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Sources of Uncertainty

Complexity : the number of possible states of a system in question can be too
large (e.g. predict how a chess game can develop after 10 moves?)

Ignorance : some important information about the system may not be avail-
able

Randomness : the system may be random by nature, and thus the uncertainty
is irreducible.

Historical Background

1654 Blaise Pascal and Pierre Fermat

1657 Christian Huygens publishes On Ratiocination in Dice Games

1760 Thomas Bayes (conditional probability)

1812 Pierre-Simon Laplace

1933 Andrey Kolmogorov’s axioms

1920–1940 Ronald Fisher, Abraham Wald (statistics)

1948 Claude Shannon (Information theory)
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1 What is probability?

What is Probability?

Definition 1. A measure P (E) of uncertainty about event E ranging from
impossible (P (E) = 0) to certain (P (E) = 1):

(Impossible) 0 ≤ P (E) ≤ 1 (Certain)

Example 2. For a fair coin, P (heads) = 1
2 = 0.5

Set-Theoretic Intuition

• Events E are considered as subsets E ⊆ U of the universal set U .

• Probability P (U) = 1, because the universe is certain.

• We can consider probabilities of negation (not E), disjunction (E1 or E2)
and conjunction (E1 and E2) of events measures of the complement, union
and intersection of subsets:

P (Ē) = P (U − E) , P (E1 ∪ E2) , P (E1 ∩ E2)

Additivity of Probabilities

• Events E1 and E2 are disjoint if E1 ∩ E2 = ∅.

• For disjoint events

P (E1 or E2) = P (E1) + P (E2)

• For n disjoint events such that E1 ∪ E2 ∪ · · · ∪ En = U

P (E1) + P (E2) + · · ·+ P (En) = 1

(because at least one of the events is certain)

Example 3. For a fair coin and a fair dice we have
1

2
+

1

2
= 1

1

6
+

1

6
+

1

6
+

1

6
+

1

6
+

1

6
= 1

HeadsTails

1

2

34

5

6

2



Where do Probabilities Come From?

• If there are n disjoint events, then we could assume that all

P (E1) = P (E2) = · · · = P (En) =
1
n

• It would be much better to use the empirical frequency function

P (Ei) ≈
n(Ei)

n
=

no. of times event Ei occurs
no. of independent tests
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Example 4. Flip a coin or roll a dice several times to estimate the probabilities.

Subjective and Objective Probability

• Two people may have different (subjective) experiences, sets of observa-
tions or measurements of the same phenomenon, and therefore they may
believe in different (subjective) probability of the same event.

• Some scientists believe that there exists an objective probability law of
the phenomenon (although it may be unknown to us).

• The weak law of large numbers states that empirical frequency of an event
observed in independent and identically distributed (i.i.d.) experiments
should converge to its probability:

lim
n→∞

n(E)
n

= P (E)

2 Information

Complexity and Uncertainty

• A Boolean variable has two values, and probability 1/2 describes the max-
imum possible uncertainty about its values (e.g. a fair coin).

• A set of H Boolean variables has M = 2×2×· · ·×2 possible configurations,
and there are

M = 2H possible states
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• If a random phenomenon has M possible outcomes, then its complexity or
maximal uncertainty is described by the maximal entropy:

H = log2 M
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Surprise

• Notice that if P (E) = 1
M , then

H = log2 M = − log2

1
M

= − log2 P (E)

• Random entropy or surprise of event E with probability P (E) is

H(E) = − log2 P (E)
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• Compare information from observing events with probabilities 1
8 and 1

2

Information

• Uncertainty can be reduced by obtaining unknown information.
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• Thus, information is the difference of uncertainties:

Information = Uncertainty before−Uncertainty after

• Information comes from measurements, tests or experiments.

Example 5 (Information). • Suppose you have 10 fair coins.

• Probability of each configuration is 1/210, so that uncertainty is

Hbefore(10 coins) = − log2

1
210

= log2 210 = 10

• How much information do we need to obtain to reduce the uncertainty to

Hafter(10 coins) = 2

• Answer: we need 8 = 10− 2 bits of information (i.e. state of 8 coins)

3 Decisions under Uncertainty

Payoff, Utility and Cost

• Our decisions (or choices) can have different outcomes:

E1, E2, . . . , Em

• The main difference between the outcomes is that they carry different
payoffs or utilities:

U(E1) = £10, U(E2) = −£5, . . .

• The negative utilities are called losses or costs:

C(E1) = −£10, C(E2) = £5, . . .

• Rational decisions should maximise utilities and minimise costs.

Expected Utility

• The outcomes of our decisions are often uncertain:

P (E1), P (E2), . . . , P (Em)

Definition 6 (Expected utility). The sum of products of outcomes’ util-
ities U(Ei) and their probabilities P (Ei):

E{U} = U(E1)P (E1) + U(E2)P (E2) + · · ·+ U(Em)P (Em)

• If all probabilities are equal P (Ei) = 1/m, then expected utility is the
same as the average utility:

E{U} =
U(E1) + U(E1) + · · ·+ U(Em)

m

• Rational decisions under uncertainty should maximise expected utility.
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Games and Lotteries

• Games and lotteries are typical examples of situations when the outcomes
of decisions are uncertain.

• A lottery is a set of outcomes {E1, . . . , Em} with their utilities U(Ei) and
probabilities P (Ei).

• Economic theory states that lottery B is preferred to lottery A if and only
if lottery B has greater expected utility:

A . B ⇐⇒ EA{U} ≤ EB{U}

Example 7. • Consider two lotteries A and B with outcomes E1 and E2

• Let U(E1) = −£100 and U(E2) = £100}

• Let PA(E1) = 1/2 and PB(E1) = 1/4 (PA,B(E2) = 1− PA,B(E1))

• Then
EA{U} = £0 ≤ EB{U} = £50

Risk

• What should we choose when two lotteries have the same expected utility?

• Different lotteries may have different risk, which can be measured as stan-
dard deviation or variance of utility from its expected value.

Example 8. • Consider two lotteries A and B with outcomes E1, E2, E3, E4

• Let U(Ei) ∈ {−£1000,−£1,£1,£1000}

• Let PA(Ei) ∈ {0, 1
2 , 1

2 , 0}

• Let PB(Ei) ∈ { 1
2 , 0, 0, 1

2}

• Both lotteries have zero expected utility EA{U} = EB{U} = 0, but the
risk is different.

4 Human Perception of Risk

The Allais paradox
Consider two lotteries:

A : p(£300) = 1
3 (and p(£0) = 2

3 )

B : p(£100) = 1

• Most of the people seem to prefer A . B
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• Note that

EA{x} = 300 · 1
3

+ 100 · 0 + 0 · 2
3

= 100

EB{x} = 300 · 0 + 100 · 1 + 0 · 0 = 100

• Lottery B has no risk.

• Both lotteries are about gaining utility.

Remark 1. It has been noticed that people tend to be risk averse, when choosing
between gains.

The Allais paradox (2)
Consider two lotteries:

C : p(−£300) = 1
3 (and p(£0) = 2

3 )

D : p(−£100) = 1

• Most of the people seem to prefer C & D

• Note that

EC{x} = −300 · 1
3
− 100 · 0− 0 · 2

3
= −100

ED{x} = −300 · 0− 100 · 1− 0 · 0 = −100

• Lottery C is risky.

• Both lotteries are about loosing utility.

Remark 2. It has been noticed that people tend to be risk taking, when choosing
between losses.

Decision Theories

Normative

• How decisions should be made: rational agents acting according to their
preferences and utilities.

• If the choices are made under uncertainty, then one maximises the expected
utility with respect to some probability measures.

Descriptive

• How people make decisions.

• People do not always make decisions according to normative theory.
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• There is a discord between the normative and descriptive theories of choice
(due to many paradoxes).

How wonderful that we have met with a paradox. Now we have some
hope of making progress.

Niels Bohr

Why is it a paradox?

• Normative theory states that one person should either be risk averse or
risk taking, but not both.

• Tversky and Kahneman (1981) proposed prospect theory to explain human
decision-making

• Prospect theory is not normative (i.e. not very satisfactory for mathe-
maticians).

Remark 3 (Risk and Information Utility). • Recall that uncertainty is re-
lated to information (i.e. as reduction of uncertainty).

• Information also carries some utility (e.g. for future decisions), but its
value is not the same for gains and losses.

• Lotteries with no risk cannot give any information.

Additional Reading

1. Tversky and Kahneman (1974):

Judgment under Uncertainty: Heuristics and Biases

2. Tversky and Kahneman (1981):

The framing of decisions and the psychology of choice

3. Both articles are available at Daniel Kahneman’s webpage:

http://www.princeton.edu/~kahneman/
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