Lecture 12: Clustering

Dr. Roman V Belavkin

BIS3226

Contents

1	Metric Spaces	1
2	Data as Vectors in Metric Spaces	3
3	The Clustering Problem	4

1 Metric Spaces

Metric Spaces

Let X be a set. How can we compare the elements of X?

Definition 1 (Metric). is a function $d: X \times X \to \mathbb{R}$ that is

- 1. Non-negative: $d(x, y) \ge 0$, and d(x, y) = 0 iff x = y.
- 2. Symmetric: $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.
- 3. Triangle inequality: $d(x, y) \le d(x, z) + d(z, y)$.

Definition 2 (Metric space). is a pair (X, d) — a set X with a metric d.

Example 3 (Discrete space). Let d be defined as

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

Metrics in Vector Spaces

- An *m*-dimensional real vector space is denoted \mathbb{R}^m
- Elements of \mathbb{R}^m are called *vectors*.
- Each vector $\mathbf{x} \in \mathbb{R}^m$ is a point in the space represented by its coordinates:

$$\mathbf{x} = (x_1, \ldots, x_m)$$

- Each coordinate is a real number $x_i \in \mathbb{R}$.
- Note that coordinates are relative to a chosen *basis*.

Example 4. In \mathbb{R}^1 (one-dimensional space or a line) points are represented by just one number, such as $\mathbf{x} = (2)$ or $\mathbf{y} = (-1)$.

Example 5. In \mathbb{R}^3 (three-dimensional space) points are represented by three coordinates x_1 , x_2 and x_3 , such as $\mathbf{x} = (2, -1, 3)$.

Metrics on Vectors

- How can we compute the distance between different vectors?
- For two vectors $\mathbf{x} = (x_1, \dots, x_m)$ and $\mathbf{y} = (y_1, \dots, y_m) \in \mathbb{R}^m$, we can compute the differences of their coordinates:

 x_1-y_1 , x_2-y_2 , \cdots x_m-y_m

• Computation of metrics in vector spaces often uses absolute values of the differences:

 $|x_1 - y_1|, |x_2 - y_2|, \cdots |x_m - y_m|$

Example 6 (Taxicab (Manhattan) distance).

$$d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_m - y_m|$$

Euclidean Distance

Definition 7 (Euclidean distance).

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2 + \dots + |x_m - y_m|^2}$$

Remark 1 (Euclidean space). *is vector space in which metric is given by Euclidean distance.*

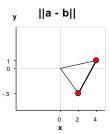
Example 8. Let $\mathbf{x} = (2)$ and $\mathbf{y} = (-1)$ in \mathbb{R}^1 . Then

$$\|\mathbf{x} - \mathbf{y}\| = \sqrt{(2+1)^2} = 3$$

Example 9. Let $\mathbf{x} = (2, -3)$ and $\mathbf{y} = (4, 1)$ in \mathbb{R}^2 . Then

$$\|\mathbf{x} - \mathbf{y}\| = \sqrt{|2 - 4|^2 + |-3 - 1|^2}$$

= $\sqrt{20} \approx 4.47$



2 Data as Vectors in Metric Spaces

Data and Similarity

0	Case:	Age	Gender	M. Income (\pounds	M. Expenses	Home	Credit
				K)	(£ K)	owner	score
	1	21	0	2	1	0	3
	2	18	1	1	2	0	1
	3	50	1	6	2	1	5
	4	23	0	3	1	1	4
	5	40	1	3	2	0	2

• A bank gathered information about its customers:

• We may consider each variable (age, gender, income, etc) as a coordinate x_i and each case as a vector in an *m*-dimensional space.

- What does a distance between the vectors represent?
- How far should be similar cases from each other?
- Which of the cases 1, 2, 3 or 4 is the most similar to case 5?

Metric as a Measure of Dissimilarity

• The database corresponds to the following set of vectors:

 $\mathbf{v} = (21, 0, 2, 1, 0, 3)$ $\mathbf{w} = (18, 1, 1, 2, 0, 1)$ $\mathbf{x} = (50, 1, 6, 2, 1, 5)$ $\mathbf{y} = (23, 0, 3, 1, 1, 4)$ $\mathbf{z} = (40, 1, 3, 2, 0, 2)$

• If there is a metric d, then we can find the distances from **z**:

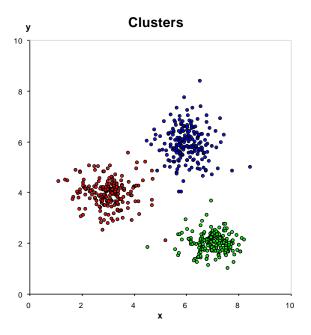
 $d(\mathbf{z}, \mathbf{v}), d(\mathbf{z}, \mathbf{w}), d(\mathbf{z}, \mathbf{x}), d(\mathbf{z}, \mathbf{y})$

• The most similar to \mathbf{z} is the 'closest' vector.

Remark 2. The choice of metric is important, because generally different metrics will produce different results.

3 The Clustering Problem

Clusters



- **Clusters** are groups of points.
- The groups can be based on similarity, such as closeness.
- 'Similar' data would correspond to points that are close to each other and would belong to the same group (cluster).

Definition 10 (Centroid). is the centre of gravity of a cluster X_i , computed

as the average vector:

$$\mu_i = \bar{X}_i = \frac{\mathbf{x} + \dots + \mathbf{z}}{n} = \left(\frac{x_1 + \dots + z_1}{n}, \dots, \frac{x_m + \dots + z_m}{n}\right)$$

k-Means Clustering Algorithm

- Let X be a set of vectors in \mathbb{R}^m (i.e. data)
- The goal of the k-means algorithm is to partition X into k clusters X_1, \ldots, X_k , represented by k centroids (means):

$$\mu_1, \ \mu_2, \ \ldots, \ \mu_k$$

- The following is an outline of the *k*-means algorithm:
 - 1. Select the number of clusters \boldsymbol{k}
 - 2. Define metric d on X
 - 3. Choose at random k vectors $\mu_1, \mu_2, \ldots, \mu_k$ in \mathbb{R}^m
 - 4. Repeat
 - (a) Group $\mathbf{x} \in X$ into clusters X_1, X_2, \ldots, X_k by computing $d(\mu_i, \mathbf{x})$.
 - (b) Compute new $\mu_1, \mu_2, \ldots, \mu_k$ as centroids:

$$\mu_1 = \bar{X}_1, \ \mu_2 = \bar{X}_2, \ \dots, \ \mu_k = \bar{X}_k$$

5. Until finished.

Output of k-Means

• The values (coordinates) of k centroids:

$$\begin{array}{rcl}
\mu_1 &=& (x_{11}, \dots, x_{1m}) \\
\mu_2 &=& (x_{21}, \dots, x_{2m}) \\
& & \dots \\
\mu_k &=& (x_{k1}, \dots, x_{km})
\end{array}$$

• The partition of X: an assignment of each vector in X (data) to one of k clusters:

$$3\ 3\ 3\ 1\ 2\ 1\ 2\ 1\ 1\ 2\ 1$$

• Other information about the clusters (e.g. number of points, diameter).