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The word ‘model’ comes from a Latin word meaning ‘small’,
and usually we mean some small representation of the real
object (e.g. a model of a house, a car or an aircraft)

Reality > Model

Some models can be larger in size (e.g. a model of an atom).
We shall mean ‘smaller’ in terms of complexity or uncertainty

Uncertainty(Reality) > Uncertainty(Model)

The remaining part is called the error of a model. Thus

Reality = Model + Error
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THE KEY QUESTION

A system (reality) consists of objects that interact and depend
on each other.

We represent these objects by variables, say, x and y

Earlier, we have seen how joint probability can reveal the
dependency between events (P(x , y) 6= P(x)P(y))

What dependency is it exactly?

Can we find a mapping (a function) between x and y that will
represent this dependency?

y = f (x)

Example

If f (x) = x

2
, what is y for x = 4, x = 6, x = 1000?
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DATA-DRIVEN MODELS

Case: Age Gender Income
($K p.m.)

Expenses
($K p.m.)

Home
owner

Credit
score

1 21 0 2 1 0 3
2 18 1 1 2 0 1
3 50 1 6 2 1 5
4 23 0 3 1 1 4
5 40 1 3 2 0 2

Data is a ‘footprint’ of reality.

Does the credit score depend on a person’s income?

Can we find a function f (·) such that

Credit score = f (Income, Expenses, Age, Gender, . . . )

Data-driven modelling is a search for such functions that
represent the dependencies between different variables.
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LINEAR FUNCTIONS

There are many kinds of functions y = f (x). The simplest are
the linear functions.

A line on xy -plane is defined by the linear function

y = a + b x

where a is the intercept, and b

is called the slope of the line,
and together that are the
prameters of the model.

Example

y = 2 + 3 x (a = 2 , b = 3)

What value is y when x = 4?
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PLANES and HYPERPLANES

Variable y may depend on several variables x1, x2,. . .

A linear function y = f (x1, x2) of two variables describes a
plane, which we can plot on an x , y , z (or x1, x2, y) chart.

y = a + b1 x1 + b2 x2

A linear function of m variables
y = f (x1, . . . , xm) defines a
hyperplane in an m + 1
dimensional space

y = a + b1 x1 + · · · + bm xm

with one intercept and m slopes
(there are m + 1 parameters).
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A forecast can be made using a function relating past to the
future.

In the coursework, we can denote the exchange rate of today
by x and the rate of tomorrow by y .

GBP / EUR Exchange rates

1,3
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1,3 1,4 1,5 1,6 1,7

Today
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m
o
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Does the relation y = f (x)
look linear?

Can you suggest values for
the intercept (a) and the
slope (b)?

y ≈ f (x) = a + b x
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It would be more useful to predict the differences between two
consequitive values, or the returns ∆y

∆yi = yi − yi−1

GBP / EUR Returns

-0,04

-0,03

-0,02
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0,03

0,04

-0,04 -0,03 -0,02 -0,01 0 0,01 0,02 0,03 0,04

Today
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Does this relation look
linear?

Do you think from the chart
that the return of tomorrow
depend on the return of
today?
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THE COST OF THE ERROR

Which function is the ‘best’ or the optimal model?
Recall that the model is only an approximation of the reality,
and there is also the error, and a good model should have a
small error

y = f (x) + Error

The way we measure the error is defined by the cost function

c(y , f (x)) = Error

The choice of c(y , f (x)) determines, which model is the best.

Example

The absolute cost (aka the absolute deviation):

c(y , f (x)) = |y − f (x)|

The quadratic cost (aka the squared deviation):

c(y , f (x)) = |y − f (x)|2
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conditional expectation

y ≈ E{y | x}

If we assume that E{y | x} is a linear function y = a + b x ,
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THE MEAN-SQUARE REGRESSION

It is known that if c(y , f (x)) = |y − f (x)|2 (quadratic cost
function), then on average the optimal model is the
conditional expectation

y ≈ E{y | x}

If we assume that E{y | x} is a linear function y = a + b x ,
then we only need to find the intercept (a) and the slope (b)
of a line that minimises the quadratic error on average.

X

Y

Data y

Model f(x)

The full name of this kind of
model is linear mean-square
regression
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A LINE THROUGH TWO POINTS

Given two points (X1, Y1) and (X2, Y2), find a and b.

Two points uniquely define the line.

b =
dY

dX
=

Y2 − Y1

X2 − X1

a = Y1 − b X1

We can also write the equation
for the line as

y = Y1 + b (x − X1)
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A LINE THROUGH SEVERAL POINTS

For several points, the slope (b) is computed using the
measures of dispersion (covariance and variance)

For the intercept (a), we use the fact that the line must go
through the centre of gravity (E{x}, E{y}).

x y

X1 Y1

X2 Y2

...
...

Xn Yn

b =
Cov(x , y)

Var(x)

a = E{y} − b E{x}

And the equation for the line is

y = E{y} + b [x − E{x}]
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A SIMPLE MODEL FOR CREDIT SCORE

Monthly Income ($ K) Credit Score

2 3
1 1
6 5
3 4

Denote by x the income and by y the credit score.

Construct a linear model y ≈ a + b x

We need to find slope (b) and intercept (a) from the data
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SOLUTION

E{x} = (2 + 1 + 6 + 3)/4 = 3

E{y} = (3 + 1 + 5 + 4)/4 = 3, 25

Cov(x , y) = [(2 − 3)(3 − 3, 25) + · · · + (3 − 3)(4 − 3, 25)]/4 = 2, 5

Var(x) = [(2 − 3)2 + · · · + (3 − 3)2]/4 = 3, 5

y = 0,71x+ 1,11
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b =
Cov(x , y)

Var(x)
= 0, 71

a = E{y} − b E{x} = 1, 11
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MULTIPLE LINEAR REGRESSION

x1 x2 · · · xm y

X11 X12 · · · X1m Y1

X21 X22 · · · X2m Y2

· · · · · · · · · · · · · · ·
Xn1 Xn2 · · · Xnm Yn

Here, y depends not on one, but on several variables

y ≈ f (x1, . . . , xm) = a + b1 x1 + · · · + bm xm

Thus, we need to find one intercept a and m regression

coefficients b1, b2, . . . , bm (‘slopes’)
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A MORE COMPLEX CREDIT SCORE MODEL

Monthly Income ($ K) Monthly Expenses ($ K) Credit Score

2 1 3
1 2 1
6 2 5
3 1 4

Denote by x1 the income, by x2 expenses and by y the credit
score.

Construct a linear model y ≈ a + b1 x1 + b2 x2

We need to find two slopes (b1, b2) and one intercept (a)
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APPROXIMATE SOLUTION

y = 0,71x+ 1,11
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b1 =
Cov(x1, y)

Var(x1)
= 0, 71 b2 =

Cov(x2, y)

Var(x2)
= −0, 5

a = E{y} − b1 E{x1} − b2 E{x2} = 1, 86

f (x1, x2) = 1, 86 + 0, 71 x1 − 0, 5 x2
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SLOPE AND CORRELATION

Recall that correlation is

Corr(x , y) =
Cov(x , y)

√

Var(x)Var(y)

Thus, we can compute the slope as

b =
Cov(x , y)

Var(x)
= Corr(x , y)

√

Var(y)

Var(x)

Positive correlation means positive slope b > 0

Negative correlation means negative slope b < 0
(anticorrelated)

Zero correlation means zero slope b = 0 (uncorrelated)
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CORRELATION AND DEPENDENCY

Correlation indicates the degree of a linear dependency

Zero correlation means there is no linear dependency

Zero correlation, however, does not imply independence

P(x , y) = P(x)P(y)
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Here, the correlation is 0,053

There still can be some nonlinear
dependency
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CORRELATION IS NOT CAUSATION

There is a positive correlation between sales of ice-cream and
shark attacks. Does this mean that ice-cream causes shark
attacks?

It is a common fallacy to conclude a causal relation based on
correlation

Often, correlation between x and y can be because they both
depend on (or caused by) a third variable z (e.g. both
ice-cream sales and shark attacks increase in the summer
season)
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ADVANTAGES OF LINEAR MODELS

Given data, they are easy to implement

Multiple linear mean-square regression is a standard feature of
many analytical tools

If there is a strong linearity in the data, then the mean-square
regression can always find the optimal model

Such a model can be used to explain and understand the
dependencies in data (i.e. using slopes or correlations)

The model can be used for prediction and ‘what-if’ analysis.
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LIMITATIONS OF LINEAR MODELS

There can be no significant linear dependency

Linear models cannot account for nonlinear effects

Mean-square error (quadratic cost) is very sensitive to outliers
(unusual cases)

It is much more difficult to find linear models optimising
non-quadratic cost functions (e.g. an absolute error
|y − f (x)|)
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SUMMARY

Models are simplified representations of reality

The unexplained part of reality results in an error of the model

Linear functions, defining lines, planes and hyperplanes, can
be used to construct the simplest data-driven models

Linear mean-square regression is a standard method of
computing such models

Linear models can reveal linear dependencies in data
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