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1 Metric Spaces

Metric Spaces
Let X be a set. How can we compare the elements of X?

Definition 1 (Metric). is a function d : X ×X → R that is

1. Non-negative: d(x, y) ≥ 0, and d(x, y) = 0 iff x = y.

2. Symmetric: d(x, y) = d(y, x).

3. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

Definition 2 (Metric space). is a pair (X, d) — a set X with a metric d.

Example 3 (Discrete space). Let d be defined as

d(x, y) =
{

1 if x 6= y
0 if x = y

Metrics in Vector Spaces

• An m-dimensional real vector space is denoted Rm

• Elements of Rm are called vectors.

• Each vector x ∈ Rm is a point in the space represented by its coordinates:

x = (x1, . . . , xm)
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• Each coordinate is a real number xi ∈ R.

• Note that coordinates are relative to a chosen basis.

Example 4. In R1 (one-dimensional space or a line) points are represented by
just one number, such as x = (2) or y = (−1).

Example 5. In R3 (three-dimensional space) points are represented by three
coordinates x1, x2 and x3, such as x = (2,−1, 3).

Metrics on Vectors

• How can we compute the distance between different vectors?

• For two vectors x = (x1, . . . , xm) and y = (y1, . . . , ym) ∈ Rm, we can
compute the differences of their coordinates:

x1 − y1 , x2 − y2 , · · · xm − ym

• Computation of metrics in vector spaces often uses absolute values of the
differences:

|x1 − y1| , |x2 − y2| , · · · |xm − ym|

Example 6 (Taxicab (Manhattan) distance).

d(x,y) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xm − ym|

Euclidean Distance

Definition 7 (Euclidean distance).

d(x,y) =
√
|x1 − y1|2 + |x2 − y2|2 + · · ·+ |xm − ym|2

Remark 1 (Euclidean space). is vector space in which metric is given by Eu-
clidean distance.

Example 8. Let x = (2) and y = (−1) in R1. Then

‖x− y‖ =
√

(2 + 1)2 = 3

Example 9. Let x = (2,−3) and y = (4, 1) in R2. Then

‖x− y‖ =
√
|2− 4|2 + | − 3− 1|2

=
√

20 ≈ 4.47
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2 Data as Vectors in Metric Spaces

Data and Similarity

• A bank gathered information about its customers:

Case: Age Gender M. Income (£
K)

M. Expenses
(£ K)

Home
owner

Credit
score

1 21 0 2 1 0 3
2 18 1 1 2 0 1
3 50 1 6 2 1 5
4 23 0 3 1 1 4
5 40 1 3 2 0 2

• We may consider each variable (age, gender, income, etc) as a coordinate
xi and each case as a vector in an m-dimensional space.
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• What does a distance between the vectors represent?

• How far should be similar cases from each other?

• Which of the cases 1, 2, 3 or 4 is the most similar to case 5?

Metric as a Measure of Dissimilarity

• The database corresponds to the following set of vectors:

v = (21, 0, 2, 1, 0, 3)
w = (18, 1, 1, 2, 0, 1)
x = (50, 1, 6, 2, 1, 5)
y = (23, 0, 3, 1, 1, 4)
z = (40, 1, 3, 2, 0, 2)

• If there is a metric d, then we can find the distances from z:

d(z,v) , d(z,w) , d(z,x) , d(z,y)

• The most similar to z is the ‘closest’ vector.

Remark 2. The choice of metric is important, because generally different met-
rics will produce different results.

3 The Clustering Problem

Clusters
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• Clusters are groups of points.

• The groups can be based on similarity, such as closeness.

• ‘Similar’ data would correspond to points that are close to each other and
would belong to the same group (cluster).

Definition 10 (Centroid). is the centre of gravity of a cluster Xi, computed
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as the average vector:

µi = X̄i =
x + · · ·+ z

n
=

(x1 + · · ·+ z1

n
, . . . ,

xm + · · ·+ zm

n

)
k-Means Clustering Algorithm

• Let X be a set of vectors in Rm (i.e. data)

• The goal of the k-means algorithm is to partition X into k clusters X1, . . . , Xk,
represented by k centroids (means):

µ1 , µ2 , . . . , µk

• The following is an outline of the k-means algorithm:

1. Select the number of clusters k

2. Define metric d on X

3. Choose at random k vectors µ1, µ2, . . . , µk in Rm

4. Repeat

(a) Group x ∈ X into clusters X1, X2, . . . , Xk by computing d(µi,x).

(b) Compute new µ1, µ2, . . . , µk as centroids:

µ1 = X̄1 , µ2 = X̄2 , . . . , µk = X̄k

5. Until finished.

Output of k-Means

• The values (coordinates) of k centroids:

µ1 = (x11, . . . , x1m)
µ2 = (x21, . . . , x2m)

· · ·
µk = (xk1, . . . , xkm)

• The partition of X: an assignment of each vector in X (data) to one of k
clusters:

3 3 3 1 2 1 2 1 1 2 1

• Other information about the clusters (e.g. number of points, diameter).
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