Lecture 13: Self-Organising Maps

Dr. Roman V Belavkin

BIS3226
Contents
1 Data Visualisation and Topology Preserving Maps 1
2 Self-Organising Maps 3
2.1 SOM Architecture 3
2.2 SOM Algorithm 4
3 Applications: Contextual Feature Maps 7

1 Data Visualisation and Topology Preserving
Maps

Limitations of k-Means Clustering

Clusters
10 A

How many clusters should we be looking for?

k=7

How large are the clusters?
What is the shape of the clusters?

How are they related to each other?

10

Remark 1. If the data ‘lives’ in a m-dimensional space with m > 3, then there
s mo way we can visualise this data directly. Thus, if we want to visualise the
dataset, we need to reduce the number of dimensions to 3 or even 2.

Topology Preserving Maps

e A topology is a system of subsets O C X, called neighbourhoods.

e In a metric space (X,d), the neighbourhood O.(z) of point x can be
defined as a set of points a such that

d(z,a) <e
e If X and Y are two topological spaces, then functions f : X — Y that
preserve the topology of X in Y are continuous functions.

¢ Continuous functions map some neighbourhood O(z) C X into any neigh-
bourhood O(y) CY

f(x) =y and f(O(x)) C O(y)

e Thus, to visualise data we need a continuous function from m-dimensional
space into a 2-dimensional space:

f R™ R2

2 Self-Organising Maps

2.1 SOM Architecture
SOM Architecture
W

inning neuron

o-dimensional
output lattice

1 2 3

Three-dimensional input Input

e A Self-Organising Map (SOM) is an unsupervised neural network algo-
rithm (Kohonen, 1982) that learns a topology preserving map, and it is
used to visualise high-dimensional data.

e It uses a single layer network of artificial neurons (or nodes), which are
arranged into an k x [lattice and are connected to the input space (data).

The SOM algorithm is designed to establish a correspondence between
topologies of the input space (data) and the output lattice (aka Kohonen’s
topology preserving map).

Each node has m weights, and together the weights represent some m-
dimensional vector: w; = (w1j,...,wn;) € R™

The weight vector w of each neuron can be compared to an m-dimensional
vector X = (21,...,Zm,) € R™ from the input space (data)

This comparisson is usually done using the Euclidean metric in the input
space R™

din(X7 Wj) = \/|.T1 — 'LL'1j|2 + -+ |$m — wmj|2

The nodes are arranged into an k x [lattice (output space).

The topology in the lattice is defined by another metric, such as the taxi-
cab distance:
dout(1,J) = li1 — j1| + iz — ja

The algorithm involves three phases: competition, adaptation and co-
operation.

2.2 SOM Algorithm

Competition
e An input vector x = (x1,...,2,,) is compared with the weight vector
w; = (wij,...,Wn;) of each node by computing the distance d(x, w;):
d(x,wy1) = \/(xl —w11)2 4+ F (T, — Win1)?
d(x,w,) = \/(wl —wip)?+ o+ (T — Wenn)?

e The winner is the node with the weight w; closest to the input x (i.e.

shortest d(x, w;)).

e Thus, nodes ‘compete’ in the sense which of the nodes w; is more ‘similar’

to a given input pattern x.

Ezample 1. Consider SOM with three inputs and two output nodes (A and B).

Let

WA = (27 _1a3)7 Wp = (_2707 1)

Find which node is the winner for the input

x=(1,-2,2)

2

R

5>

1 3
=3
dowa) = IR F (2T @9 =3
dx,wg) = VJO+22+(—2-02+@2—-1)2=V14

e Node A is the winner because it is ‘closer’ (\/g < \/ﬁ)
e What if x = (—1,—-2,0)?

Adaptation

e After the input x has been presented to SOM, the weights of all nodes are
adapted, so that they become more ‘similar’ to the input x vector.

e The adaptation formula for node j is:

new __ __old . _ wsold
wiV = w4 ahy; [X w],

where

— wj is the weight vector of node j € [1,...,k x I[;
— « is the learning rate coefficient;

— hyj is the neighbourhood of node j with respect to the winner 1.

Adaptation (cont.)
To understand better the adaptation formula, let us check how the weights
change for different values of o and h;.

new __ __old . _ «sold
Wi =wiC + ah; [X W],

e Suppose a = 0 or h;; = 0. Then

new __ old . o old] __ old
wi =wiC 40 O[X w3]fwj

The weight does not change (w}1eW = w?ld).

e Suppose h;; =1 and o = 1. Then

new old old —

W =Ww; —|—X—W] X

The new weight is equal to the input (w}°V = x).

Cooperation

e Although weights of all nodes are adapted, they do not adapt equally.
Adaptation depends on how close the nodes are from the winner in the
output lattice.

e If the winner is node i, then the level of adaptation for node j is defined by
the neighbourhood function h;; = h(d(i,j)), where d(i,j) is the distance
in the lattice.

e The neighbourhood is defines in such a way that it is smaller as the dis-
tance d(i, j) gets larger. For example, the Gaussian bell function

d2(i,4)

h(d(i,) = e~ 3"

h(d) Gaussian bell

o ©

e The winner ‘helps’ mostly its neighbours to adapt. Note also that the
winner is adapted more than any other node (i.e. because d(i,i) = 0).

Ezxample 2. Let « = 0.5 and h = 1, and let us adapt the winning node A from
previous example:
WA = (Qa_173)7 X = (la_272)

We use adaptation formula: w3V = wold + a hj[x — w§']

2 1 2
wWa o= -1 | +05-1- -2 | - -1
3 2 3

2 -1 1.5

= -1 | 4+05- -1 = —-1.5

3 -1 2.5

Training Procedure

e Define the size of the output lattice (i.e. k x)

e Initialise the weights of the nodes (e.g. randomly)

e Define metrics d;y,, doy: and other parameters (a, h)
e Repeat

1. Select an input vector x € R™ from data
2. Find the winning node by minimizing d;,(x, w;)

3. Adapt the weights of the winner and its neighbours

e Until the network stabilizes

What Should be the Result?

e Initially, there is no relation between the topology (closeness, similarity)
in the input space and the topology in the output lattice.

e After training, nodes close to each other in the lattice correspond to points
close to each other in the input space.

e The number of input dimensions (m) can be very large (e.g. m = 100), so
we cannot see the clusters directly.

e The output lattice is usually one or two dimensional, so we can visualise
and ‘see’ the clusters.

3 Applications: Contextual Feature Maps

Example of SOM

size legs hair, hooves, hunt, run,
s m b | 2 4 | mane, feather fly, swim
dove | 1 0 o1 oj0 0 O 1 0 0 1 0
hen | 1 0 o1 o|j0 0 O 1 0 0 O 0
duck | 1 0 0 1 0|0 O O 1 0O 0 O 1
goose [1 O O|1 O|0 O O 1 0 0 1 1
owl | 1 0 o|1 of0 O O 1 1 0 1 0
hawk | 1 0 o1 oj0 0 O 1 1 0 1 0
eagle | 0 1 o1 o0o|0 0 O 1 1 0 1 0
fox | O 1 o0 1|1 0 O 0 1 0 O 0
dog | O 1 o0 1|1 0 O 0 0O 1 0 0
wolf | 0 1 0oj0 1 1 0 1 0 1 1 0 0
cat | 1 0 o0 1|1 0 O 0 1 0 O 0
tiger | O O 110 1|1 0 O 0 1 1 0 0
lion | O 0 110 1 1 0 1 0 1 1 0 0
horse | 0 0 10 1|1 1 1 0 0o 1 0 0
zebra | 0 0 170 1|1 1 1 0 0o 1 0 0
cow | 0 O 1/0 1|1 1 O 0 0O 0 O 0
Feature Map

dog - - fox . - cat - - eagle
owl

. S tiger .
W‘Olf hawk

. . . li()ll . ‘
. ‘ . . . dove

. heIl . .
. goose

duck

Useful Properties of SOM

e Visualisation of multidimensional data.

e Reduces dimensions preserving the topology.

Useful for clustering.

e Handles missing data

The learning algorithm is unsupervised.

References

Kohonen, T. (1982). Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43, 59-69.

