
OPTIMIST Conflict Resolution Overlay for the
ACT–R Cogntivie Architecture∗

Roman V. Belavkin
Middlesex University, School of Computing Science

London, NW4 4BT, United Kingdom

June 17, 2005

Abstract

This is a documentation on the OPTIMIST overlay for the ACT–R cognitive ar-
chitecture (Anderson & Lebiere, 1998). The overlay implements an alternative
conflict resolution algorithm. The main difference of the new algorithm from the
‘standard’ is the use of Gamma distributed noise, which has rule–specific and dy-
namic variance as opposed to normal distributed noise with global and constant
variance.

Introduction

ACT–R (Anderson & Lebiere, 1998) is a general purpose hybrid cognitive architecture
for developing cognitive models that can vary from simple reaction tasks to simula-
tions of pilots navigating airplanes and operators of airtraffic control systems. ACT–R

follows the approach of unified theories of cognition (Newell, 1990), in which several
theories about different aspects of cognition are used in a single simulation system.
Today, ACT–R has emerged as the architecture of choice for many cognitive modelling
problems.

The symbolic level of ACT–R is organised as a goal–directed production system
with declarative and procedural types of knowledge encoded in the form of chunks
and production rules respectively. The subsymbolic level accounts for fuzzy or proba-
bilistic properties of cognition, and it uses activation values, utilities, associations and
other parameters to control the way symbolic knowledge is used. The dynamics of
these parameters is described by a set of equations, that arise from neuroscience and
cognitive psychology theories.

Conflict resolution is an important part of the subsymbolic level of ACT–R, and
it represents a model of the decision–making mechanism. Several studies have sug-
gested recently that a more dynamic conflict resolution mechanism in the architecture
could significantly improve the decision–making behaviour of cognitive models. The
current mechanism of ACT-R has been revised and a new algorithm has been pro-
posed (see Belavkin, 2003; Belavkin & Ritter, 2004). The new algorithm is called
∗The OPTIMIST overlay has been initially developed at University of Nottingham and then at the

Middlesex University in London, United Kingdom.

1

OPTIMIST (stands for ‘Optimism’ plus ‘Optimisation’) and it has been implemented
as an overlay to the ACT–R architecture. Thus, it can easily be used as an alternative
mechanism. This document explains how to load and use OPTIMIST with the ACT–R

cognitive architecture. For the motivations and theory behind the OPTIMIST algorithm
see Belavkin (2003); Belavkin and Ritter (2004).

1 Conflict Resolution

After a set of all the rules matching the current working memory pattern has been
created (the conflict set), a single rule has to be selected from this set and fired. This
step is calledconflict resolution, and it is important how this rule selection occurs
because it controls which ‘decisions’ the model makes and affects the search of the
problem space.

In ACT–R, the conflict resolution uses subsymbolic information associated with
the rules. During the model run the number of successes and failures of each rule
(decision) is recorded by the architecture. In addition, ACT–R records the efforts (e.g.
time) spent after executing the rule and actually achieving the goal (or failing). This in-
formation is used to estimate empirically the probability of successPi and the average
costCi of each rule

Pi =
Successesi

Successesi + Failuresi
(1)

Ci =
Effortsi

Successesi + Failuresi
. (2)

Here, Effortsi is the sum of all costs, associated with previous tests of theith rule:
Effortsi =

∑k
j=0Cij , wherek = Successesi+Failuresi is the number of previous tests

of rule i. For example, if cost is measured in time units, then equation (2) calculates
the average time for exploring particular decision path. This way, probabilities and
costs of rules are learned by the architecture.

When several rules compete in the conflict set, ACT–R calculates theirutilities by
the following equation

Ui = PiG− Ci + ξ(σ2) . (3)

Here,G is called thegoal value, and it is measured in the same units as the cost (e.g.
time); ξ is a random number taken from a normal distribution with zero mean and
varianceσ2. Thus, the rational parts of the rules’ utilities (PiG−Ci) are corrupted by
noiseξ of varianceσ2. Finally, the rule is selected according to utility maximisation:
i = arg maxUi.

The main motivation for the new conflict resolution are as follows:

1. Noise variance should be rule specific.

2. Noise variance should be inversely proportional to the rate of success, and should
decrease on average with time.

3. The algorithm should allow for different reinforcements from the environment.

2

The main idea behind the OPTIMIST algorithm is an assumption that the time in-
tervals between the successes can be described by the Poisson distribution:

P (n | λ) =
(λt)n

n!
e−λt , n = 0, 1, 2, (4)

Here,λ = 1/θ is called themean count rate. Note, that forλ → 0 (or θ → ∞)
the probability (4) becomes zero. The corresponding waiting times until the success
events (costs) are distributed according to Gamma distribution with meanµ = nθ and
varianceσ2 = nθ2. Thus, a production rule with a higher success rateλ should not
only have a smaller expected cost, but also the variance of costs is smaller.

The algorithm uses posterior estimation of the mean waiting timesθi ≡ 1/λi for
each rule in the conflict set:

E{λ} =
∫ ∞

0
λϕ(λ | n) dλ =

n+ 1
t

(
θ ≈ t

n+ 1

)
Here, t andn + 1 correspond to the Effortsi and Successesi parameters in ACT–R

equations (1) and (2). Note that the mean waiting timesθi are not equivalent to the
average costsCi in ACT–R (θi ≥ Ci). Usually, more successful rules would have
smallerθi than those of less successful rules.

The mean waiting timesθi are used to generate a Gamma distributed noiseξ(θi).
This is done in the following way. Onceλ ≡ 1/θ has been estimated, the probability
of failure according to (4) isq = P (0 | λ) = e−λ, and probability of success is
p = 1 − e−λ. The inverse pdf of success isF−1 = −θ ln(1 − p). Probabilityp is
generated using uniform distribution on(0, 1), and the randomθ is computed using
the inverse pdf.

The OPTIMIST conflict resolution uses the following utilities:

Ui = PiG− χ(θi) + ξ(σ2) , (5)

whereχ(θi) are Gamma distributed random numbers. All other parameters are the
same as in equation (3). ParametersG andσ2 are used for compatibility, and the
OPTIMIST algorithm should work whenG = 0 andσ2 = 0. Goal valueG can be used
to reduce globally the effect of the Gamma noise.

2 Reinforcement Mechanism

Time is not the only objective that should be considered by the utility. Indeed, for
example, time spent on choosing an option with a prize worth $10 can be the same as
for $100. In order to account for such effects, the current OPTIMIST implementation
uses reinforcement mechanism, which can modulate the costs of particular outcomes:

• If a rule fired has explicit:failure flag, thenpenaltyvalue increases the cost
of of the outcome and hence increases the expected cost of the rule associated
with the failure.

• If a rule fired has:success flag, then the cost of the outcome is reduced by
therewardamount.

3

The values of penalty and reward are defined by the corresponding variables in the
system, and they can describe characteristics of the environment. The level of rein-
forcement may change during the interaction of a cognitive model with the environ-
ment. This implementation allows a modeller to define several different rewards and
penalties in various places of the simulated environment. This is different from the
parameterG, which is global affecting all the rules in the model.

Note that only rules with the flags:failure or :success set to T can be
reinforced.

3 Loading OPTIMIST

There are two versions of the overlay: One for ACT–R Version 4 and one for Version
5 (filesoptimist-for-act4.lisp andoptimist-for-act5.lisp respec-
tively). To use the OPTIMIST algorithm, load the required file after ACT–R:

(load ACTR.lisp)
(load optimist-for-actr*.lisp)

4 Parameters

There are four additional global parameters defined in the OPTIMIST. The values of
these parameters can be set in the model or by a simulation during the model run.
Below is the description of the parameters.

optimist

This parameter turns the OPTIMIST algorithm on and off. Default value isT. If NIL ,
the standard ACT–R mechanism is used.

minimal-cost

Sets the prior estimate ofθ. It is equal to the*default-action-time* by default
(i.e. 50 milliseconds).

reward

The amount of positive reinforcement of a rule with a:success flag. Default value
is NIL . If a number, then this value is subtracted from the efforts on completion of the
goal set by the rule.

penalty

The amount of negative reinforcement of a rule with a:failure flag. Default value
is NIL . If a number, then this value is added to the efforts on completion of the goal
set by the rule.

4

5 Example Model

File cr-test-model.lisp provides an example model using the OPTIMIST over-
lay. This model works with both ACT–R Versions 4 and 5. It contains five production
rules:

Do-Again
Good-Rule
Bad-Rule
Goal-Success
Goal-Failure

The first rule sets a goal that is matched by two rules:Good-Rule andBad-Rule .
These rules modify the goal in a slightly different way. The remaining two rules are
fired depending on whether the goal has been modified by aGood or Bad-Rule .
The goal is removed off the goal stack with either a success or a failure result. The
parameters (i.e. numbers of successes, failures and the efforts) of theGood-Rule or
the Bad-Rule are updated by the parameters learning mechanism of ACT–R. The
Do-Again rule will repeat the process.

There is only one conflict in this model: Between theGood and Bad-Rule .
There is no symbolic difference between these rules, and thanks to the subsymbolic
learning and the conflict resolution, the model quickly learns the preference to use
the Good-Rule . However, how quickly this preference is formed depends on sev-
eral parameters: Goal valueG and the amount of reinforcement (i.e.*reward* or
penalty).

6 Feedback and Support

All the files and documentation can be accessed from

http://www.cs.mdx.ac.uk/staffpages/rvb/software/optimist/

Feedback and suggestions can be directed toR.Belavkin@mdx.ac.uk

References

Anderson, J. R., & Lebiere, C. (1998).The atomic components of thought. Mahwah,
NJ: Lawrence Erlbaum.

Belavkin, R. V. (2003). Conflict resolution by random estimated costs. In D. Al-
Dabass (Ed.),Proceedings of the 17th European Simulation Multiconference
(ESM2003)(pp. 105–110). Nottingham, UK. (ISBN 3-936150-25-7)

Belavkin, R. V., & Ritter, F. E. (2004). Optimist: A new conflict resolution algorithm
for ACT–R. InProceedings of the Sixth International Conference on Cognitive
Modelling(pp. 40–45). Mahwah, NJ: Lawrence Erlbaum. (ISBN 0-8058-5426-
6)

Newell, A. (1990).Unified theories of cognition. Cambridge, Massachusetts: Harvard
University Press.

5

