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1 Multivariate Data and Models

Data-Driven Models
If there are just two variables x (e.g. ‘Today’) and y (e.g. ‘Tomorrow’), then
we can use a function f(z) of one variable to model y:

Tomorrow ~ f(Today)

Table 1: GBP/EUR rates 4-8 Jan, 2010

Date Today | Tomorrow
2010/01/04 | 0.89513 | 0.89966
2010/01/05 | 0.89966 | 0.89934
2010/01/06 | 0.89934 | 0.89963
2010/01/07 | 0.89963 | 0.89771
2010/01/08 | 0.89771 ?
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For example, we can use linear model with parameters a (intercept) and b

(slope):
g~ f@) = atba



Multivariate Data and Models

Case: | Age | Gender | M. Income (£ | M. Expenses | Home Credit
K) (£ K) owner score
1 21 0 2 1 0 3
2 18 1 1 2 0 1
3 50 1 6 2 1 5
4 23 0 3 1 1 4
5 40 1 3 2 0 2

Data is a ‘footprint’ of reality.

Does the credit score depend on a person’s income?

Can we find a function f(-) such that

Credit score = f(Income, Expenses, Age, Gender, .. .)

e Data-driven modelling is a search for such functions that represent the
dependencies between different variables.

2 Linear Functions of Multiple Variable
Planes and Hyperplanes

e Variable y may depend on several variables =1, xa,. ..

e A linear function y = f(z1,22) of two variables describes a plane, which
we can plot on an z, y, z (or z1, 2, y) chart.

flxi,22) =a+bray +byas
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e A linear function of m variables y = f(x1, .

.., Zm) defines a hyperplane in
an m + 1 dimensional space.

e It has m + 1 parameters: one intercept and m ‘slopes’ called regression
coefficients.

Multiple Linear Regression
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e Here, y depends not on one, but on several variables
y= f(x1,...,xm)=a+byx1 4+ + by,

e Thus, we need to find one intercept a and m regression coefficients b,
ba, ..., by, (‘slopes’)



3 Example: Credit Score Model

A Simple Model for Credit Score

Monthly Income (£ K) | Credit Score
2 3
1 1
6 5
3 4

e Denote by z the income and by y the credit score.

e Construct a linear model y =~ a + bz

e We need to find slope (b) and intercept (a) from the data

Solution

E{z}
E{y}
Cov(z,y)

Var(z)

(2+1+6+3)/4=3
(34+1+5+4)/4=3,25
[(2-3)(3-3,25)+---+(3—-3)(4—3,25)]/4=2,5

[(2-3)°+-+(3-3)%/4=35



y =0,71x+ 1,11
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~ Cov(z,y)
b= Var(z) 0,7
a = E{y}-bE{z}=1,11

A More Complex Credit Score Model

Monthly Income (£ K) Monthly Expenses (£ K) | Credit Score
2 1 3
1 2 1
6 2 5
3 1 4

e Denote by z; the income, by x5 expenses and by y the credit score.
e Construct a linear model y =~ a + by x1 + by x2

e We need to find two slopes (b1, b2) and one intercept (a)



Approximate Solution
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Cov(z1,y) Cov(x2,y)
by = ———*=0,71 by = ———= =-0,5
! Var(zy) ’ ? Var(zs) ’

a = E{y} — bl E{Jfl} — bg E{J?Q} = 1,86

f(.’ll‘l,.’lfg) =1,86+0,7127y — 0,5 x5

4 Conclusions
Slope, Correlation and Dependency

e Recall that correlation is

Corr(xz,y) = Cov(z,y)
Var(z)Var(y)
e Thus, we can compute the slope as
Cov(z,y) Var(y)
b= )
Var(z) Corr(z,y) Var(z)
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Positive correlation means positive slope b > 0
Negative correlation means negative slope b < 0 (anticorrelated)

Zero correlation means zero slope b = 0 (uncorrelated)

Remark 1. In multiple linear regression, the regression coefficients by, ..., by,
represent linear dependency between multiple variables, and they are related to
multiple correlations.

Advantages of Linear Models

Given data, they are easy to implement

Multiple linear mean-square regression is a standard feature of many an-
alytical tools

If there is a strong linearity in the data, then the mean-square regression
can always find the optimal model

Such a model can be used to explain and understand the dependencies in
data (i.e. using slopes or correlations)

The model can be used for prediction and ‘what-if’ analysis.

Limitations of Linear Models

There can be no significant linear dependency
Linear models cannot account for nonlinear effects

Mean-square error (quadratic cost) is very sensitive to outliers (unusual
cases)

It is much more difficult to find linear models optimising non-quadratic
cost functions (e.g. an absolute error |y — f(z)])

Summary

Models are simplified representations of reality
The unexplained part of reality results in an error of the model

Linear functions, defining lines, planes and hyperplanes, can be used to
construct the simplest data-driven models

Linear mean-square regression is a standard method of computing such
models

Linear models can reveal linear dependencies in data



