Questions 1: Sets and Mappings

Roman Belavkin

Middlesex University

Question 1

Consider a set of all integers $z \in \mathbb{Z}$ such that $z^2 < 10$. Write this set in a set comprehension notation. Is this a finite set? What happens if the condition is changed to $z^3 < 10$?

Answer: Set comprehension is $X = \{z \in \mathbb{Z} : z^2 < 10\}$. This set can also be written explicitly as $X = \{-3, -2, -1, 0, 1, 2, 3\}$, and so it is finite.

If $X = \{z \in \mathbb{Z} : n^3 < 10\}$, then the set will include all integers $z \leq 2$, because $z^3 \leq 0$ if $z \leq 0$. Hence the set is infinite.

Question 2

Let $X = \{a, b, c, d, e\}$ and $Y = \{1, 2, 3, 4, 5\}$. Consider the following correspondences $R \subseteq X \times Y$:

$$f : \{(a, 1), (a, 2), (a, 3), (b, 4), (c, 5)\}$$

$$g : \{(a, 4), (b, 4), (c, 4), (d, 4), (e, 4)\}$$

$$h : \{(a, 5), (b, 4), (c, 3), (d, 2), (e, 1)\}$$

Which of the above are functions (mappings)? Which functions are surjective (onto), injective (one-to-one) or bijective (one-to-one correspondence)? Which has an inverse function?

Answer: f is not a function because: a) It is not defined for all elements of X (i.e. no relation for $d, e \in X$); b) There is an element in $a \in X$ related to more than one elements of Y (i.e. to $1, 2, 3 \in Y$).

g is a function (defined for all elements of X, and each $x \in X$ is related to precisely one element of Y). It is not surjective because X are not mapped to all elements of Y (in fact, only one element $4 \in Y$ is used). It is not injective because there are different elements in X corresponding to the same element of Y (e.g. both a and $b \in X$ correspond to $4 \in Y$). Thus, the inverse of g is not a function.

BIS3226

h is a function. It is both surjective and injective, and hence it is bijective. Therefore, its inverse $h^{-1}: Y \to X$ is a function (also bijective).