Lecture 6: Uncertainty and Information

Dr. Roman V Belavkin

BIS3226

Contents

1	Introduction	1
2	What is probability?	2
3	Conditional Probability and Independence	4
4	Uncertainty and Information	6

1 Introduction

Sources of Uncertainty

- **Complexity** : the number of possible states of a system in question can be too large (e.g. predict how a chess game can develop after 10 moves?)
- **Ignorance** : some important information about the system may not be available
- **Randomness** : the system may be random by nature, and thus the uncertainty is irreducible.

Historical Background

- 1654 Blaise Pascal and Pierre Fermat
- 1657 Christian Huygens publishes On Ratiocination in Dice Games
- 1760 Thomas Bayes (conditional probability)
- 1812 Pierre–Simon Laplace
- 1933 Andrey Kolmogorov's axioms
- 1920–1940 Ronald Fisher, Abraham Wald (statistics)
- 1948 Claude Shannon (Information theory)

2 What is probability?

What is Probability?

Definition 1. The uncertainty about some event E can range from impossible to certain. Let us denote the *probability* of event E by P(E) such that

P(E) = 0 means E is impossible;

P(E) = 1 means E is certain.

Thus, probability is a number between 0 and 1.

(Impossible) $0 \le P(E) \le 1$ (Certain)

Example 2. For a fair coin, $P(heads) = \frac{1}{2} = 0.5$

Set-Theoretic Intuition

• Events E are considered as subsets of the universal set U:

 $E \subseteq U$

• Probability is a *measure* of a subset $E \subseteq U$ such that

$$P(U) = 1$$

(because the universe is certain).

• We can consider probabilities of negation, disjunction and conjunction of events:

P(not E), $P(E_1 \text{ or } E_2)$, $P(E_1 \text{ and } E_2)$

• This corresponds to probability measure of the complement, union and intersection of the subsets:

$$P(\bar{E}) = P(U - E), \quad P(E_1 \cup E_2), \quad P(E_1 \cap E_2)$$

Additivity of Probabilities

- Events E_1 and E_2 are *disjoint* if $E_1 \cap E_2 = \emptyset$.
- For disjoint events

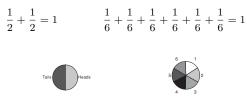
$$P(E_1 \text{ or } E_2) = P(E_1) + P(E_2)$$

• For *n* disjoint events such that $E_1 \cup E_2 \cup \cdots \cup E_n = U$

$$P(E_1) + P(E_2) + \dots + P(E_n) = 1$$

(because at least one of the events is certain)

Example 3. For a fair coin and a fair dice we have



Probability of Negation

• Negation of an event 'not E' refers to its complement

 $\bar{E} = U - E$

• E and \overline{E} are disjoint and such that

$$E \cup \bar{E} = E \cup (U - E) = U$$

• Because P(E or not E) = P(E) + P(not E) = 1 we have

P(not E) = 1 - P(E)

Question 1. What is the probability of a void set $P(\emptyset)$?

Joint Probability

• Co-occurrence of events E_1 and E_2 (e.g. clouds and rain) is their set intersection:

 $E_1 \cap E_2$

- Probability of $E_1 \cap E_2$ is called *joint* probability and denoted $P(E_1 \cap E_2)$ or simply $P(E_1, E_2)$.
- For disjoint events $P(E_1 \cap E_2) = P(\emptyset) = 0$.

	E_1	E_2
	heads	heads
Example 4 (Two coins).	heads	tails
	tails	heads
	tails	tails

Where do Probabilities Come From?

• If there are n disjoint events, then we could assume that all

$$P(E_1) = P(E_2) = \dots = P(E_n) = \frac{1}{n}$$

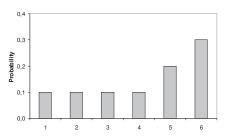
• It would be much better to use the *empirical frequency* function

 $P(E_i) \approx \frac{n(E_i)}{n} = \frac{\text{no. of times event } E_i \text{ occurs}}{\text{no. of independent tests}}$

Example 5. Flip a coin or roll a dice several times to estimate the probabilities.

Probability Distributions

We can plot probabilities of all events on a graph, which shows probability **distribution**



3 Conditional Probability and Independence

Conditional Probability

Question 2. How likely is it to rain if you see clouds?

• Probability of E_1 conditional to event E_2 (i.e. if E_2 has happened):

 $P(E_1 \mid E_2)$

• Joint probability $P(E_1 \cap E_2)$ can be computed using conditional by multiplication:

$$P(E_1 \cap E_2) = P(E_1 | E_2)P(E_2) P(E_1 \cap E_2) = P(E_2 | E_1)P(E_1)$$

• If $P(E_2) > 0$, then the *Bayes formula* holds

$$P(E_1 \mid E_2) = \frac{P(E_1 \cap E_2)}{P(E_2)}$$

Independence

Question 3. • *How likely is it to rain?*

- How likely is it to rain if you see clouds?
- Are rain and clouds independent?

Definition 6. Event E_1 is *independent* of E_2 if

$$P(E_1 \mid E_2) = P(E_1)$$

(i.e. knowledge of E_2 does not change the probability of E_1)

Because $P(E_1 \cap E_2) = P(E_1 \mid E_2)P(E_2)$, the joint probability of indepednent events is $P(E_1 \cap E_2) = P(E_1 \mid E_2)P(E_2)$

$$P(E_1 \cap E_2) = P(E_1)P(E_2)$$

A Simple Credit Score Example

• You selected at random records of 20 customers and divided them based on *homeowner* and *credit score*.

		Credit score		
		Low	High	
Homeowner	No	7	3	
	Yes	2	8	

• Can you tell from this data whether credit score and homeownership depend on each other?

A Simple Credit Score Example (sol.)

			Credit score					
			Low	High				
	Homeowner	No	7	3	10			
		Yes	2	8	10			
			9	11	20			
$P(\mathbf{H}, \mathbf{C}) = \left\{ \frac{7}{20}, \frac{2}{20}, \frac{3}{20}, \frac{8}{20} \right\}$								
Ρ	$(\mathbf{H}) = \left\{\frac{10}{20}, \frac{1}{2}\right\}$	P(0)	$C) = \left\{ \frac{1}{2} \right\}$	$\left\{\frac{9}{20}, \frac{11}{20}\right\}$				

Our simple test for independence $P(\mathbf{H}, \mathbf{C}) \stackrel{?}{=} P(\mathbf{H})P(\mathbf{C})$

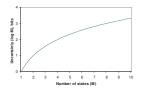
4 Uncertainty and Information

Uncertainty and Information

• If each event can have 2 states (i.e. True, False), then for a system that consists of H number of events there are

$$M = 2^H$$
 possible states

• To measure uncertainty we can use $H = \log_2 M$ (aka *entropy*)



• Information reduces uncertainty

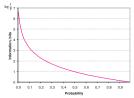
Information = Uncertainty before - Uncertainty after

• Information can be seen as negative entropy I = -H

Information and Probability

- What if probabilities are not equal? (i.e. $P(E) \neq \frac{1}{M}$)
- We can express the uncertainty as

$$H(E) = \log_2 \frac{1}{P(E)} = -\log_2 P(E)$$



Example 7. Compare information from observing events with probabilities $\frac{1}{8}$ and $\frac{1}{2}$