On Global Optimality of Deterministic and
Non-Deterministic Transformations

Roman V. Belavkin

Middlesex University

July 4, 2011

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic Traudfodmatibhs 1/17



Transition Kernels and Composite Systems

Optimality and Variational Problems

Non-Existence of Optimal Deterministic Kernels

Discussion
References71

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic Traudfodmatibhs 2 /17



Transition Kernels and Composite Systems

Transition Kernels and Composite Systems

References71

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic Traudfodmatibhs 3/17



Transition Kernels and Composite Systems

Markov Transition Kernels
e A, B two measurable sets (i.e. (4,.A4), (B,B)).

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic Traudfodmatibhs 4 /17



Transition Kernels and Composite Systems

Markov Transition Kernels

e A, B two measurable sets (i.e. (4,.A4), (B,B)).
@ P(A) the set of all probability measures P(A4;) on A.

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic Traudfodmatibhs 4 /17



Transition Kernels and Composite Systems

Markov Transition Kernels

e A, B two measurable sets (i.e. (4,.A4), (B,B)).
@ P(A) the set of all probability measures P(A4;) on A.

Definition (Transition kernel)
A conditional probability P(A; | b) € P(A) that is B-measurable V 4; € A.J

Roman V. Belavkin (Middlesex University) On Global Optimality of Deterministic and Non-Deterministic Traudfodmatibhs 4 /17



Transition Kernels and Composite Systems
Markov Transition Kernels

e A, B two measurable sets (i.e. (4,.A4), (B,B)).
@ P(A) the set of all probability measures P(A;) on A.

Definition (Transition kernel)

A conditional probability P(A4; | b) € P(A) that is B-measurable V 4; € A.
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Independence
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Markov Transition Kernels

e A, B two measurable sets (i.e. (4,.A4), (B,B)).
@ P(A) the set of all probability measures P(A;) on A.

Definition (Transition kernel)

A conditional probability P(A4; | b) € P(A) that is B-measurable V 4; € A.

Independence
If P(A; | b) = P(A;) forall A; € A, be B. Thus,

Deterministic dependency
Represented by a measurable f : B — A or by §(;)(A:):

0 otherwise

P(Ai [ b) = 05y (Ai) := { 1 if f(b) = a€ 4
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e P(A x B) the set of all joint probability measures P(A; N B;).
e Each p € P(A x B) uniquely defines P(A; | b) and P(B;).
@ Recall Bayes formula for P(B;) > 0 and marginalization:
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Simplex P(A x B)

e P(A x B) the set of all joint probability measures P(A; N B;).
e Each p € P(A x B) uniquely defines P(A; | b) and P(B;).

@ Recall Bayes formula for P(B;) > 0 and marginalization:

Pt B) = PSS p() = Y p(ans)
J acA

@ All measurable f : B — A correspond to py € P(A x B).

Remark (Interior of P(A x B))
Py B)) = 650y (A)P(B,) = 0 if §(b) & A.
o Thus, py € OP(A x B).
e p € Int(P(A x B)) implies p is non-deterministic.
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o [ — a system of computations transforming initial wg to final w;.

o y(w) = wyy1 is direct processing operator (Kolmogorov & Uspenskii,

1958).
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Composite Systems in Applications

@ In communication and cryptography, A and B are Alice and Bob.
@ In estimation and control, A — outputs (actions); B — inputs.
@ In computation, A — answers; B — problems.

Example (Deterministic and Non-deterministic algorithms)
Words w € {1,...,a}" from finite alphabet {1,...,a}

I — a system of computations transforming initial wg to final w;.

v(w¢) = wy1 is direct processing operator (Kolmogorov & Uspenskii,
1958).
An algorithm can

@ Terminate I'(wo) = (w1, ..., w;) with final w, (answer).

@ Terminate IN(wp) = (w1, ..., w:) with non-final w; (no answer).

© Not terminate (wg) = (w1, ..., we,...).

Let A :=T[;2;{w:} (output sequences), B := {wp} (input words).

p € P(A x B) represent all algorithms (deterministic or not).
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@ [: Ax B — Ris a loss function iff z(a,b) = —I(a,b) is utility.
e Given p € P(A x B), the expected utility is

Ep{z}:= Y a(a,b)P(anb)
(a,b)eAxB
o E,{z} represents S on P(Ax B): ¢ Sp <= E{z} <E,{z}.
Example (Time and utility of computation)

@ Computational cost of I' can be defined

t  if [(wp) = (w1,...,w) and wy is a final word
oo otherwise

(o). ) i= {
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Ep{z}:= Y a(a,b)P(anb)
(a,b)eAxB
o E,{z} represents S on P(Ax B): ¢ Sp <= E{z} <E,{z}.
Example (Time and utility of computation)

@ Computational cost of I' can be defined

t  if [(wp) = (w1,...,w) and wy is a final word
oo otherwise

(o). ) i= {

@ Boolean utility z(I'(wp), wp) = 1 — oo (I(I(wo), wo))
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(I:P xP—RpU{oo}). We usually put F(p) = I(p,q).

Example (Kullback-Leibler divergence (Kullback, 1959))

Ikr = Ep{In(p/q)}
Additive: Ixr(p1p2,q1,92) = Ixk(p1, q1) + Ik (P2, @2).
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A closed (lower semicontinuous) functional F': P — R U {0}
(I:P xP—RpU{oo}). We usually put F(p) = I(p,q).

Example (Kullback-Leibler divergence (Kullback, 1959))

Ikr = Ep{In(p/q)}
Additive: Ixr(p1p2,q1,92) = Ixk(p1, q1) + Ik (P2, @2).

Example (Total variation and Fisher information metrics)

Iv(p,q) = lp—alli, Ir(p,q) = 2arccos(1, pt/%¢*/?)
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Optimality and Variational Problems

Optimal Solutions

Necessary and sufficient conditions
@ pg maximizes (x,p) on {p: F(p) < A} iff

pg € OF*(Bx),  F(ps) = A
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Optimality and Variational Problems

Optimal Solutions

Necessary and sufficient conditions
@ pg maximizes (x,p) on {p: F(p) < A} iff

ps € OF(Bz),  F(ps) =\
@ pg minimizes F(p) on {p: (x,p) > v} iff
pg € OF*(Bx), (,pg) =v

o Lagrange multiplier 371 (or 3) is defined by A (v).

e For F(p) = Ixr(p,q) = Ep{In(p/q)}, we have
OF™(Bzx) = {ps ox €™ q}
e With normalization ||p[j; = 1:

_ BV (f)

Y26 q, Po =g
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Exponential kernels
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Exponential kernels

o Let p:=P(anbd), g := P(a)P(b) (i.e. p, g € P(A x B))
@ Then Ik (p,q) :=E,{In(p/q)} is Shannon mutual information:

Isf{a,b} == S [ “m’)} P(anb)

AxB
_ ZP(b ZI [P(a’b} P(a | b)

@ The optimal conditional probabilities are

Ps(a | b) = P 2(ab)=Va(B.0) p(g)
@ Observe that for § < oo

Pg(a|b) >0 = P(a) >0
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Non-Existence of Optimal Deterministic Kernels

Exponential kernels

o Let p:=P(anbd), g := P(a)P(b) (i.e. p, g € P(A x B))
@ Then Ik (p,q) :=E,{In(p/q)} is Shannon mutual information:

Isfa,b} = ZI[ “m’)} P(anb)

AxB
ZP(b ZI [P(a’b} P(a| )

@ The optimal conditional probabilities are

Ps(a | b) = P#@)=Y=(30) p(q)

@ Observe that for § < oo
Pg(a|b) >0 = P(a) >0

e Thus, pg = Pg(a | b) P(b) € Int(P(A x B)) is non-deterministic.
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Non-Existence of Optimal Deterministic Kernels

Non-existence Theorem (General Case)

Theorem (Belavkin, Accepted)

o Let {pg}, be a family of ps € P(A x B) maximizing E,{x} on sets
{p: F(p) < A} for all values A = F(p).
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o Let {pg}, be a family of ps € P(A x B) maximizing E,{x} on sets
{p: F(p) < A} for all values A = F(p).
o Let F' be minimized at pg € 0F*(0) C Int(P(A x B)).
o If F*(z) is strictly convex, then
Q pg is deterministic iff A > sup® F (i.e. f — 00).
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Non-Existence of Optimal Deterministic Kernels

Non-existence Theorem (General Case)

Theorem (Belavkin, Accepted)
o Let {pg}. be a family of pg € P(A x B) maximizing E,{x} on sets
{p: F(p) < A} for all values A = F(p).
o Let F' be minimized at py € 0F*(0) C Int(P(A x B)).
o If F*(z) is strictly convex, then

Q pg is deterministic iff A > sup® F (i.e. f — 00).
@ Ifp; € P(A x B) is deterministic and F(ps) = F(pg), then

Ep, {2} <Ep,{z}
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Non-Existence of Optimal Deterministic Kernels

Non-existence Theorem (General Case)

Theorem (Belavkin, Accepted)

o Let {pg}. be a family of pg € P(A x B) maximizing E,{x} on sets
{p: F(p) < A} for all values A = F(p).

o Let F' be minimized at py € 0F*(0) C Int(P(A x B)).
o If F*(z) is strictly convex, then
Q pg is deterministic iff A > sup® F (i.e. f — 00).
@ Ifp; € P(A x B) is deterministic and F(ps) = F(pg), then
Epf{x} < Ep[ﬂ{x}

@ Ifp; € P(A x B) is deterministic and E,, {x} = E,,{x}, then

F(ps) > F(pp)
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@ Strict convexity of F™* ensures that Gateaux derivative of F'(p) exists
at any p € Int(domF).
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at any p € Int(domF).

e If F* is not strictly convex, then pg may maximize E,{z} and E,{w}
with utilities  and w representing different < on A x B (i.e.
p € P(A x B) do not separate some variational problems).
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@ Strict convexity of F™* ensures that Gateaux derivative of F'(p) exists
at any p € Int(domF).

e If F* is not strictly convex, then pg may maximize E,{z} and E,{w}
with utilities  and w representing different < on A x B (i.e.
p € P(A x B) do not separate some variational problems).

e Additivity of I(p, q) implies strict convexity of I*(x,q) (i.e.
VI(p,q) < In(p/q) <= exp(z)q=VI*(z,q))

@ One can construct examples such that for any deterministic py
satisfying any constraint F(p) < A < sup” F(p) (or any
Ep{z} > v > v)

Ep{a} = —o0  (or F(ps) = o0)
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Discussion

Roman V.

Strict convexity of F™* ensures that Gateaux derivative of F'(p) exists
at any p € Int(domF).

If I is not strictly convex, then pg may maximize E,{z} and E,{w}
with utilities  and w representing different < on A x B (i.e.
p € P(A x B) do not separate some variational problems).

Additivity of I(p, q) implies strict convexity of I*(x,q) (i.e.
Vi(p,q) xIn(p/q) <= exp(z)q=VI*(z,q)).

One can construct examples such that for any deterministic py
satisfying any constraint F(p) < A < sup” F(p) (or any
Ep{z} > v > v)

Ep{a} = —o0  (or F(ps) = o0)

Strict inequalities for solutions pg: —oo < E,,{x} or oo > F(pg).
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