Lecture 7: Expectation and Correlation

Dr. Roman V Belavkin

BIS3226

Contents

1	Databases and Random Variables	1
2	Measures of Location	2
3	Measures of Dispersion	2
4	Correlation	4

1 Databases and Random Variables

Databases and Random Variables

Case:	Age	Gender	M. Income (\pounds	M. Expenses	Home	Credit
			K)	(£ K)	owner	score
1	21	0	2	1	0	3
2	18	1	1	2	0	1
3	50	1	6	2	1	5
4	23	0	3	1	1	4
5	40	1	3	2	0	2

Variables Age = [1, 2, ..., 100], Gender = [0 (Female), 1 (Male)]

Question 1. How often does each value appear in the data?

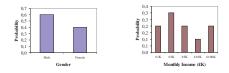
Random variables if each value is associated with probability

$$P(\text{Male}) = \frac{3}{5}, \quad P(\text{Female}) = \frac{2}{5}$$

Note that P(Male) + P(Female) = 1

Is There Structure in Data?

• Using the concept of random variables, we can analyse the distributions of each variable in the database



- Each case in the database can be seen as a complex (joint) event (e.g. Case 1 is Age=21, Gender=Female, etc).
- Thus, the whole database can be seen as a joint probability P(Case) = P(Age, Gender, Income, Expenses, H. owner, C. score)
- Are these variables independent or not?

2 Measures of Location

Measures of Location

- Answer questions such as 'What is the most probable value?', 'What value should I expect in the long term?'
- If variable x has n possible values $X_1, X_2, ..., X_n$ with probabilities $P(X_1)$, $P(X_2), ..., P(X_n)$, then we can compute the *expected value*

$$E\{x\} = X_1 P(X_1) + X_2 P(X_2) + \dots + X_n P(X_n) = \sum_{i=1}^n X_i P(X_i)$$

• If all $P(x) = \frac{1}{n}$, then $E\{x\}$ is simply the average (the mean) value.

Example 1. Each value of variable Age = 21, 18, 50, 23, 40 occurs once. Therefore $P(Age) = \frac{1}{5}$ and

$$E\{\mathsf{Age}\} = \frac{21 + 18 + 50 + 23 + 40}{5} = 30,4$$

Centre of Gravity

- What is the 'average' case?
- The expected value for a joint distribution of m random variables x_1 , $x_2,...,x_m$ is a point in an m-dimensional space with coordinates given by expectations of each of the m variables, and is called the *centre of gravity*

$$E\{x\} = (E\{x_1\}, E\{x_2\}, \dots, E\{x_m\})$$

• For our data, this is the expected case (i.e the average case)

$$E\{\text{Case}\} = (E\{\text{Age}\}, E\{\text{Gender}\}, \dots, E\{\text{C. score}\})$$

3 Measures of Dispersion

Measures of Dispersion

- Answer questions such as 'What is the range of the variable?', 'What risk is associated with the variable?'
- We can compute the average deviation from the expected value

$$E\left\{|x - E\{x\}|\right\} = \sum_{i=1}^{n} |X_i - E\{x\}|P(X_i)$$

• Or the average squared deviation, called the *variance*

$$Var\{x\} = E\left\{|x - E\{x\}|^2\right\} = \sum_{i=1}^n |X_i - E\{x\}|^2 P(X_i)$$

• Standard deviation is $Sdev\{x\} = \sqrt{Var\{x\}}$

Measures of Dispersion (cont.)

Example 2. Find $Var{Age}$ and $Sdev{Age}$?

- 1. Earlier we found $E{Age} = 30, 4$.
- 2. We need to find squared deviations from 30,4. $(21-30,4)^2\,,\ (18-30,4)^2\,,\ (50-30,4)^2\,,\ (23-30,4)^2\,,\ (40-30,4)^2$
- 3. Then we multiply each by $P(Age) = \frac{1}{5}$, and their sum gives the variance

$$Var{Age} = \frac{1}{5}((21 - 30, 4)^2 + \dots + (40 - 30, 4)^2) = 154, 64$$

4. Standard deviation is a square root of the variance

$$Sdev(Age) = \sqrt{154, 64} = 12, 44$$

Covariance

- Compares concentration of one variable with respect to another.
- If x and y are two random variables, then their *covariance* is

$$Cov(x,y) = E\left\{(x - E\{x\})(y - E\{y\})\right\}$$

- Note that Cov(x, y) = Cov(y, x) and $Cov(x, x) = Var\{x\}$
- If x and y have 'similar' values, then $E\{x\} \approx E\{y\}$ and

$$Cov(x, y) \approx Var\{x\} \approx Var\{y\}$$

• If x and y are not 'similar', then $Cov(x, y) \approx 0$

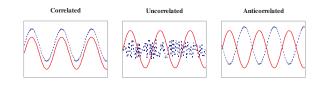
4 Correlation

Correlation

• The ratio of covariance with respect to variances of each variable is called *correlation* Cov(x, y)

$$Corr(x,y) = \frac{Cov(x,y)}{\sqrt{Var\{x\}Var\{y\}}}$$

• If x = y, then Corr(x, y) = 1 (for $Cov(x, x) = Var\{x\}$)



Corr(x, y) = 1 Corr(x, y) = 0 Corr(x, y) = -1

Correlation Matrix

- Correlations (or covariances) can tell us how 'similar' are two random variables.
- Below is the *correlation matrix* showing correlations of each pair of variables in our database

	Age	Gender	Income	Expenses	H. owner	C. score
Age	1,0	$0,\!6$	0,9	$0,\!6$	0,4	0,5
Gender	0,6	$1,\!0$	0,2	$1,\!0$	-0,2	-0,3
Income	0,9	0,2	$1,\!0$	0,2	0,7	0,9
Expenses	0,6	1,0	0,2	1,0	-0,2	-0,3
H. owner	0,4	-0,2	0,7	-0,2	1,0	0,9
C. score	0,5	-0,3	0,9	-0,3	0,9	$1,\!0$

Correlation Is Not Causation

- There is a positive correlation between sales of ice-cream and shark attacks. Does this mean that ice-cream causes shark attacks?
- It is a common fallacy to conclude a causal relation based on correlation
- Often, correlation between x and y can be because they both depend on (or caused by) a third variable z (e.g. both ice-cream sales and shark attacks increase in the summer season)