Lecture 13: Self-Organising Maps

Dr. Roman V Belavkin

BIS3226

Contents

1	Data Visualisation and Topology Preserving Maps	1
2	Self-Organising Maps2.1SOM Architecture2.2SOM Algorithm	3 3 4
3	Applications: Contextual Feature Maps	7

1 Data Visualisation and Topology Preserving Maps

Limitations of k-Means Clustering

• How many clusters should we be looking for?

$$k = ?$$

- How large are the clusters?
- What is the shape of the clusters?
- How are they related to each other?

Remark 1. If the data 'lives' in a m-dimensional space with m > 3, then there is no way we can visualise this data directly. Thus, if we want to visualise the dataset, we need to reduce the number of dimensions to 3 or even 2.

Topology Preserving Maps

- A topology is a system of subsets $O \subset X$, called *neighbourhoods*.
- In a metric space (X, d), the neighbourhood $O_{\varepsilon}(x)$ of point x can be defined as a set of points a such that

$$d(x,a) < \varepsilon$$

- If X and Y are two topological spaces, then functions $f : X \to Y$ that preserve the topology of X in Y are *continuous* functions.
- Continuous functions map some neighbourhood O(x) ⊆ X into any neighbourhood O(y) ⊆ Y:

$$f(x) = y$$
 and $f(O(x)) \subseteq O(y)$

• Thus, to visualise data we need a continuous function from *m*-dimensional space into a 2-dimensional space:

$$f: \mathbb{R}^m \to \mathbb{R}^2$$

2 Self-Organising Maps

2.1 SOM Architecture

- A Self-Organising Map (SOM) is an unsupervised neural network algorithm (Kohonen, 1982) that learns a topology preserving map, and it is used to visualise high-dimensional data.
- It uses a single layer network of artificial neurons (or nodes), which are arranged into an $k \times l$ lattice and are connected to the input space (data).

- The SOM algorithm is designed to establish a correspondence between topologies of the input space (data) and the output lattice (aka Kohonen's topology preserving map).
- Each node has m weights, and together the weights represent some m-dimensional vector: $\mathbf{w}_j = (w_{1j}, \dots, w_{mj}) \in \mathbb{R}^m$
- The weight vector **w** of each neuron can be compared to an *m*-dimensional vector $\mathbf{x} = (x_1, \dots, x_m) \in \mathbb{R}^m$ from the input space (data)
- This comparisson is usually done using the Euclidean metric in the input space \mathbb{R}^m

$$d_{in}(\mathbf{x}, \mathbf{w}_j) = \sqrt{|x_1 - w_{1j}|^2 + \dots + |x_m - w_{mj}|^2}$$

- The nodes are arranged into an $k \times l$ lattice (output space).
- The topology in the lattice is defined by another metric, such as the taxicab distance:

$$d_{out}(\mathbf{i}, \mathbf{j}) = |i_1 - j_1| + |i_2 - j_2|$$

• The algorithm involves three phases: competition, adaptation and cooperation.

2.2 SOM Algorithm

Competition

• An input vector $\mathbf{x} = (x_1, \dots, x_m)$ is compared with the weight vector $\mathbf{w}_j = (w_{1j}, \dots, w_{mj})$ of each node by computing the distance $d(\mathbf{x}, \mathbf{w}_j)$:

$$d(\mathbf{x}, \mathbf{w}_1) = \sqrt{(x_1 - w_{11})^2 + \dots + (x_m - w_{m1})^2}$$

:
$$d(\mathbf{x}, \mathbf{w}_n) = \sqrt{(x_1 - w_{1n})^2 + \dots + (x_m - w_{mn})^2}$$

- The winner is the node with the weight \mathbf{w}_j closest to the input \mathbf{x} (i.e. shortest $d(\mathbf{x}, \mathbf{w}_j)$).
- Thus, nodes 'compete' in the sense which of the nodes \mathbf{w}_j is more 'similar' to a given input pattern \mathbf{x} .

Example 1. Consider SOM with three inputs and two output nodes (A and B). Let

$$\mathbf{w}_A = (2, -1, 3) \,, \quad \mathbf{w}_B = (-2, 0, 1)$$

Find which node is the winner for the input

$$\mathbf{x} = (1, -2, 2)$$

$$d(\mathbf{x}, \mathbf{w}_A) = \sqrt{(1-2)^2 + (-2+1)^2 + (2-3)^2} = \sqrt{3}$$

$$d(\mathbf{x}, \mathbf{w}_B) = \sqrt{(1+2)^2 + (-2-0)^2 + (2-1)^2} = \sqrt{14}$$

- Node A is the winner because it is 'closer' $(\sqrt{3} < \sqrt{14})$
- What if $\mathbf{x} = (-1, -2, 0)$?

Adaptation

- After the input **x** has been presented to SOM, the weights of *all* nodes are *adapted*, so that they become more 'similar' to the input **x** vector.
- The adaptation formula for node j is:

$$\mathbf{w}_{j}^{\text{new}} = \mathbf{w}_{j}^{\text{old}} + \alpha \, h_{ij} \left[\mathbf{x} - \mathbf{w}_{j}^{\text{old}} \right] \;,$$

where

 $-\mathbf{w}_j$ is the weight vector of node $j \in [1, \dots, k \times l];$

- $-\alpha$ is the *learning rate* coefficient;
- $-h_{ij}$ is the *neighbourhood* of node j with respect to the winner i.

Adaptation (cont.)

To understand better the adaptation formula, let us check how the weights change for different values of α and h_{ij} .

$$\mathbf{w}_{j}^{\text{new}} = \mathbf{w}_{j}^{\text{old}} + \alpha h_{ij} \left[\mathbf{x} - \mathbf{w}_{j}^{\text{old}} \right]$$

• Suppose $\alpha = 0$ or $h_{ij} = 0$. Then

$$\mathbf{w}_{j}^{\text{new}} = \mathbf{w}_{j}^{\text{old}} + 0 \cdot 0 \left[\mathbf{x} - \mathbf{w}_{j}^{\text{old}} \right] = \mathbf{w}_{j}^{\text{old}}$$

The weight does not change $(\mathbf{w}_j^{\text{new}} = \mathbf{w}_j^{\text{old}}).$

• Suppose $h_{ij} = 1$ and $\alpha = 1$. Then

$$\mathbf{w}_{j}^{\mathrm{new}} = \mathbf{w}_{j}^{\mathrm{old}} + \mathbf{x} - \mathbf{w}_{j}^{\mathrm{old}} = \mathbf{x}$$

The new weight is equal to the input $(\mathbf{w}_j^{\text{new}} = \mathbf{x})$.

Cooperation

- Although weights of *all* nodes are adapted, they do not adapt equally. Adaptation depends on how close the nodes are from the winner in the output lattice.
- If the winner is node i, then the level of adaptation for node j is defined by the *neighbourhood* function $h_{ij} = h(d(i, j))$, where d(i, j) is the distance in the lattice.
- The neighbourhood is defines in such a way that it is smaller as the distance d(i, j) gets larger. For example, the Gaussian bell function

$$h(d(\mathbf{i}, \mathbf{j})) = e^{-\frac{d^2(\mathbf{i}, \mathbf{j})}{2\sigma^2}}$$

• The winner 'helps' mostly its neighbours to adapt. Note also that the winner is adapted more than any other node (i.e. because d(i, i) = 0).

Example 2. Let $\alpha = 0.5$ and h = 1, and let us adapt the winning node A from previous example: $= (9 \ 1 \ 2) \ \mathbf{v} = (1 \ -2 \ 2)$

$$\mathbf{w}_A = (2, -1, 3), \quad \mathbf{x} = (1, -2, 2)$$

We use adaptation formula: $\mathbf{w}_{j}^{\text{new}} = \mathbf{w}_{j}^{\text{old}} + \alpha h_{ij} [\mathbf{x} - \mathbf{w}_{j}^{\text{old}}]$

$$\mathbf{w}_A = \begin{pmatrix} 2\\-1\\3 \end{pmatrix} + 0.5 \cdot 1 \cdot \begin{bmatrix} 1\\-2\\2 \end{bmatrix} - \begin{pmatrix} 2\\-1\\3 \end{bmatrix} \\ = \begin{pmatrix} 2\\-1\\3 \end{pmatrix} + 0.5 \cdot \begin{pmatrix} -1\\-1\\-1 \end{pmatrix} = \begin{pmatrix} 1.5\\-1.5\\2.5 \end{pmatrix}$$

Training Procedure

- Define the size of the output lattice (i.e. $k \times l$)
- Initialise the weights of the nodes (e.g. randomly)
- Define metrics d_{in} , d_{out} and other parameters (α, h)
- Repeat
 - 1. Select an input vector $\mathbf{x} \in \mathbb{R}^m$ from data
 - 2. Find the winning node by minimizing $d_{in}(\mathbf{x}, \mathbf{w}_j)$
 - 3. Adapt the weights of the winner and its neighbours
- Until the network stabilizes

What Should be the Result?

- Initially, there is no relation between the topology (closeness, similarity) in the input space and the topology in the output lattice.
- After training, nodes close to each other in the lattice correspond to points close to each other in the input space.
- The number of input dimensions (m) can be very large (e.g. m = 100), so we cannot see the clusters directly.
- The output lattice is usually one or two dimensional, so we can visualise and 'see' the clusters.

3 Applications: Contextual Feature Maps

Example of SOM

	size s m b			legs		hair, hooves,				hunt, run,			
				2	4	mane, feather			fly, swim				
dove	1	0	0	1	0	0	0	0	1	0	0	1	0
hen	1	0	0	1	0	0	0	0	1	0	0	0	0
duck	1	0	0	1	0	0	0	0	1	0	0	0	1
goose	1	0	0	1	0	0	0	0	1	0	0	1	1
owl	1	0	0	1	0	0	0	0	1	1	0	1	0
hawk	1	0	0	1	0	0	0	0	1	1	0	1	0
eagle	0	1	0	1	0	0	0	0	1	1	0	1	0
fox	0	1	0	0	1	1	0	0	0	1	0	0	0
dog	0	1	0	0	1	1	0	0	0	0	1	0	0
wolf	0	1	0	0	1	1	0	1	0	1	1	0	0
cat	1	0	0	0	1	1	0	0	0	1	0	0	0
tiger	0	0	1	0	1	1	0	0	0	1	1	0	0
lion	0	0	1	0	1	1	0	1	0	1	1	0	0
horse	0	0	1	0	1	1	1	1	0	0	1	0	0
zebra	0	0	1	0	1	1	1	1	0	0	1	0	0
cow	0	0	1	0	1	1	1	0	0	0	0	0	0

Feature Map

\log	•	•	fox	•	•	cat	•	•	eagle
•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	owl
•	•	•	•	•	•	tiger	•	•	•
wolf							• '		hawk
		•	lion	•	•	•	•	•	
	•		lion	• •	· ·	•			dove
· · horse	• •	· ·	lion ·	· ·	· ·	• • •	hen		dove
horse	• •		lion ·	· · cow	· · ·		· hen ·		dove goose

Useful Properties of SOM

- Visualisation of multidimensional data.
- Reduces dimensions preserving the topology.
- Useful for clustering.
- Handles missing data
- The learning algorithm is unsupervised.

References

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. *Biological Cybernetics*, 43, 59–69.