Lecture 10: Introduction to logic

Dr. Roman V Belavkin

BIS4410

Contents

1	Introduction	1
2	Elements of Boolean Logic	2
3	Applications of Logic in Knowledge Management	5
R	eferences	6

1 Introduction

Historical Background

- **400 B.C.** Aristotle's work provide foundation of two-valued logic: every proposition is either True or False (excluded middle).
- **1847** George Bool defined the calculus of deductive reasoning, which we now call *Boolean logic*.
- $\mathbf{1900}\,$ Jan Lukasiewicz proposed three-valued logic: True, False and Possible.

1912 Luitzen Brouwer laid foundations for intuitionistic logic.

- 1913 Bertrand Russell's work on foundations of mathematics.
- 1931 Kurt Gödel's incompleteness theorems.
- ${\bf 1936}~{\rm Garrett}$ Birkhoff and John von Neumann introduced quantum logic.
- ${\bf 1965}\,$ Lotfi A. Zadeh published 'Fuzzy Sets' article.

Types of Logic

- Logic is a language of reasoning; a study of inference and reasoning.
- Knowledge is justified *true* belief.
- There exist different types of logic:

Propositional logic of sentences or *propositions*.

Predicate logic taking into account quantities (some, all).

Modal logic dealing with *possibilities* and *necessities*.

Fuzzy or multi-valued logic allowing for different degrees of truth.

Probabilistic logic for dealing with uncertainty.

Temporal logic for dealing with events in time.

Intuitionistic or constructive logic, rejecting the *law of the excluded middle*.

Quantum logic, rejecting the *distributivity law*.

• and many others.

2 Elements of Boolean Logic

Boolean logic (algebra)

- George Boole published his book An Investigation of the Laws of Thought in 1854 describing what we now call Boolean logic or Boolean algebra.
- It is an algebra on Boolean *variables* (having one of two values true or false) with Boolean *operations* (not, and, or).
- It was shown to be equivalent to the algebra of sets.

Boolean variables

Definition 1 (Boolean variable). is any variable a, b that can have only two values:

$$a \in \{0,1\}, \qquad b \in \{\texttt{False}, \texttt{True}\}$$

• Consider the following propositions:

Pif is a dog Dogs can fly

- Any fact, statement or *proposition* can be assumed (or believed) to be true or false, and so it can be considered as a Boolean variable.
- Two values are based on the *law of the excluded middle* due to Aristotle.

Remark 1 (Multi-valued logics). • Jan Lukasiewicz proposed three-valued logic: True, False and Possible.

• In fuzzy logic, pioneered by Lotfi A. Zadeh, there is a continuum degree of truth.

Boolean operations

Definition 2 (Boolean operation). is a mapping from one or more Boolean variables to another.

- In algebra of numbers, an operation (e.g. +, ×) maps one or more numbers to another:
 - $-1 \times 1 = -1$, 3+1=4, $2 \times 2 = 4$, $3+2 \times 4 = 11$
- *Boolean logic* can be described as a complete system of Boolean functions that can be derived (or represented) using three elementary Boolean functions (operations):
 - \neg not (negation)
 - \wedge and (conjunction)
 - \vee or (disjunction)
- These operations are equivalent to set complement, set intersection (\cap) and set union (\cup) in the algebra of sets.

Negation (NOT, \neg)

• Let $a \in L$ be a Boolean variable $a \in L = \{0, 1\} \equiv \{\texttt{False}, \texttt{True}\}$

Definition 3 $(\neg : L \rightarrow L)$.

a	$\neg a$
0	1
1	0

- The value of $\neg a$ is 1 a.
- Negation is equivalent to the complement of a set (the set of all elements $b \notin A$). If U is the universal set, and $A \subseteq U$, then the complement of A is

$$\bar{A} = U - A$$

Question 1 (Double negation). What is the value of $\neg \neg a = ?$

Conjunction (AND, \wedge)

Definition 4 $(\wedge : L \times L \to L)$.

$$\begin{array}{c|cccc} a & b & a \wedge b \\ \hline 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array}$$

- The value of $a \wedge b$ is the *minimum* of $\{a, b\}$.
- Conjunction is equivalent to the intersection of sets

 $A\cap B$

Question 2 (Law of contradiction). What is the value of

$$a \wedge \neg a = ?$$

Disjunction (OR, \lor)

Definition 5 $(\lor : L \times L \rightarrow L)$.

- The value of $a \lor b$ is the maximum of $\{a, b\}$.
- Disjunction is equivalent to the union of sets

 $A \cup B$

Question 3 (Law of the excluded middle). What is the value of

 $a \lor \neg a = ?$

Implication $(\rightarrow, \Rightarrow)$

Definition 6 $(\Rightarrow: L \times L \rightarrow L)$.

a	b	$a \Rightarrow b$
0	0	1
1	0	0
0	1	1
1	1	1

- The value of $a \Rightarrow b$ is the same as $\neg a \lor b$.
- Disjunction is equivalent to set inclusion

_

$$A \subseteq B$$

Question 4 (Inverse implication). Which of the implications below is equivalent to $a \Rightarrow b$?

$$a \Rightarrow \neg b \quad or \quad \neg a \Leftarrow \neg b$$

Equivalence (~) Definition 7 (~: $L \times L \rightarrow L$).

a	b	$a \sim b$
0	0	1
1	0	0
0	1	0
1	1	1

- The value of $a \sim b$ is the same as $(a \lor b) \land (\neg a \lor \neg b)$.
- Logical equivalence is the same as set equivalence:

 $A \subseteq B$ and $A \supseteq B$, $A \equiv B$

Summary of Elementary Logical Operations

					$a \Rightarrow b$	$a\sim b$
0	0	1	0	0	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
1	1	0	0 0 0 1	1	1	1

Duality (De Morgan's) laws :

 $\neg (a \land b) = \neg a \lor \neg b, \quad \neg (a \lor b) = \neg a \land \neg b$

Absorption laws :

 $a \wedge (a \vee b) = a$, $a \vee (a \wedge b) = a$

Using Boolean Algebra

• Given values of some Boolean variables *a*, *b*, we can also infer the true or false value of propositions such as:

$$(a \land b) \lor (\neg a) \lor (\neg b) = ?$$

• Suppose a = 0 and b = 1, then

$$(0 \land 1) \lor (\neg 0) \lor (\neg 1)$$

= 0 \lapha 1 \lapha 0
= 1

- The reasoning can be implemented on a digital computer (automated reasoning automated theorem proving systems).
- **Remark 2** (Boolean satisfiability). Checking if there exists an assignment of variables such that a proposition is true is called Boolean satisfiability problem (SAT).
 - It is a classical example of an NP-hard problem.

3 Applications of Logic in Knowledge Management

Use of Logic for Semantic Web

- Evaluating and applying rules.
- Inferring facts that were not stated explicitly.
- Providing explanations of facts or conclusions (using backward reasoning).
- Combining information from different sources.
- Detecting contradictions or conflicting statements.

Some Considerations

- The reasoning process and it outcome depends on the type of logic used (e.g. multi-valued, modal, temporal).
- Complexity can increase rapidly (exponentially).
- Incorrect facts or unreliable information can contaminate the knowledge base leading to wrong conclusions (knowledge pollution).

Additional Reading

1. Yang, Olson, and Kim (2004):

Comparison of first order predicate logic, fuzzy logic and non-monotonic logic as knowledge representation methodology

2. Saba (2007):

Language, logic and ontology: Uncovering the structure of commonsense knowledge

References

- Saba, W. S. (2007). Language, logic and ontology: Uncovering the structure of commonsense knowledge. International Journal of Human-Computer Studies, 65, 610-623.
- Yang, K. H., Olson, D., & Kim, J. (2004). Comparison of first order predicate logic, fuzzy logic and non-monotonic logic as knowledge representation methodology. *Expert Systems with Applications*, 27, 501-519.