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Transition Kernels and Composite Systems

Markov Transition Kernels

A, B two measurable sets (i.e. (A,A), (B,B)).

P(A) the set of all probability measures P (Ai) on A.

Definition (Transition kernel)

A conditional probability P (Ai | b) ∈ P(A) that is B-measurable ∀Ai ∈ A.

Independence

If P (Ai | b) = P (Ai) for all Ai ∈ A, b ∈ B. Thus,

P (Ai ∩Bj) = P (Ai) P (Bj)

Deterministic dependency

Represented by a measurable f : B → A or by δf(b)(Ai):

P (Ai | b) = δf(b)(Ai) :=

{
1 if f(b) = a ∈ Ai

0 otherwise
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Transition Kernels and Composite Systems

Simplex P(A×B)

P(A×B) the set of all joint probability measures P (Ai ∩Bj).

Each p ∈ P(A×B) uniquely defines P (Ai | b) and P (Bj).

Recall Bayes formula for P (Bj) > 0 and marginalization:

P (Ai | Bj) =
P (Ai ∩Bj)

P (Bj)
, P (Bj) =

∑
a∈A

P (A ∩Bj)

All measurable f : B → A correspond to pf ∈ P(A×B).

Remark (Interior of P(A×B))

Pf (Ai ∩Bj) = δf(b)(Ai)P (Bj) = 0 if f(b) /∈ Ai.

Thus, pf ∈ ∂P(A×B).

p ∈ Int(P(A×B)) implies p is non-deterministic.
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Transition Kernels and Composite Systems

Composite Systems in Applications

In communication and cryptography, A and B are Alice and Bob.

In estimation and control, A — outputs (actions); B — inputs.
In computation, A — answers; B — problems.

Example (Deterministic and Non-deterministic algorithms)

Words w ∈ {1, . . . , α}n from finite alphabet {1, . . . , α}
Γ — a system of computations transforming initial w0 to final wt.

γ(wt) = wt+1 is direct processing operator (Kolmogorov & Uspenskii,
1958).

An algorithm can

1 Terminate Γ(w0) = (w1, . . . , wt) with final wt (answer).
2 Terminate Γ(w0) = (w1, . . . , wt) with non-final wt (no answer).
3 Not terminate Γ(w0) = (w1, . . . , wt, . . . ).

Let A :=
∏∞

t=1{wt} (output sequences), B := {w0} (input words).

p ∈ P(A×B) represent all algorithms (deterministic or not).
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Optimality and Variational Problems

Optimality

A utility representation of . on A×B is x : A×B → R:

(a1, b1) . (a2, b2) ⇐⇒ x(a1, b1) ≤ x(a2, b2)

l : A×B → R is a loss function iff x(a, b) = −l(a, b) is utility.
Given p ∈ P(A×B), the expected utility is

Ep{x} :=
∑

(a,b)∈A×B

x(a, b) P (a ∩ b)

Ep{x} represents . on P(A×B): q . p ⇐⇒ Eq{x} ≤ Ep{x}.

Example (Time and utility of computation)

Computational cost of Γ can be defined

l(Γ(w0), w0) :=

{
t if Γ(w0) = (w1, . . . , wt) and wt is a final word
∞ otherwise

Boolean utility x(Γ(w0), w0) = 1− δ∞(l(Γ(w0), w0))
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l : A×B → R is a loss function iff x(a, b) = −l(a, b) is utility.
Given p ∈ P(A×B), the expected utility is

Ep{x} :=
∑

(a,b)∈A×B

x(a, b) P (a ∩ b)

Ep{x} represents . on P(A×B): q . p ⇐⇒ Eq{x} ≤ Ep{x}.

Example (Time and utility of computation)

Computational cost of Γ can be defined

l(Γ(w0), w0) :=

{
t if Γ(w0) = (w1, . . . , wt) and wt is a final word
∞ otherwise

Boolean utility x(Γ(w0), w0) = 1− δ∞(l(Γ(w0), w0))
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Optimality and Variational Problems

Information

Definition (Information resource (distance))

A closed (lower semicontinuous) functional F : P → R ∪ {∞}
(I : P × P → R+ ∪ {∞}). We usually put F (p) = I(p, q).

Example (Kullback-Leibler divergence (Kullback, 1959))

IKL := Ep{ln(p/q)}

Additive: IKL(p1p2, q1, q2) = IKL(p1, q1) + IKL(p2, q2).

Example (Total variation and Fisher information metrics)

IV (p, q) = ‖p− q‖1 , IF (p, q) = 2 arccos〈1, p1/2q1/2〉
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Optimality and Variational Problems

Variational Problems

Ep{x} = 〈x, p〉 is linear.

I(p, q) is closed (lower semicontinuous), possibly convex.

Problems

For p ∈ P(A×B), each p := P (A ∩B) = P (A | B) P (B).

type II : Find optimal P (B) for fixed P (A | b).
type III : Find optimal P (A | b) for fixed P (B).
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Problems

Linear programming problem:

maximize (minimize) Ep{x} subject to Ep{ln(p/q)} ≤ λ

The inverse convex programming problem:

minimize Ep{ln(p/q)} subject to Ep{x} ≥ υ
(
Ep{x} ≤ υ

)
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Optimality and Variational Problems

Optimal Solutions

Necessary and sufficient conditions

pβ maximizes 〈x, p〉 on {p : F (p) ≤ λ} iff

pβ ∈ ∂F ∗(βx) , F (pβ) = λ

pβ minimizes F (p) on {p : 〈x, p〉 ≥ υ} iff

pβ ∈ ∂F ∗(βx) , 〈x, pβ〉 = υ

Lagrange multiplier β−1 (or β) is defined by λ (υ).

For F (p) = IKL(p, q) = Ep{ln(p/q)}, we have

∂F ∗(βx) = {pβ ∝ eβx q}
With normalization ‖p‖1 = 1:

pβ = eβ x−Ψx(β) q , p0 = q
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Non-Existence of Optimal Deterministic Kernels
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Non-Existence of Optimal Deterministic Kernels

Exponential kernels

Let p := P (a ∩ b), q := P (a)P (b) (i.e. p, q ∈ P(A×B))

Then IKL(p, q) := Ep{ln(p/q)} is Shannon mutual information:

IS{a, b} :=
∑
A×B

ln

[
P (a ∩ b)

P (a) P (b)

]
P (a ∩ b)

=
∑
B

P (b)
∑
A

ln

[
P (a | b)
P (a)

]
P (a | b)

The optimal conditional probabilities are

Pβ(a | b) = eβ x(a,b)−Ψx(β,b) P (a)

Observe that for β < ∞

Pβ(a | b) > 0 ⇐⇒ P (a) > 0

Thus, pβ := Pβ(a | b) P (b) ∈ Int(P(A×B)) is non-deterministic.
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Non-Existence of Optimal Deterministic Kernels

Non-existence Theorem (General Case)

Theorem (Belavkin, Accepted)

Let {pβ}x be a family of pβ ∈ P(A×B) maximizing Ep{x} on sets
{p : F (p) ≤ λ} for all values λ = F (p).

Let F be minimized at p0 ∈ ∂F ∗(0) ⊂ Int(P(A×B)).

If F ∗(x) is strictly convex, then

1 pβ is deterministic iff λ ≥ supx F (i.e. β →∞).
2 If pf ∈ P(A×B) is deterministic and F (pf ) = F (pβ), then

Epf
{x} < Epβ

{x}

3 If pf ∈ P(A×B) is deterministic and Epf
{x} = Epβ

{x}, then

F (pf ) > F (pβ)
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Discussion

Discussion

Strict convexity of F ∗ ensures that Gâteaux derivative of F (p) exists
at any p ∈ Int(domF ).

If F ∗ is not strictly convex, then pβ may maximize Ep{x} and Ep{w}
with utilities x and w representing different . on A×B (i.e.
p ∈ P(A×B) do not separate some variational problems).

Additivity of I(p, q) implies strict convexity of I∗(x, q) (i.e.
∇I(p, q) ∝ ln(p/q) ⇐⇒ exp(x) q = ∇I∗(x, q)).

One can construct examples such that for any deterministic pf

satisfying any constraint F (p) ≤ λ < supx F (p) (or any
Ep{x} ≥ υ > υ0)

Epf
{x} = −∞ (or F (pf ) = ∞)

Strict inequalities for solutions pβ: −∞ < Epβ
{x} or ∞ > F (pβ).
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