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1 Multivariate Data and Models

Data-Driven Models
If there are just two variables x (e.g. ‘Today’) and y (e.g. ‘Tomorrow’), then

we can use a function f(x) of one variable to model y:

Tomorrow ≈ f(Today)

Table 1: GBP/EUR rates 4–8 Jan, 2010

Date Today Tomorrow
2010/01/04 0.89513 0.89966
2010/01/05 0.89966 0.89934
2010/01/06 0.89934 0.89963
2010/01/07 0.89963 0.89771
2010/01/08 0.89771 ?
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For example, we can use linear model with parameters a (intercept) and b
(slope):

y ≈ f(x) = a + b x
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Multivariate Data and Models

Case: Age Gender M. Income (£
K)

M. Expenses
(£ K)

Home
owner

Credit
score

1 21 0 2 1 0 3
2 18 1 1 2 0 1
3 50 1 6 2 1 5
4 23 0 3 1 1 4
5 40 1 3 2 0 2

• Data is a ‘footprint’ of reality.

• Does the credit score depend on a person’s income?

• Can we find a function f(·) such that

Credit score = f(Income, Expenses, Age, Gender, . . . )

• Data-driven modelling is a search for such functions that represent the
dependencies between different variables.

2 Linear Functions of Multiple Variable

Planes and Hyperplanes

• Variable y may depend on several variables x1, x2,. . .

• A linear function y = f(x1, x2) of two variables describes a plane, which
we can plot on an x, y, z (or x1, x2, y) chart.

f(x1, x2) = a + b1 x1 + b2 x2
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• A linear function of m variables y = f(x1, . . . , xm) defines a hyperplane in
an m + 1 dimensional space.

• It has m + 1 parameters: one intercept and m ‘slopes’ called regression
coefficients.

Multiple Linear Regression

x1 x2 · · · xm y
X11 X12 · · · X1m Y1

X21 X22 · · · X2m Y2

· · · · · · · · · · · · · · ·
Xn1 Xn2 · · · Xnm Yn

• Here, y depends not on one, but on several variables

y ≈ f(x1, . . . , xm) = a + b1 x1 + · · · + bm xm

• Thus, we need to find one intercept a and m regression coefficients b1,
b2, . . . , bm (‘slopes’)
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3 Example: Credit Score Model

A Simple Model for Credit Score

Monthly Income (£ K) Credit Score
2 3
1 1
6 5
3 4

• Denote by x the income and by y the credit score.

• Construct a linear model y ≈ a + b x

• We need to find slope (b) and intercept (a) from the data

Solution

E{x} = (2 + 1 + 6 + 3)/4 = 3

E{y} = (3 + 1 + 5 + 4)/4 = 3, 25

Cov(x, y) = [(2 − 3)(3 − 3, 25) + · · · + (3 − 3)(4 − 3, 25)]/4 = 2, 5

V ar(x) = [(2 − 3)2 + · · · + (3 − 3)2]/4 = 3, 5
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y = 0,71x+ 1,11
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b =
Cov(x, y)
V ar(x)

= 0, 71

a = E{y} − b E{x} = 1, 11

A More Complex Credit Score Model

Monthly Income (£ K) Monthly Expenses (£ K) Credit Score
2 1 3
1 2 1
6 2 5
3 1 4

• Denote by x1 the income, by x2 expenses and by y the credit score.

• Construct a linear model y ≈ a + b1 x1 + b2 x2

• We need to find two slopes (b1, b2) and one intercept (a)

6



Approximate Solution

y = 0,71x+ 1,11
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y = -0,5x + 4
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b1 =
Cov(x1, y)
V ar(x1)

= 0, 71 b2 =
Cov(x2, y)
V ar(x2)

= −0, 5

a = E{y} − b1 E{x1} − b2 E{x2} = 1, 86

f(x1, x2) = 1, 86 + 0, 71 x1 − 0, 5 x2

4 Conclusions

Slope, Correlation and Dependency

• Recall that correlation is

Corr(x, y) =
Cov(x, y)√

V ar(x)V ar(y)

• Thus, we can compute the slope as

b =
Cov(x, y)
V ar(x)

= Corr(x, y)

√
V ar(y)
V ar(x)
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• Positive correlation means positive slope b > 0

• Negative correlation means negative slope b < 0 (anticorrelated)

• Zero correlation means zero slope b = 0 (uncorrelated)

Remark 1. In multiple linear regression, the regression coefficients b1, . . . , bm

represent linear dependency between multiple variables, and they are related to
multiple correlations.

Advantages of Linear Models

• Given data, they are easy to implement

• Multiple linear mean-square regression is a standard feature of many an-
alytical tools

• If there is a strong linearity in the data, then the mean-square regression
can always find the optimal model

• Such a model can be used to explain and understand the dependencies in
data (i.e. using slopes or correlations)

• The model can be used for prediction and ‘what-if’ analysis.

Limitations of Linear Models

• There can be no significant linear dependency

• Linear models cannot account for nonlinear effects

• Mean-square error (quadratic cost) is very sensitive to outliers (unusual
cases)

• It is much more difficult to find linear models optimising non-quadratic
cost functions (e.g. an absolute error |y − f(x)|)

Summary

• Models are simplified representations of reality

• The unexplained part of reality results in an error of the model

• Linear functions, defining lines, planes and hyperplanes, can be used to
construct the simplest data-driven models

• Linear mean-square regression is a standard method of computing such
models

• Linear models can reveal linear dependencies in data
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