Lecture 10: Multilinear Regression

Dr. Roman V Belavkin

BIS3226

Contents

1	Multivariate Data and Models	1
2	Linear Functions of Multiple Variable	3
3	Example: Credit Score Model	5
4	Conclusions	7

1 Multivariate Data and Models

Data-Driven Models

If there are just two variables x (e.g. 'Today') and y (e.g. 'Tomorrow'), then we can use a function f(x) of one variable to model y:

Tomorrow $\approx f(\text{Today})$

Table 1: GBP/EUR rates 4–8 Jan, 2010

Date	Today	Tomorrow
2010/01/04	0.89513	0.89966
2010/01/05	0.89966	0.89934
2010/01/06	0.89934	0.89963
2010/01/07	0.89963	0.89771
2010/01/08	0.89771	?

GBP / EUR Exchange rates

For example, we can use linear model with parameters \boldsymbol{a} (intercept) and \boldsymbol{b} (slope):

$$y \approx f(x) = \mathbf{a} + \mathbf{b} x$$

Multivariate Data and Models

Case:	Age	Gender	M. Income (£	M. Expenses	Home	Credit
			K)	(£ K)	owner	score
1	21	0	2	1	0	3
2	18	1	1	2	0	1
3	50	1	6	2	1	5
4	23	0	3	1	1	4
5	40	1	3	2	0	2

- Data is a 'footprint' of reality.
- Does the credit score depend on a person's income?
- Can we find a function $f(\cdot)$ such that

Credit score = f(Income, Expenses, Age, Gender,...)

• Data-driven modelling is a search for such functions that represent the dependencies between different variables.

2 Linear Functions of Multiple Variable

Planes and Hyperplanes

- Variable y may depend on several variables x_1, x_2, \ldots
- A linear function $y = f(x_1, x_2)$ of two variables describes a plane, which we can plot on an x, y, z (or x_1, x_2, y) chart.

$$f(x_1, x_2) = \mathbf{a} + \mathbf{b}_1 x_1 + \mathbf{b}_2 x_2$$

- A linear function of m variables $y = f(x_1, \ldots, x_m)$ defines a hyperplane in an m + 1 dimensional space.
- It has m + 1 parameters: one intercept and m 'slopes' called *regression* coefficients.

Multiple Linear Regression

x_1	x_2	• • •	x_m	y
X_{11}	X_{12}	• • •	X_{1m}	Y_1
X_{21}	X_{22}	•••	X_{2m}	Y_2
	• • •	• • •	• • •	
X_{n1}	X_{n2}	•••	X_{nm}	Y_n

• Here, y depends not on one, but on several variables

$$y \approx f(x_1, \ldots, x_m) = \mathbf{a} + \mathbf{b}_1 x_1 + \cdots + \mathbf{b}_m x_m$$

• Thus, we need to find one intercept a and m regression coefficients b_1 , b_2 , ..., b_m ('slopes')

3 Example: Credit Score Model

A Simple Model for Credit Score

Monthly Income (\pounds K)	Credit Score
2	3
1	1
6	5
3	4

- Denote by x the income and by y the credit score.
- Construct a linear model $y \approx a + b x$
- We need to find slope (b) and intercept (a) from the data

Solution

$E\{x\}$	=	(2+1+6+3)/4 = 3
$E\{y\}$	=	(3+1+5+4)/4 = 3,25
Cov(x,y)	=	$[(2-3)(3-3,25) + \dots + (3-3)(4-3,25)]/4 = 2,5$
Var(x)	=	$[(2-3)^2 + \dots + (3-3)^2]/4 = 3,5$

$$b = \frac{Cov(x,y)}{Var(x)} = 0,71$$

a =
$$E\{y\} - bE\{x\} = 1, 11$$

A More Complex Credit Score Model

Monthly Income $(\pounds K)$	Monthly Expenses (\pounds K)	Credit Score
2	1	3
1	2	1
6	2	5
3	1	4

- Denote by x_1 the income, by x_2 expenses and by y the credit score.
- Construct a linear model $y \approx a + b_1 x_1 + b_2 x_2$
- We need to find two slopes (b_1, b_2) and one intercept (a)

Approximate Solution

$$b_1 = \frac{Cov(x_1, y)}{Var(x_1)} = 0,71 \qquad b_2 = \frac{Cov(x_2, y)}{Var(x_2)} = -0,5$$
$$a = E\{y\} - b_1 E\{x_1\} - b_2 E\{x_2\} = 1,86$$

 $f(x_1, x_2) = 1,86 + 0,71 x_1 - 0,5 x_2$

4 Conclusions

Slope, Correlation and Dependency

• Recall that correlation is

$$Corr(x, y) = \frac{Cov(x, y)}{\sqrt{Var(x)Var(y)}}$$

• Thus, we can compute the slope as

$$b = \frac{Cov(x, y)}{Var(x)} = Corr(x, y)\sqrt{\frac{Var(y)}{Var(x)}}$$

- Positive correlation means positive slope b > 0
- Negative correlation means negative slope b < 0 (anticorrelated)
- Zero correlation means zero slope b = 0 (uncorrelated)

Remark 1. In multiple linear regression, the regression coefficients b_1, \ldots, b_m represent linear dependency between multiple variables, and they are related to multiple correlations.

Advantages of Linear Models

- Given data, they are easy to implement
- Multiple linear mean-square regression is a standard feature of many analytical tools
- If there is a strong linearity in the data, then the mean-square regression can always find the optimal model
- Such a model can be used to explain and understand the dependencies in data (i.e. using slopes or correlations)
- The model can be used for prediction and 'what-if' analysis.

Limitations of Linear Models

- There can be no significant linear dependency
- Linear models cannot account for nonlinear effects
- Mean-square error (quadratic cost) is very sensitive to *outliers* (unusual cases)
- It is much more difficult to find linear models optimising non-quadratic cost functions (e.g. an absolute error |y f(x)|)

Summary

- Models are simplified representations of reality
- The unexplained part of reality results in an error of the model
- Linear functions, defining lines, planes and hyperplanes, can be used to construct the simplest data-driven models
- Linear mean-square regression is a standard method of computing such models
- Linear models can reveal linear dependencies in data