
Lecture 13: Self-Organising Maps

Dr. Roman V Belavkin

BIS3226

Contents

1 Data Visualisation and Topology Preserving Maps 1

2 Self-Organising Maps 3
2.1 SOM Architecture . 3
2.2 SOM Algorithm . 4

3 Applications: Contextual Feature Maps 7

1 Data Visualisation and Topology Preserving
Maps

Limitations of k-Means Clustering

1

Clusters

0 2 4 6 8 10
0

2

4

6

8

10

x

y

• How many clusters should we be looking for?

k =?

• How large are the clusters?

• What is the shape of the clusters?

• How are they related to each other?

2

Remark 1. If the data ‘lives’ in a m-dimensional space with m > 3, then there
is no way we can visualise this data directly. Thus, if we want to visualise the
dataset, we need to reduce the number of dimensions to 3 or even 2.

Topology Preserving Maps

• A topology is a system of subsets O ⊂ X, called neighbourhoods.

• In a metric space (X, d), the neighbourhood Oε(x) of point x can be
defined as a set of points a such that

d(x, a) < ε

• If X and Y are two topological spaces, then functions f : X → Y that
preserve the topology of X in Y are continuous functions.

• Continuous functions map some neighbourhood O(x) ⊆ X into any neigh-
bourhood O(y) ⊆ Y :

f(x) = y and f(O(x)) ⊆ O(y)

• Thus, to visualise data we need a continuous function from m-dimensional
space into a 2-dimensional space:

f : Rm → R2

2 Self-Organising Maps

2.1 SOM Architecture

SOM Architecture

mA mB
1 2 3

output lattice
One-dimensional

�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

6Winning neuron

Three-dimensional input

output lattice
Two-dimensionald d dd d dddd d dddd d
�
�
��

�
�

b
bb

6

�
�
�
�
�
���

A
A

A
A

AAK

J
J

J
J

J]

B
B

B
B

B
BBM

B
B

B
B
BM

C
C
C
C
CCO

6

6
6

�
�
�
�
�
���

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
���

�

�

Winning neuron

Input

Synaptic weights

• A Self-Organising Map (SOM) is an unsupervised neural network algo-
rithm (Kohonen, 1982) that learns a topology preserving map, and it is
used to visualise high-dimensional data.

• It uses a single layer network of artificial neurons (or nodes), which are
arranged into an k× l lattice and are connected to the input space (data).

3

• The SOM algorithm is designed to establish a correspondence between
topologies of the input space (data) and the output lattice (aka Kohonen’s
topology preserving map).

• Each node has m weights, and together the weights represent some m-
dimensional vector: wj = (w1j , . . . , wmj) ∈ Rm

• The weight vector w of each neuron can be compared to an m-dimensional
vector x = (x1, . . . , xm) ∈ Rm from the input space (data)

• This comparisson is usually done using the Euclidean metric in the input
space Rm

din(x,wj) =
√
|x1 − w1j |2 + · · ·+ |xm − wmj |2

• The nodes are arranged into an k × l lattice (output space).

• The topology in the lattice is defined by another metric, such as the taxi-
cab distance:

dout(i, j) = |i1 − j1|+ |i2 − j2|

• The algorithm involves three phases: competition, adaptation and co-
operation.

2.2 SOM Algorithm

Competition

• An input vector x = (x1, . . . , xm) is compared with the weight vector
wj = (w1j , . . . , wmj) of each node by computing the distance d(x,wj):

d(x,w1) =
√

(x1 − w11)2 + · · ·+ (xm − wm1)2
...

d(x,wn) =
√

(x1 − w1n)2 + · · ·+ (xm − wmn)2

• The winner is the node with the weight wj closest to the input x (i.e.
shortest d(x,wj)).

• Thus, nodes ‘compete’ in the sense which of the nodes wj is more ‘similar’
to a given input pattern x.

Example 1. Consider SOM with three inputs and two output nodes (A and B).
Let

wA = (2,−1, 3) , wB = (−2, 0, 1)

Find which node is the winner for the input

x = (1,−2, 2)

4

1 2 3

mA mB
�
�
��

�
�
���

�
�

�
��>

A
A

AAK

Z
Z

Z
ZZ}

A
A

AK

n = 3

m = 2

d(x,wA) =
√

(1− 2)2 + (−2 + 1)2 + (2− 3)2 =
√

3

d(x,wB) =
√

(1 + 2)2 + (−2− 0)2 + (2− 1)2 =
√

14

• Node A is the winner because it is ‘closer’ (
√

3 <
√

14)

• What if x = (−1,−2, 0)?

Adaptation

• After the input x has been presented to SOM, the weights of all nodes are
adapted, so that they become more ‘similar’ to the input x vector.

• The adaptation formula for node j is:

wnew
j = wold

j + α hij

[
x−wold

j

]
,

where

– wj is the weight vector of node j ∈ [1, . . . , k × l];

– α is the learning rate coefficient;

– hij is the neighbourhood of node j with respect to the winner i.

Adaptation (cont.)
To understand better the adaptation formula, let us check how the weights

change for different values of α and hij .

wnew
j = wold

j + α hij

[
x−wold

j

]
,

• Suppose α = 0 or hij = 0. Then

wnew
j = wold

j + 0 · 0
[
x−wold

j

]
= wold

j

The weight does not change (wnew
j = wold

j).

• Suppose hij = 1 and α = 1. Then

wnew
j = wold

j + x−wold
j = x

The new weight is equal to the input (wnew
j = x).

5

Cooperation

• Although weights of all nodes are adapted, they do not adapt equally.
Adaptation depends on how close the nodes are from the winner in the
output lattice.

• If the winner is node i, then the level of adaptation for node j is defined by
the neighbourhood function hij = h(d(i, j)), where d(i, j) is the distance
in the lattice.

• The neighbourhood is defines in such a way that it is smaller as the dis-
tance d(i, j) gets larger. For example, the Gaussian bell function

h(d(i, j)) = e−
d2(i,j)

2σ2

6

Gaussian bell

- 2 - 1 0 1 2
0

0.5

1

d

h(d)

• The winner ‘helps’ mostly its neighbours to adapt. Note also that the
winner is adapted more than any other node (i.e. because d(i, i) = 0).

Example 2. Let α = 0.5 and h = 1, and let us adapt the winning node A from
previous example:

wA = (2,−1, 3) , x = (1,−2, 2)

7

We use adaptation formula: wnew
j = wold

j + α hij [x−wold
j]

wA =

 2
−1

3

 + 0.5 · 1 ·

 1
−2

2

−

 2
−1

3



=

 2
−1

3

 + 0.5 ·

 −1
−1
−1

 =

 1.5
−1.5

2.5



Training Procedure

• Define the size of the output lattice (i.e. k × l)

• Initialise the weights of the nodes (e.g. randomly)

• Define metrics din, dout and other parameters (α, h)

• Repeat

1. Select an input vector x ∈ Rm from data

2. Find the winning node by minimizing din(x,wj)

3. Adapt the weights of the winner and its neighbours

• Until the network stabilizes

What Should be the Result?

• Initially, there is no relation between the topology (closeness, similarity)
in the input space and the topology in the output lattice.

• After training, nodes close to each other in the lattice correspond to points
close to each other in the input space.

• The number of input dimensions (m) can be very large (e.g. m = 100), so
we cannot see the clusters directly.

• The output lattice is usually one or two dimensional, so we can visualise
and ‘see’ the clusters.

3 Applications: Contextual Feature Maps

Example of SOM

8

size legs hair, hooves, hunt, run,
s m b 2 4 mane, feather fly, swim

dove 1 0 0 1 0 0 0 0 1 0 0 1 0
hen 1 0 0 1 0 0 0 0 1 0 0 0 0

duck 1 0 0 1 0 0 0 0 1 0 0 0 1
goose 1 0 0 1 0 0 0 0 1 0 0 1 1

owl 1 0 0 1 0 0 0 0 1 1 0 1 0
hawk 1 0 0 1 0 0 0 0 1 1 0 1 0
eagle 0 1 0 1 0 0 0 0 1 1 0 1 0

fox 0 1 0 0 1 1 0 0 0 1 0 0 0
dog 0 1 0 0 1 1 0 0 0 0 1 0 0
wolf 0 1 0 0 1 1 0 1 0 1 1 0 0
cat 1 0 0 0 1 1 0 0 0 1 0 0 0

tiger 0 0 1 0 1 1 0 0 0 1 1 0 0
lion 0 0 1 0 1 1 0 1 0 1 1 0 0

horse 0 0 1 0 1 1 1 1 0 0 1 0 0
zebra 0 0 1 0 1 1 1 1 0 0 1 0 0

cow 0 0 1 0 1 1 1 0 0 0 0 0 0

Feature Map

dog · · fox · · cat · · eagle
· · · · · · · · · ·
· · · · · · · · · owl
· · · · · · tiger · · ·

wolf · · · · · · · · hawk
· · · lion · · · · · ·
· · · · · · · · · dove

horse · · · · · · hen · ·
· · · · cow · · · · goose

zebra · · · · · · duck · ·

Useful Properties of SOM

• Visualisation of multidimensional data.

• Reduces dimensions preserving the topology.

• Useful for clustering.

• Handles missing data

• The learning algorithm is unsupervised.

References

Kohonen, T. (1982). Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43 , 59–69.

9

