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WHAT IS A MODEL?

@ The word ‘model’ comes from a Latin word meaning ‘small,
and usually we mean some small representation of the real
object (e.g. a model of a house, a car or an aircraft)

Reality > Model

@ Some models can be larger in size (e.g. a model of an atom).
We shall mean ‘smaller’ in terms of complexity or uncertainty

Uncertainty(Reality) > Uncertainty(Model)
@ The remaining part is called the error of a model. Thus

Reality = Model 4 Error
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THE KEY QUESTION

@ A system (reality) consists of objects that interact and depend
on each other.

@ We represent these objects by variables, say, x and y

@ Earlier, we have seen how joint probability can reveal the
dependency between events (P(x,y) # P(x)P(y))

@ What dependency is it exactly?

@ Can we find a mapping (a function) between x and y that will
represent this dependency?

y =1f(x)

Example
If f(x) = 3, what is y for x = 4, x = 6, x = 10007
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DATA-DRIVEN MODELS

Case: | Age | Gender | Income Expenses Home Credit
($K p.m.) | (8K p.m.) | owner | score

1 21 0 2 1 0 3

2 18 1 1 2 0 1

3 50 1 6 2 1 5

4 23 0 3 1 1 4

5 40 1 3 2 0 2

@ Data is a ‘footprint’ of reality.

Does the credit score depend on a person’s income?
Can we find a function f(-) such that

Credit score = f(Income, Expenses, Age, Gender, .. .)

(]

Data-driven modelling is a search for such functions that
represent the dependencies between different variables.
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LINEAR FUNCTIONS

@ There are many kinds of functions y = f(x). The simplest are
the linear functions.

@ A line on xy-plane is defined by the linear function

y=a+bx

A y=a+ b Yvhere a is the intercept, ?nd b
is called the slope of the line,
and together that are the
prameters of the model.

Example

y=2+3x (a=2, b=3)

What value is y when x = 47

\{
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PLANES and HYPERPLANES

@ Variable y may depend on several variables x1, x»,. ..

@ A linear function y = f(xy, x2) of two variables describes a
plane, which we can plot on an x, y, z (or x1, x2, ¥) chart.

y=a+bixi+byx

y A linear function of m variables

v=a+bx+thx, .

’ y = f(x1,...,Xm) defines a
hyperplane in an m+1

T dnenso e
—a Pl
Vi

a y=a+bixg+- -+ bnXn

\ . .
X, with one intercept and m slopes

(there are m + 1 parameters).
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LINEAR FORECAST

@ A forecast can be made using a function relating past to the
future.

@ In the coursework, we can denote the exchange rate of today
by x and the rate of tomorrow by y.

GBP / EUR Exchange rates

@ Does the relation y = f(x)

Y look linear?
1] j @ Can you suggest values for
# the intercept (a) and the
| slope (b)?

Tomorrow
ES o
‘2
\-

y~f(x)=a+ bx
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LINEAR FORECAST (cont.)

@ It would be more useful to predict the differences between two
consequitive values, or the returns Ay

Ayi=yi—yi-1

GBP / EUR Returns

@ Does this relation look
linear?

@ Do you think from the chart
that the return of tomorrow
depend on the return of
today?

Tomorrow
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THE COST OF THE ERROR

@ Which function is the ‘best’ or the optimal model?

@ Recall that the model is only an approximation of the reality,
and there is also the error, and a good model should have a
small error

y = f(x) + Error

@ The way we measure the error is defined by the cost function
c(y, f(x)) = Error

@ The choice of c(y, f(x)) determines, which model is the best.

Example

The absolute cost (aka the absolute deviation):

c(y, f(x)) = ly = £(x)|

The quadratic cost (aka the squared deviation):

c(y, f(x)) = Iy — f(x)”




THE MEAN-SQUARE REGRESSION




THE MEAN-SQUARE REGRESSION

@ It is known that if c(y, f(x)) = |y — f(x)|? (quadratic cost
function), then on average the optimal model is the
conditional expectation

y~ E{y|x}

+ Datay
—— Model f(x)




THE MEAN-SQUARE REGRESSION

@ It is known that if c(y, f(x)) = |y — f(x)|? (quadratic cost
function), then on average the optimal model is the
conditional expectation

y~ E{y|x}

@ If we assume that E{y | x} is a linear function y = a+ bx,
then we only need to find the intercept (2) and the slope (b)
of a line that minimises the quadratic error on average.

+ Datay
—— Model f(x)




THE MEAN-SQUARE REGRESSION

@ It is known that if c(y, f(x)) = |y — f(x)|? (quadratic cost
function), then on average the optimal model is the
conditional expectation

y~ E{y|x}

@ If we assume that E{y | x} is a linear function y = a+ bx,
then we only need to find the intercept (2) and the slope (b)
of a line that minimises the quadratic error on average.

The full name of this kind of
oaay model is linear mean-square

—— Model f(x)

regression
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A LINE THROUGH TWO POINTS

@ Given two points (X1, Y1) and (X2, Y2), find a and b.

@ Two points uniquely define the line.

A y=a+bx
p _ Y Yo%
CdX T XX
a = Yl—bX1

We can also write the equation
for the line as

y:Y1+b(X—X1)
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A LINE THROUGH SEVERAL POINTS

@ For several points, the slope (b) is computed using the
measures of dispersion (covariance and variance)

@ For the intercept (a), we use the fact that the line must go
through the centre of gravity (E{x}, E{y}).

- b Cov(x,y)
X 1Y - Var(x)
X1 | Y1

s = E{y}-bE{x}

Xn \'/n And the equation for the line is

y=E{y} + b [x— E{x}]
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A SIMPLE MODEL FOR CREDIT SCORE

Monthly Income ($ K) | Credit Score
2 3
1 1
6 5
3 4

@ Denote by x the income and by y the credit score.
@ Construct a linear model y =~ a+ bx

@ We need to find slope (b) and intercept (a) from the data
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SOLUTION

E{x} =
Elyy =
Cov(x,y) =

Var(x) =

(24+1+6+3)/4=3
(3+1+5+4)/4=3,25
[(2-3)(3-3,25)+---+(3—3)(4—3,25)]/4=2,5

[(2-3)°+ ---+(3-3)°]/4=3,5

/ , _ Covixy) —0.71
Var(x)

2 4
Monthly Income, £K

a = E{y}-bE{x} =111

6 8
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MULTIPLE LINEAR REGRESSION

X1 X2 ot Xm y

X1 X2 - Xim | N1
Xo1 Xoo -0 Xom | Y2
an Xn2 e Xnm Y"

@ Here, y depends not on one, but on several variables
yrf(x1,...,Xm)=a+bixi+ -+ bmXxm

@ Thus, we need to find one intercept a and m regression
coefficients by, by, ..., by (‘slopes’)
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A MORE COMPLEX CREDIT SCORE MODEL

Monthly Income ($§ K) Monthly Expenses ($ K) | Credit Score
2 1 3
1 2 1
6 2 5
3 1 4

@ Denote by x; the income, by x» expenses and by y the credit
score.

@ Construct a linear model y ~ a+ by x1 + by xo
@ We need to find two slopes (b1, b2) and one intercept (a)



APPROXIMATE SOLUTION

Credit Score

y=071x+ L11

Monthly Income, £K

Credit Score

*
*
T
y=-0.5x+4
*

1 2
Monthly Expenses, £K




APPROXIMATE SOLUTION
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APPROXIMATE SOLUTION

=)

6
5 .
5
ot ! .
‘E 3 45 ’\
3 3 y=-05x+4
G2 ©2
1 [ ] q .
0 .
0 2 4 6 8 0
0 1 2
Monthly Income, £K
Monthly Expenses, £K
Cov(x1,y) Cov(xa,y)
bp=——-=0,71 bp=———>-=-0,5
Var(x1) Var(x2)

a=E{y}— b E{x} — by E{xx} = 1,86

f(Xl,Xg) =1,86+0,71x1 —0,5x
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SLOPE AND CORRELATION

@ Recall that correlation is

Cov(x,y)
Var(x) Var(y)

Corr(x,y) =

@ Thus, we can compute the slope as

Var(y)
Var(x)

_ Cov(x,y)
b= Var(x)

= Corr(x,y)

@ Positive correlation means positive slope b > 0

@ Negative correlation means negative slope b < 0
(anticorrelated)

@ Zero correlation means zero slope b = 0 (uncorrelated)
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@ Zero correlation, however, does not imply independence
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CORRELATION AND DEPENDENCY

@ Correlation indicates the degree of a linear dependency
@ Zero correlation means there is no linear dependency

@ Zero correlation, however, does not imply independence

P(x,y) = P(x) P(y)

GBP/ EUR Returns

@ Here, the correlation is 0,053
E-om 003 0g2e

’ @ There still can be some nonlinear
e dependency
0,02 . c .

-
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CORRELATION IS NOT CAUSATION

@ There is a positive correlation between sales of ice-cream and
shark attacks. Does this mean that ice-cream causes shark
attacks?

@ It is a common fallacy to conclude a causal relation based on
correlation

@ Often, correlation between x and y can be because they both
depend on (or caused by) a third variable z (e.g. both
ice-cream sales and shark attacks increase in the summer
season)
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ADVANTAGES OF LINEAR MODELS

o Given data, they are easy to implement

@ Multiple linear mean-square regression is a standard feature of
many analytical tools

@ If there is a strong linearity in the data, then the mean-square
regression can always find the optimal model

@ Such a model can be used to explain and understand the
dependencies in data (i.e. using slopes or correlations)

@ The model can be used for prediction and ‘what-if’ analysis.
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LIMITATIONS OF LINEAR MODELS

@ There can be no significant linear dependency
@ Linear models cannot account for nonlinear effects

@ Mean-square error (quadratic cost) is very sensitive to outliers
(unusual cases)

@ It is much more difficult to find linear models optimising
non-quadratic cost functions (e.g. an absolute error

ly = ()
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SUMMARY

(]

Models are simplified representations of reality

(]

The unexplained part of reality results in an error of the model

(]

Linear functions, defining lines, planes and hyperplanes, can
be used to construct the simplest data-driven models
Linear mean-square regression is a standard method of
computing such models

(]

Linear models can reveal linear dependencies in data



	Outline
	Introduction to Modelling
	Linear Functions - Lines, Planes and Hyperplanes
	Overview of Linear Models
	Creating a Linear Model
	Correlation and Dependency
	Advantages and Limitations of Linear Models

