERN CLASSIFICATION

In some literature, the set of all input values is called the
input pattern, and the set of output values the output pattern

x = (x1, . . . , xm) −→ y = (y1, . . . , yn)

PATTERN CLASSIFICATION

In some literature, the set of all input values is called the
input pattern, and the set of output values the output pattern

x = (x1, . . . , xm) −→ y = (y1, . . . , yn)

A neural network ‘learns’ the relation between different input
and output patterns.

PATTERN CLASSIFICATION

In some literature, the set of all input values is called the
input pattern, and the set of output values the output pattern

x = (x1, . . . , xm) −→ y = (y1, . . . , yn)

A neural network ‘learns’ the relation between different input
and output patterns.

Thus, a neural network performs pattern classification or
pattern recognition (i.e. classifies inputs into output
categories).

TIME SERIES ANALYSIS

A time series is a recording of some variable (e.g. a share price,
temperature) at different time moments:

x(t1), x(t2), . . . , x(tm)

Time series

0 2 4 6 8 10
0

1

2

3

Time

Data

The aim of the analysis is to learn to predict the future values.

TIME SERIES (CONT.)

We may use a neural network to analyse time series:

Input: consider m values in the past
x(t1), x(t2), . . . , x(tm) as m input variables.

Output: consider n future values
y(tm+1), y(tm+2), . . . , y(tm+n) as n output
variables.

TIME SERIES (CONT.)

We may use a neural network to analyse time series:

Input: consider m values in the past
x(t1), x(t2), . . . , x(tm) as m input variables.

Output: consider n future values
y(tm+1), y(tm+2), . . . , y(tm+n) as n output
variables.

Our goal is to find the following model

(y(tm+1), . . . , y(tm+n)) ≈ f (x(t), x(t1), . . . , x(tm))

TIME SERIES (CONT.)

We may use a neural network to analyse time series:

Input: consider m values in the past
x(t1), x(t2), . . . , x(tm) as m input variables.

Output: consider n future values
y(tm+1), y(tm+2), . . . , y(tm+n) as n output
variables.

Our goal is to find the following model

(y(tm+1), . . . , y(tm+n)) ≈ f (x(t), x(t1), . . . , x(tm))

By training a neural network with m inputs and n outputs on
the time series data, we can create such a model.

BENEFITS OF NEURAL NETWORKS

Can be applied to many problems, as long as there is some
data.

BENEFITS OF NEURAL NETWORKS

Can be applied to many problems, as long as there is some
data.

Can be applied to problems, for which analytical methods do
not yet exist

BENEFITS OF NEURAL NETWORKS

Can be applied to many problems, as long as there is some
data.

Can be applied to problems, for which analytical methods do
not yet exist

Can be used to model non-linear dependencies.

BENEFITS OF NEURAL NETWORKS

Can be applied to many problems, as long as there is some
data.

Can be applied to problems, for which analytical methods do
not yet exist

Can be used to model non-linear dependencies.

If there is a pattern, then neural networks should quickly work
it out, even if the data is ‘noisy’.

BENEFITS OF NEURAL NETWORKS

Can be applied to many problems, as long as there is some
data.

Can be applied to problems, for which analytical methods do
not yet exist

Can be used to model non-linear dependencies.

If there is a pattern, then neural networks should quickly work
it out, even if the data is ‘noisy’.

Always gives some answer even when the input information is
not complete.

BENEFITS OF NEURAL NETWORKS

Can be applied to many problems, as long as there is some
data.

Can be applied to problems, for which analytical methods do
not yet exist

Can be used to model non-linear dependencies.

If there is a pattern, then neural networks should quickly work
it out, even if the data is ‘noisy’.

Always gives some answer even when the input information is
not complete.

Networks are easy to maintain.

LIMITATIONS OF NEURAL NETWORKS

Like with any data-driven models, they cannot be used if
there is no or very little data available.

LIMITATIONS OF NEURAL NETWORKS

Like with any data-driven models, they cannot be used if
there is no or very little data available.

There are many free parameters, such as the number of
hidden nodes, the learning rate, minimal error, which may
greatly influence the final result.

LIMITATIONS OF NEURAL NETWORKS

Like with any data-driven models, they cannot be used if
there is no or very little data available.

There are many free parameters, such as the number of
hidden nodes, the learning rate, minimal error, which may
greatly influence the final result.

Not good for arithmetics and precise calculations.

LIMITATIONS OF NEURAL NETWORKS

Like with any data-driven models, they cannot be used if
there is no or very little data available.

There are many free parameters, such as the number of
hidden nodes, the learning rate, minimal error, which may
greatly influence the final result.

Not good for arithmetics and precise calculations.

Neural networks do not provide explanations. If there are
many nodes, then there are too many weights that are
difficult to interprete (unlike the slopes in linear models, which
can be seen as correlations). In some tasks, explanations are
crucial (e.g. air traffic control, medical diagnosis).

	Outline
	Biological neurons and the brain
	A Model of A Single Neuron
	Neurons as data-driven models
	Neural Networks
	Training algorithms
	Applications
	Benefits, limitations and applications

