On Global Optimality of Deterministic and Non-Deterministic Transformations

Roman V. Belavkin

Middlesex University

July 4, 2011

Optimality and Variational Problems

Non-Existence of Optimal Deterministic Kernels

Discussion References71

Transition Kernels and Composite Systems

Optimality and Variational Problems

Non-Existence of Optimal Deterministic Kernels

Discussion References71

Markov Transition Kernels

• A, B two measurable sets (i.e. (A, A), (B, B)).

Markov Transition Kernels

- A, B two measurable sets (i.e. (A, \mathcal{A}) , (B, \mathcal{B})).
- $\mathcal{P}(A)$ the set of all probability measures $P(A_i)$ on A.

Markov Transition Kernels

- A, B two measurable sets (i.e. (A, \mathcal{A}) , (B, \mathcal{B})).
- $\mathcal{P}(A)$ the set of all probability measures $P(A_i)$ on A.

Definition (Transition kernel)

A conditional probability $P(A_i | b) \in \mathcal{P}(A)$ that is \mathcal{B} -measurable $\forall A_i \in \mathcal{A}$.

Markov Transition Kernels

- A, B two measurable sets (i.e. (A, A), (B, B)).
- $\mathcal{P}(A)$ the set of all probability measures $P(A_i)$ on A.

Definition (Transition kernel)

A conditional probability $P(A_i | b) \in \mathcal{P}(A)$ that is \mathcal{B} -measurable $\forall A_i \in \mathcal{A}$.

Independence

If $P(A_i \mid b) = P(A_i)$ for all $A_i \in \mathcal{A}$, $b \in B$. Thus,

 $P(A_i \cap B_j) = P(A_i) P(B_j)$

Markov Transition Kernels

- A, B two measurable sets (i.e. (A, \mathcal{A}) , (B, \mathcal{B})).
- $\mathcal{P}(A)$ the set of all probability measures $P(A_i)$ on A.

Definition (Transition kernel)

A conditional probability $P(A_i | b) \in \mathcal{P}(A)$ that is \mathcal{B} -measurable $\forall A_i \in \mathcal{A}$.

Independence

If $P(A_i | b) = P(A_i)$ for all $A_i \in A$, $b \in B$. Thus,

$$P(A_i \cap B_j) = P(A_i) P(B_j)$$

Deterministic dependency

Represented by a measurable $f: B \to A$ or by $\delta_{f(b)}(A_i)$:

$$P(A_i \mid b) = \delta_{f(b)}(A_i) := \begin{cases} 1 & \text{if } f(b) = a \in A_i \\ 0 & \text{otherwise} \end{cases}$$

Simplex $\mathcal{P}(A \times B)$

• $\mathcal{P}(A \times B)$ the set of all joint probability measures $P(A_i \cap B_j)$.

Simplex $\mathcal{P}(A \times B)$

- $\mathcal{P}(A \times B)$ the set of all joint probability measures $P(A_i \cap B_j)$.
- Each $p \in \mathcal{P}(A \times B)$ uniquely defines $P(A_i \mid b)$ and $P(B_j)$.

Simplex $\mathcal{P}(A \times B)$

- $\mathcal{P}(A \times B)$ the set of all joint probability measures $P(A_i \cap B_j)$.
- Each $p \in \mathcal{P}(A \times B)$ uniquely defines $P(A_i \mid b)$ and $P(B_j)$.
- Recall Bayes formula for $P(B_j) > 0$ and marginalization:

$$P(A_i \mid B_j) = \frac{P(A_i \cap B_j)}{P(B_j)}, \qquad P(B_j) = \sum_{a \in A} P(A \cap B_j)$$

Simplex $\mathcal{P}(A \times B)$

- $\mathcal{P}(A \times B)$ the set of all joint probability measures $P(A_i \cap B_j)$.
- Each $p \in \mathcal{P}(A \times B)$ uniquely defines $P(A_i \mid b)$ and $P(B_j)$.
- Recall Bayes formula for $P(B_j) > 0$ and marginalization:

$$P(A_i \mid B_j) = \frac{P(A_i \cap B_j)}{P(B_j)}, \qquad P(B_j) = \sum_{a \in A} P(A \cap B_j)$$

• All measurable $f: B \to A$ correspond to $p_f \in \mathcal{P}(A \times B)$.

Simplex $\mathcal{P}(A \times B)$

- $\mathcal{P}(A \times B)$ the set of all joint probability measures $P(A_i \cap B_j)$.
- Each $p \in \mathcal{P}(A \times B)$ uniquely defines $P(A_i \mid b)$ and $P(B_j)$.
- Recall Bayes formula for $P(B_j) > 0$ and marginalization:

$$P(A_i \mid B_j) = \frac{P(A_i \cap B_j)}{P(B_j)}, \qquad P(B_j) = \sum_{a \in A} P(A \cap B_j)$$

• All measurable $f: B \to A$ correspond to $p_f \in \mathcal{P}(A \times B)$.

Remark (Interior of $\mathcal{P}(A \times B)$) $P_f(A_i \cap B_j) = \delta_{f(b)}(A_i)P(B_j) = 0$ if $f(b) \notin A_i$. • Thus, $p_f \in \partial \mathcal{P}(A \times B)$.

Simplex $\mathcal{P}(A \times B)$

- $\mathcal{P}(A \times B)$ the set of all joint probability measures $P(A_i \cap B_j)$.
- Each $p \in \mathcal{P}(A \times B)$ uniquely defines $P(A_i \mid b)$ and $P(B_j)$.
- Recall Bayes formula for $P(B_j) > 0$ and marginalization:

$$P(A_i \mid B_j) = \frac{P(A_i \cap B_j)}{P(B_j)}, \qquad P(B_j) = \sum_{a \in A} P(A \cap B_j)$$

• All measurable $f: B \to A$ correspond to $p_f \in \mathcal{P}(A \times B)$.

Remark (Interior of $\mathcal{P}(A \times B)$) $P_f(A_i \cap B_j) = \delta_{f(b)}(A_i)P(B_j) = 0$ if $f(b) \notin A_i$. • Thus, $p_f \in \partial \mathcal{P}(A \times B)$. • $p \in Int(\mathcal{P}(A \times B))$ implies p is non-deterministic.

Composite Systems in Applications

• In communication and cryptography, A and B are Alice and Bob.

Composite Systems in Applications

- In communication and cryptography, A and B are Alice and Bob.
- In estimation and control, A outputs (actions); B inputs.

Composite Systems in Applications

- In communication and cryptography, A and B are Alice and Bob.
- In estimation and control, A outputs (actions); B inputs.
- In computation, A answers; B problems.

Composite Systems in Applications

- In communication and cryptography, A and B are Alice and Bob.
- In estimation and control, A -outputs (actions); B -inputs.
- In computation, A answers; B problems.

Example (Deterministic and Non-deterministic algorithms)

• Words $w \in \{1, \dots, \alpha\}^n$ from finite alphabet $\{1, \dots, \alpha\}$

Composite Systems in Applications

- In communication and cryptography, A and B are Alice and Bob.
- In estimation and control, A -outputs (actions); B -inputs.
- In computation, A answers; B problems.

- Words $w \in \{1, \dots, \alpha\}^n$ from finite alphabet $\{1, \dots, \alpha\}$
- Γ a system of computations transforming initial w_0 to final w_t .

Composite Systems in Applications

- In communication and cryptography, A and B are Alice and Bob.
- In estimation and control, A -outputs (actions); B -inputs.
- In computation, A answers; B problems.

- Words $w \in \{1, \dots, \alpha\}^n$ from finite alphabet $\{1, \dots, \alpha\}$
- Γ a system of computations transforming initial w_0 to final w_t .
- $\gamma(w_t) = w_{t+1}$ is *direct processing* operator (Kolmogorov & Uspenskii, 1958).

Composite Systems in Applications

- In communication and cryptography, A and B are Alice and Bob.
- In estimation and control, A -outputs (actions); B -inputs.
- In computation, A answers; B problems.

- Words $w \in \{1, \dots, \alpha\}^n$ from finite alphabet $\{1, \dots, \alpha\}$
- Γ a system of computations transforming initial w_0 to final w_t .
- $\gamma(w_t) = w_{t+1}$ is *direct processing* operator (Kolmogorov & Uspenskii, 1958).
- An algorithm can

Composite Systems in Applications

- In communication and cryptography, A and B are Alice and Bob.
- In estimation and control, A -outputs (actions); B -inputs.
- In computation, A answers; B problems.

- Words $w \in \{1, \dots, \alpha\}^n$ from finite alphabet $\{1, \dots, \alpha\}$
- Γ a system of computations transforming initial w_0 to final w_t .
- $\gamma(w_t) = w_{t+1}$ is *direct processing* operator (Kolmogorov & Uspenskii, 1958).
- An algorithm can
 - Terminate $\Gamma(w_0) = (w_1, \dots, w_t)$ with final w_t (answer).

Composite Systems in Applications

- In communication and cryptography, A and B are Alice and Bob.
- In estimation and control, A -outputs (actions); B -inputs.
- In computation, A answers; B problems.

- Words $w \in \{1, \dots, \alpha\}^n$ from finite alphabet $\{1, \dots, \alpha\}$
- Γ a system of computations transforming initial w_0 to final w_t .
- $\gamma(w_t) = w_{t+1}$ is *direct processing* operator (Kolmogorov & Uspenskii, 1958).
- An algorithm can
 - Terminate $\Gamma(w_0) = (w_1, \dots, w_t)$ with final w_t (answer).
 - **2** Terminate $\Gamma(w_0) = (w_1, \dots, w_t)$ with non-final w_t (no answer).

Composite Systems in Applications

- In communication and cryptography, A and B are Alice and Bob.
- In estimation and control, A -outputs (actions); B -inputs.
- In computation, A answers; B problems.

- Words $w \in \{1, \dots, \alpha\}^n$ from finite alphabet $\{1, \dots, \alpha\}$
- Γ a system of computations transforming initial w_0 to final w_t .
- $\gamma(w_t) = w_{t+1}$ is *direct processing* operator (Kolmogorov & Uspenskii, 1958).
- An algorithm can
 - Terminate $\Gamma(w_0) = (w_1, \dots, w_t)$ with final w_t (answer).
 - **2** Terminate $\Gamma(w_0) = (w_1, \dots, w_t)$ with non-final w_t (no answer).
 - Solution Not terminate $\Gamma(w_0) = (w_1, \ldots, w_t, \ldots).$

Composite Systems in Applications

- In communication and cryptography, A and B are Alice and Bob.
- In estimation and control, A -outputs (actions); B -inputs.
- In computation, A answers; B problems.

- Words $w \in \{1, \dots, \alpha\}^n$ from finite alphabet $\{1, \dots, \alpha\}$
- Γ a system of computations transforming initial w_0 to final w_t .
- $\gamma(w_t) = w_{t+1}$ is *direct processing* operator (Kolmogorov & Uspenskii, 1958).
- An algorithm can
 - Terminate $\Gamma(w_0) = (w_1, \dots, w_t)$ with final w_t (answer).
 - **2** Terminate $\Gamma(w_0) = (w_1, \dots, w_t)$ with non-final w_t (no answer).
 - Solution Not terminate $\Gamma(w_0) = (w_1, \ldots, w_t, \ldots).$
- Let $A := \prod_{t=1}^{\infty} \{w_t\}$ (output sequences), $B := \{w_0\}$ (input words).

Composite Systems in Applications

- In communication and cryptography, A and B are Alice and Bob.
- In estimation and control, A -outputs (actions); B -inputs.
- In computation, A answers; B problems.

- Words $w \in \{1, \dots, \alpha\}^n$ from finite alphabet $\{1, \dots, \alpha\}$
- Γ a system of computations transforming initial w_0 to final w_t .
- $\gamma(w_t) = w_{t+1}$ is *direct processing* operator (Kolmogorov & Uspenskii, 1958).
- An algorithm can
 - Terminate $\Gamma(w_0) = (w_1, \dots, w_t)$ with final w_t (answer).
 - **2** Terminate $\Gamma(w_0) = (w_1, \dots, w_t)$ with non-final w_t (no answer).
 - Solution Not terminate $\Gamma(w_0) = (w_1, \ldots, w_t, \ldots).$
- Let $A := \prod_{t=1}^{\infty} \{w_t\}$ (output sequences), $B := \{w_0\}$ (input words).
- $p \in \mathcal{P}(A \times B)$ represent all algorithms (deterministic or not).

Transition Kernels and Composite Systems

Optimality and Variational Problems

Non-Existence of Optimal Deterministic Kernels

Discussion

References71

Optimality

• A utility representation of \lesssim on $A \times B$ is $x : A \times B \to \mathbb{R}$:

 $(a_1,b_1) \lesssim (a_2,b_2) \quad \Longleftrightarrow \quad x(a_1,b_1) \leq x(a_2,b_2)$

Optimality

• A utility representation of \lesssim on $A \times B$ is $x : A \times B \to \mathbb{R}$:

$$(a_1,b_1) \lesssim (a_2,b_2) \quad \Longleftrightarrow \quad x(a_1,b_1) \leq x(a_2,b_2)$$

• $l: A \times B \to \mathbb{R}$ is a loss function iff x(a, b) = -l(a, b) is utility.

Optimality

• A utility representation of \leq on $A \times B$ is $x : A \times B \rightarrow \mathbb{R}$:

$$(a_1,b_1) \lesssim (a_2,b_2) \quad \Longleftrightarrow \quad x(a_1,b_1) \leq x(a_2,b_2)$$

• $l: A \times B \to \mathbb{R}$ is a loss function iff x(a,b) = -l(a,b) is utility. • Given $p \in \mathcal{P}(A \times B)$, the expected utility is

$$\mathbb{E}_p\{x\} := \sum_{(a,b)\in A imes B} x(a,b) \, P(a\cap b)$$

Optimality

• A utility representation of \leq on $A \times B$ is $x : A \times B \rightarrow \mathbb{R}$:

$$(a_1,b_1) \lesssim (a_2,b_2) \quad \Longleftrightarrow \quad x(a_1,b_1) \leq x(a_2,b_2)$$

• $l: A \times B \to \mathbb{R}$ is a loss function iff x(a, b) = -l(a, b) is utility. • Given $p \in \mathcal{P}(A \times B)$, the expected utility is

$$\mathbb{E}_p\{x\} := \sum_{(a,b)\in A imes B} x(a,b) P(a\cap b)$$

• $\mathbb{E}_p\{x\}$ represents \lesssim on $\mathcal{P}(A \times B)$: $q \lesssim p \iff \mathbb{E}_q\{x\} \leq \mathbb{E}_p\{x\}$.

Optimality

• A utility representation of \lesssim on $A \times B$ is $x : A \times B \rightarrow \mathbb{R}$:

$$(a_1,b_1)\lesssim (a_2,b_2) \quad \Longleftrightarrow \quad x(a_1,b_1)\leq x(a_2,b_2)$$

• $l: A \times B \to \mathbb{R}$ is a loss function iff x(a, b) = -l(a, b) is utility. • Given $p \in \mathcal{P}(A \times B)$, the expected utility is

$$\mathbb{E}_p\{x\} := \sum_{(a,b)\in A imes B} x(a,b) \, P(a\cap b)$$

• $\mathbb{E}_p\{x\}$ represents \lesssim on $\mathcal{P}(A \times B)$: $q \lesssim p \iff \mathbb{E}_q\{x\} \leq \mathbb{E}_p\{x\}$.

Example (Time and utility of computation)

• Computational cost of Γ can be defined

$$l(\Gamma(w_0), w_0) := \begin{cases} t & \text{if } \Gamma(w_0) = (w_1, \dots, w_t) \text{ and } w_t \text{ is a final word} \\ \infty & \text{otherwise} \end{cases}$$

Optimality

• A utility representation of \lesssim on $A \times B$ is $x : A \times B \rightarrow \mathbb{R}$:

$$(a_1,b_1) \lesssim (a_2,b_2) \quad \Longleftrightarrow \quad x(a_1,b_1) \leq x(a_2,b_2)$$

• $l: A \times B \to \mathbb{R}$ is a loss function iff x(a, b) = -l(a, b) is utility. • Given $p \in \mathcal{P}(A \times B)$, the expected utility is

$$\mathbb{E}_p\{x\} := \sum_{(a,b)\in A imes B} x(a,b) P(a\cap b)$$

• $\mathbb{E}_p\{x\}$ represents \lesssim on $\mathcal{P}(A \times B)$: $q \lesssim p \iff \mathbb{E}_q\{x\} \leq \mathbb{E}_p\{x\}$.

Example (Time and utility of computation)

• Computational cost of Γ can be defined

$$l(\Gamma(w_0), w_0) := \begin{cases} t & \text{if } \Gamma(w_0) = (w_1, \dots, w_t) \text{ and } w_t \text{ is a final word} \\ \infty & \text{otherwise} \end{cases}$$

• Boolean utility
$$x(\Gamma(w_0), w_0) = 1 - \delta_{\infty}(l(\Gamma(w_0), w_0))$$

Information

Definition (Information resource (distance))

A closed (lower semicontinuous) functional $F : \mathcal{P} \to \mathbb{R} \cup \{\infty\}$ $(I : \mathcal{P} \times \mathcal{P} \to \mathbb{R}_+ \cup \{\infty\})$. We usually put F(p) = I(p,q).

Information

Definition (Information resource (distance))

A closed (lower semicontinuous) functional $F : \mathcal{P} \to \mathbb{R} \cup \{\infty\}$ $(I : \mathcal{P} \times \mathcal{P} \to \mathbb{R}_+ \cup \{\infty\})$. We usually put F(p) = I(p,q).

Example (Kullback-Leibler divergence (Kullback, 1959))

$$I_{KL} := \mathbb{E}_p\{\ln(p/q)\}$$

Additive: $I_{KL}(p_1p_2, q_1, q_2) = I_{KL}(p_1, q_1) + I_{KL}(p_2, q_2).$

Information

Definition (Information resource (distance))

A closed (lower semicontinuous) functional $F : \mathcal{P} \to \mathbb{R} \cup \{\infty\}$ $(I : \mathcal{P} \times \mathcal{P} \to \mathbb{R}_+ \cup \{\infty\})$. We usually put F(p) = I(p,q).

Example (Kullback-Leibler divergence (Kullback, 1959))

$$I_{KL} := \mathbb{E}_p\{\ln(p/q)\}$$

Additive: $I_{KL}(p_1p_2, q_1, q_2) = I_{KL}(p_1, q_1) + I_{KL}(p_2, q_2).$

Example (Total variation and Fisher information metrics)

$$I_V(p,q) = \|p-q\|_1, \quad I_F(p,q) = 2 \arccos(1, p^{1/2}q^{1/2})$$

Variational Problems

• $\mathbb{E}_p\{x\} = \langle x, p \rangle$ is linear.

Variational Problems

- $\mathbb{E}_p\{x\} = \langle x, p \rangle$ is linear.
- I(p,q) is closed (lower semicontinuous), possibly convex.

- $\mathbb{E}_p\{x\} = \langle x, p \rangle$ is linear.
- I(p,q) is closed (lower semicontinuous), possibly convex.

Problems

• Linear programming problem:

```
maximize (minimize) \mathbb{E}_p\{x\} subject to \mathbb{E}_p\{\ln(p/q)\} \leq \lambda
```

- $\mathbb{E}_p\{x\} = \langle x, p \rangle$ is linear.
- I(p,q) is closed (lower semicontinuous), possibly convex.

Problems

• Linear programming problem:

```
maximize (minimize) \mathbb{E}_p\{x\} subject to \mathbb{E}_p\{\ln(p/q)\} \leq \lambda
```

• The inverse convex programming problem:

minimize $\mathbb{E}_p\{\ln(p/q)\}$ subject to $\mathbb{E}_p\{x\} \ge v$ $\left(\mathbb{E}_p\{x\} \le v\right)$

- $\mathbb{E}_p\{x\} = \langle x, p \rangle$ is linear.
- I(p,q) is closed (lower semicontinuous), possibly convex.

Problems

• Linear programming problem:

```
maximize (minimize) \mathbb{E}_p\{x\} subject to I(p,q) \leq \lambda
```

• The inverse convex programming problem:

minimize I(p,q) subject to $\mathbb{E}_p\{x\} \ge v$ $\left(\mathbb{E}_p\{x\} \le v\right)$

- $\mathbb{E}_p\{x\} = \langle x, p \rangle$ is linear.
- I(p,q) is closed (lower semicontinuous), possibly convex.

Problems

• Linear programming problem:

maximize (minimize) $\mathbb{E}_p\{x\}$ subject to $F(p) \leq \lambda$

- $\mathbb{E}_p\{x\} = \langle x, p \rangle$ is linear.
- I(p,q) is closed (lower semicontinuous), possibly convex.

Problems

• Linear programming problem:

```
maximize (minimize) \mathbb{E}_p\{x\} subject to F(p) \leq \lambda
```

• The inverse convex programming problem:

minimize F(p) subject to $\mathbb{E}_p\{x\} \ge v$ $\left(\mathbb{E}_p\{x\} \le v\right)$

- $\mathbb{E}_p\{x\} = \langle x, p \rangle$ is linear.
- I(p,q) is closed (lower semicontinuous), possibly convex.

Problems

• Linear programming problem:

maximize (minimize) $\mathbb{E}_p\{x\}$ subject to $F(p) \leq \lambda$

• The inverse convex programming problem:

minimize F(p) subject to $\mathbb{E}_p\{x\} \ge v$ $\left(\mathbb{E}_p\{x\} \le v\right)$

• For $p \in \mathcal{P}(A \times B)$, each $p := P(A \cap B) = P(A \mid B) P(B)$.

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic TJampsførr200tibns 10 / 17

- $\mathbb{E}_p\{x\} = \langle x, p \rangle$ is linear.
- I(p,q) is closed (lower semicontinuous), possibly convex.

Problems

• Linear programming problem:

maximize (minimize) $\mathbb{E}_p\{x\}$ subject to $F(p) \leq \lambda$

• The inverse convex programming problem:

minimize F(p) subject to $\mathbb{E}_p\{x\} \ge v$ $\left(\mathbb{E}_p\{x\} \le v\right)$

• For $p \in \mathcal{P}(A \times B)$, each $p := P(A \cap B) = P(A \mid B) P(B)$. type II : Find optimal P(B) for fixed $P(A \mid b)$.

- $\mathbb{E}_p\{x\} = \langle x, p \rangle$ is linear.
- I(p,q) is closed (lower semicontinuous), possibly convex.

Problems

• Linear programming problem:

maximize (minimize) $\mathbb{E}_p\{x\}$ subject to $F(p) \leq \lambda$

• The inverse convex programming problem:

minimize F(p) subject to $\mathbb{E}_p\{x\} \ge v$ $\left(\mathbb{E}_p\{x\} \le v\right)$

• For $p \in \mathcal{P}(A \times B)$, each $p := P(A \cap B) = P(A \mid B) P(B)$. type II : Find optimal P(B) for fixed $P(A \mid b)$. type III : Find optimal $P(A \mid b)$ for fixed P(B).

Optimal Solutions

Necessary and sufficient conditions

• p_{β} maximizes $\langle x, p \rangle$ on $\{p : F(p) \leq \lambda\}$ iff

$$p_{\beta} \in \partial F^*(\beta x), \qquad F(p_{\beta}) = \lambda$$

Optimal Solutions

Necessary and sufficient conditions

• p_{β} maximizes $\langle x, p \rangle$ on $\{p : F(p) \leq \lambda\}$ iff

$$p_{\beta} \in \partial F^*(\beta x), \qquad F(p_{\beta}) = \lambda$$

• p_{β} minimizes F(p) on $\{p: \langle x, p \rangle \ge v\}$ iff

$$p_{\beta} \in \partial F^*(\beta x), \qquad \langle x, p_{\beta} \rangle = v$$

Optimal Solutions

Necessary and sufficient conditions

• p_{β} maximizes $\langle x, p \rangle$ on $\{p : F(p) \leq \lambda\}$ iff

$$p_{\beta} \in \partial F^*(\beta x), \qquad F(p_{\beta}) = \lambda$$

• p_{β} minimizes F(p) on $\{p: \langle x, p \rangle \ge v\}$ iff

$$p_{\beta} \in \partial F^*(\beta x), \qquad \langle x, p_{\beta} \rangle = v$$

• Lagrange multiplier β^{-1} (or β) is defined by λ (v).

Optimal Solutions

Necessary and sufficient conditions

• p_{β} maximizes $\langle x, p \rangle$ on $\{p : F(p) \leq \lambda\}$ iff

$$p_{\beta} \in \partial F^*(\beta x), \qquad F(p_{\beta}) = \lambda$$

• p_{β} minimizes F(p) on $\{p: \langle x, p \rangle \geq v\}$ iff

$$p_{\beta} \in \partial F^*(\beta x), \qquad \langle x, p_{\beta} \rangle = v$$

• Lagrange multiplier β^{-1} (or β) is defined by λ (υ).

• For $F(p) = I_{KL}(p,q) = \mathbb{E}_p\{\ln(p/q)\}$, we have $\partial F^*(\beta x) = \{p_\beta \propto e^{\beta x} q\}$

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic Tutanhsform20tibns 11 / 17

Optimal Solutions

Necessary and sufficient conditions

• p_{β} maximizes $\langle x, p \rangle$ on $\{p : F(p) \leq \lambda\}$ iff

$$p_{\beta} \in \partial F^*(\beta x), \qquad F(p_{\beta}) = \lambda$$

• p_{β} minimizes F(p) on $\{p: \langle x, p \rangle \geq v\}$ iff

$$p_{\beta} \in \partial F^*(\beta x), \qquad \langle x, p_{\beta} \rangle = v$$

• Lagrange multiplier β^{-1} (or β) is defined by λ (v).

• For $F(p) = I_{KL}(p,q) = \mathbb{E}_p\{\ln(p/q)\}$, we have $\partial F^*(\beta x) = \{p_\beta \propto e^{\beta x} q\}$

• With normalization $||p||_1 = 1$:

$$p_{\beta} = e^{\beta x - \Psi_x(\beta)} q, \qquad p_0 = q$$

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic Tylansform20tibns 11 / 17

Transition Kernels and Composite Systems

Optimality and Variational Problems

Non-Existence of Optimal Deterministic Kernels

Discussion References71

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic Transform20 tibes 12 / 17

Exponential kernels

• Let $p := P(a \cap b)$, q := P(a)P(b) (i.e. $p, q \in \mathcal{P}(A \times B)$)

- Let $p := P(a \cap b)$, q := P(a)P(b) (i.e. $p, q \in \mathcal{P}(A \times B)$)
- Then $I_{KL}(p,q) := \mathbb{E}_p\{\ln(p/q)\}$ is Shannon mutual information:

$$I_{S}\{a,b\} := \sum_{A \times B} \ln \left[\frac{P(a \cap b)}{P(a) P(b)} \right] P(a \cap b)$$
$$= \sum_{B} P(b) \sum_{A} \ln \left[\frac{P(a \mid b)}{P(a)} \right] P(a \mid b)$$

- Let $p := P(a \cap b)$, q := P(a)P(b) (i.e. $p, q \in \mathcal{P}(A \times B)$)
- Then $I_{KL}(p,q) := \mathbb{E}_p\{\ln(p/q)\}$ is Shannon mutual information:

$$I_{S}\{a,b\} := \sum_{A \times B} \ln \left[\frac{P(a \cap b)}{P(a) P(b)} \right] P(a \cap b)$$
$$= \sum_{B} P(b) \sum_{A} \ln \left[\frac{P(a \mid b)}{P(a)} \right] P(a \mid b)$$

• The optimal conditional probabilities are

$$P_{\beta}(a \mid b) = e^{\beta x(a,b) - \Psi_x(\beta,b)} P(a)$$

- Let $p := P(a \cap b)$, q := P(a)P(b) (i.e. $p, q \in \mathcal{P}(A \times B)$)
- Then $I_{KL}(p,q) := \mathbb{E}_p\{\ln(p/q)\}$ is Shannon mutual information:

$$I_{S}\{a,b\} := \sum_{A \times B} \ln \left[\frac{P(a \cap b)}{P(a) P(b)} \right] P(a \cap b)$$
$$= \sum_{B} P(b) \sum_{A} \ln \left[\frac{P(a \mid b)}{P(a)} \right] P(a \mid b)$$

• The optimal conditional probabilities are

$$P_{\beta}(a \mid b) = e^{\beta x(a,b) - \Psi_x(\beta,b)} P(a)$$

 \bullet Observe that for $\beta < \infty$

$$P_{\beta}(a \mid b) > 0 \qquad \Longleftrightarrow \qquad P(a) > 0$$

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic Tylansform2011bns 13 / 17

- Let $p := P(a \cap b)$, q := P(a)P(b) (i.e. $p, q \in \mathcal{P}(A \times B)$)
- Then $I_{KL}(p,q) := \mathbb{E}_p\{\ln(p/q)\}$ is Shannon mutual information:

$$I_{S}\{a,b\} := \sum_{A \times B} \ln \left[\frac{P(a \cap b)}{P(a) P(b)} \right] P(a \cap b)$$
$$= \sum_{B} P(b) \sum_{A} \ln \left[\frac{P(a \mid b)}{P(a)} \right] P(a \mid b)$$

• The optimal conditional probabilities are

$$P_{\beta}(a \mid b) = e^{\beta x(a,b) - \Psi_x(\beta,b)} P(a)$$

• Observe that for $\beta < \infty$

$$P_{\beta}(a \mid b) > 0 \qquad \Longleftrightarrow \qquad P(a) > 0$$

• Thus, $p_{\beta} := P_{\beta}(a \mid b) P(b) \in Int(\mathcal{P}(A \times B))$ is non-deterministic.

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic Tulansformations 13 / 17

Non-existence Theorem (General Case)

Theorem (Belavkin, Accepted)

• Let $\{p_{\beta}\}_x$ be a family of $p_{\beta} \in \mathcal{P}(A \times B)$ maximizing $\mathbb{E}_p\{x\}$ on sets $\{p : F(p) \leq \lambda\}$ for all values $\lambda = F(p)$.

Non-existence Theorem (General Case)

Theorem (Belavkin, Accepted)

- Let $\{p_{\beta}\}_x$ be a family of $p_{\beta} \in \mathcal{P}(A \times B)$ maximizing $\mathbb{E}_p\{x\}$ on sets $\{p : F(p) \leq \lambda\}$ for all values $\lambda = F(p)$.
- Let F be minimized at $p_0 \in \partial F^*(0) \subset Int(\mathcal{P}(A \times B))$.

Non-existence Theorem (General Case)

Theorem (Belavkin, Accepted)

- Let $\{p_{\beta}\}_x$ be a family of $p_{\beta} \in \mathcal{P}(A \times B)$ maximizing $\mathbb{E}_p\{x\}$ on sets $\{p : F(p) \leq \lambda\}$ for all values $\lambda = F(p)$.
- Let F be minimized at $p_0 \in \partial F^*(0) \subset Int(\mathcal{P}(A \times B))$.
- If $F^*(x)$ is strictly convex, then

Non-existence Theorem (General Case)

Theorem (Belavkin, Accepted)

- Let $\{p_{\beta}\}_{x}$ be a family of $p_{\beta} \in \mathcal{P}(A \times B)$ maximizing $\mathbb{E}_{p}\{x\}$ on sets $\{p : F(p) \leq \lambda\}$ for all values $\lambda = F(p)$.
- Let F be minimized at $p_0 \in \partial F^*(0) \subset Int(\mathcal{P}(A \times B))$.
- If $F^*(x)$ is strictly convex, then

• p_{β} is deterministic iff $\lambda \geq \sup^{x} F$ (i.e. $\beta \to \infty$).

Non-existence Theorem (General Case)

Theorem (Belavkin, Accepted)

- Let $\{p_{\beta}\}_{x}$ be a family of $p_{\beta} \in \mathcal{P}(A \times B)$ maximizing $\mathbb{E}_{p}\{x\}$ on sets $\{p : F(p) \leq \lambda\}$ for all values $\lambda = F(p)$.
- Let F be minimized at $p_0 \in \partial F^*(0) \subset Int(\mathcal{P}(A \times B))$.
- If $F^*(x)$ is strictly convex, then
 - p_{β} is deterministic iff $\lambda \geq \sup^{x} F$ (i.e. $\beta \to \infty$).
 - 2 If $p_f \in \mathcal{P}(A \times B)$ is deterministic and $F(p_f) = F(p_\beta)$, then

$$\mathbb{E}_{p_f}\{x\} < \mathbb{E}_{p_\beta}\{x\}$$

Non-existence Theorem (General Case)

Theorem (Belavkin, Accepted)

- Let $\{p_{\beta}\}_{x}$ be a family of $p_{\beta} \in \mathcal{P}(A \times B)$ maximizing $\mathbb{E}_{p}\{x\}$ on sets $\{p : F(p) \leq \lambda\}$ for all values $\lambda = F(p)$.
- Let F be minimized at $p_0 \in \partial F^*(0) \subset Int(\mathcal{P}(A \times B))$.
- If $F^*(x)$ is strictly convex, then
 - p_{β} is deterministic iff $\lambda \geq \sup^{x} F$ (i.e. $\beta \to \infty$).
 - 2 If $p_f \in \mathcal{P}(A \times B)$ is deterministic and $F(p_f) = F(p_\beta)$, then

$$\mathbb{E}_{p_f}\{x\} < \mathbb{E}_{p_\beta}\{x\}$$

3 If $p_f \in \mathcal{P}(A \times B)$ is deterministic and $\mathbb{E}_{p_f}\{x\} = \mathbb{E}_{p_\beta}\{x\}$, then

$$F(p_f) > F(p_\beta)$$

Transition Kernels and Composite Systems

Optimality and Variational Problems

Non-Existence of Optimal Deterministic Kernels

Discussion References71

Discussion

 Strict convexity of F^{*} ensures that Gâteaux derivative of F(p) exists at any p ∈ Int(domF).

Discussion

- Strict convexity of F^{*} ensures that Gâteaux derivative of F(p) exists at any p ∈ Int(domF).
- If F^* is not strictly convex, then p_β may maximize $\mathbb{E}_p\{x\}$ and $\mathbb{E}_p\{w\}$ with utilities x and w representing different \leq on $A \times B$ (i.e. $p \in \mathcal{P}(A \times B)$ do not separate some variational problems).

Discussion

- Strict convexity of F^{*} ensures that Gâteaux derivative of F(p) exists at any p ∈ Int(domF).
- If F^* is not strictly convex, then p_β may maximize $\mathbb{E}_p\{x\}$ and $\mathbb{E}_p\{w\}$ with utilities x and w representing different \leq on $A \times B$ (i.e. $p \in \mathcal{P}(A \times B)$ do not separate some variational problems).
- Additivity of I(p,q) implies strict convexity of $I^*(x,q)$ (i.e. $\nabla I(p,q) \propto \ln(p/q) \iff \exp(x) q = \nabla I^*(x,q)$).

Discussion

- Strict convexity of F^{*} ensures that Gâteaux derivative of F(p) exists at any p ∈ Int(domF).
- If F^* is not strictly convex, then p_β may maximize $\mathbb{E}_p\{x\}$ and $\mathbb{E}_p\{w\}$ with utilities x and w representing different \leq on $A \times B$ (i.e. $p \in \mathcal{P}(A \times B)$ do not separate some variational problems).
- Additivity of I(p,q) implies strict convexity of $I^*(x,q)$ (i.e. $\nabla I(p,q) \propto \ln(p/q) \iff \exp(x) q = \nabla I^*(x,q)$).
- One can construct examples such that for any deterministic p_f satisfying any constraint $F(p) \leq \lambda < \sup^x F(p)$ (or any $\mathbb{E}_p\{x\} \geq v > v_0$)

$$\mathbb{E}_{p_f}\{x\} = -\infty \qquad (\text{or } F(p_f) = \infty)$$

Discussion

- Strict convexity of F^{*} ensures that Gâteaux derivative of F(p) exists at any p ∈ Int(domF).
- If F^* is not strictly convex, then p_β may maximize $\mathbb{E}_p\{x\}$ and $\mathbb{E}_p\{w\}$ with utilities x and w representing different \leq on $A \times B$ (i.e. $p \in \mathcal{P}(A \times B)$ do not separate some variational problems).
- Additivity of I(p,q) implies strict convexity of $I^*(x,q)$ (i.e. $\nabla I(p,q) \propto \ln(p/q) \iff \exp(x) q = \nabla I^*(x,q)$).
- One can construct examples such that for any deterministic p_f satisfying any constraint $F(p) \leq \lambda < \sup^x F(p)$ (or any $\mathbb{E}_p\{x\} \geq v > v_0$)

$$\mathbb{E}_{p_f}\{x\} = -\infty$$
 (or $F(p_f) = \infty$)

• Strict inequalities for solutions $p_{\beta}: -\infty < \mathbb{E}_{p_{\beta}}\{x\}$ or $\infty > F(p_{\beta})$.

References

Transition Kernels and Composite Systems

Optimality and Variational Problems

Non-Existence of Optimal Deterministic Kernels

Discussion References71

Belavkin, R. V. (Accepted). Optimal measures and transition kernels. *Journal of Global Optimization.*

Kolmogorov, A. N., & Uspenskii, V. A. (1958). On the definition of an algorithm. Uspekhi Mat. Nauk, 13(4), 3–28. (In Russian)

- Kullback, S. (1959). *Information theory and statistics*. John Wiley and Sons.
- Shannon, C. E. (1948, July and October). A mathematical theory of communication. *Bell System Technical Journal*, 27, 379–423 and 623–656.