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Abstract. This short article discusses an important variational problem
that first appeared in statistical physics and information theory. First,
some necessary background material for solving the conditional extrema
problems is outlined. Then, a simple example is used to introduce the
problem and show its solution. The importance of the problem is illus-
trated by numerous application of its solution in various fields.

1 Unconditional Extremum

Many optimisation problems are formulated as problems of maximisation of
some real function f : Y → R (objective function, utility). A solution, if exists,
is an element ȳ ∈ Y such that f(y) ≤ f(ȳ) for all y. If y are elements of a linear
space Y and f is differentiable on the neighbourhood of ȳ, then it is necessary
that f has zero derivative f ′(ȳ) = 0 or gradient ∇f(ȳ) = 0 at ȳ, if Y is a
multidimensional linear space. Geometrically, this condition simply states that
f has constant tangent hyperplane at ȳ (i.e. a constant function c(y) = f(ȳ)).
The sufficient condition should guarantee that the graph of f lays below this
hyperplane. In particular, if f is a closed, concave function, then the condition
∇f(ȳ) = 0 is both necessary and sufficient for f to attain its absolute maximum
value at ȳ.

Remark 1. If Y is a finite-dimensional linear space, then the gradient of f(y) =
f(y1, . . . , ym) is a vector of partial derivatives:

∇f(y) =
(∂f(y)

∂y1
, . . . ,

∂f(y)
∂ym

)
The gradient defines a linear function 〈∇f(y), ·〉 : Y → R on Y as follows:

〈∇f(y), z〉 :=
∂f(y)
∂y1

z1 + · · ·+ ∂f(y)
∂ym

zm =
m∑

i=1

∂f(y)
∂yi

zi

If f is weakly differentiable, then this function coincides with the directional
derivative f ′(y, z), a derivative of function f at point y in the direction of z:

f ′(y, z) = lim
t↓0

f(y + tz)− f(y)
t
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The derivative f ′(y, z) = 〈∇f(y), z〉 gives the best linear approximation of f at
some point z:

f(z) ≈ f(y) + 〈∇f(y), z − y〉

The right hand side of the above expression defines the tangent hyperplane of
f at point y. This tangent hyperplane is constant if and only if ∇f(y) = 0,
that is f ′(y, z) = 0 in all directions z. These facts are also true when Y is
infinite-dimensional. In this case, ∇f(y) can be called a Gâteaux differential or
a variation of functional f .

Remark 2. If f is not differentiable at ȳ, then the concepts of a gradient ∇f
and tangent hyperplane are replaced by the concepts of subgradients (or sup-
gradients) ∂f and the sets of supporting hyperplanes. Subdifferential calculus is
well-developed and widely used in non-smooth analysis. In particular, the fact
that f achieves its extreme value at point ȳ implies that the set of supporting
hyperplanes of f at ȳ includes constant hyperplane (the only difference from the
smooth case is that there can be other, non-constant supporting hyperplanes).
This translates into condition that the subdifferential (or supdifferential) set (the
set of all sub- or supgradients) includes zero vector:

∂f(ȳ) 3 0

For more information, see for example [1, 2].

Remark 3. If f is not concave, but a proper upper semicontinuous function (i.e.
f(y) < ∞ and the set {y : λ ≤ f(y)} is closed for each λ), then the existence of
ȳ maximising f on some closed and bounded subset of Y is still guaranteed. The
solution ȳ is then given by the necessary and sufficient condition ∇f∗∗(ȳ) = 0,
where f∗∗ is concave closure of f (i.e. biconjugate in the concave sense).

2 Conditional Exremum and Method of Lagrange
Multipliers

Often, the optimisation problems are formulated with additional conditions (con-
straints) expressed by equalities gi(y) = λi or inequalities gi(y) ≤ λi using other
functions gi : Y → R, i ∈ [1, . . . ,m]. In set comprehension notation this problem
is written as:

f̄(λ) := sup{f(y) : gi(y) ≤ λi}

This is the problem of a conditional extremum, because the constraints define
the subset C := {y : gi(y) ≤ λi} ⊆ Y of feasible solutions, and therefore the
optimal solution ȳ ∈ C of the above problem with constraints is generally ‘worse’
than that of the unconstrained problem. It is clear, however, that solutions of
unconstrained problems are not very useful if they are unfeasible, and therefore
taking the constraints into account is absolutely crucial in problem formulation.
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Solutions to the conditional extremum problem are often found using the
method of Lagrange multipliers. First, one introduces a suitable Lagrange func-
tion K : Y × Rm → R, where Rm is a real linear space for the Lagrange mul-
tipliers (α1, . . . , αm) ∈ Rm. The number of the multipliers (and the number m
of dimensions of Rm) equals to the number of constraints gi(y) ≤ λi. The La-
grange function is chosen so that K(y, 0) = f(y), such as the following linear
combination of functions f and gi:

K(y, α) = f(y) +
m∑

i=1

αi[λi − gi(y)]

Here αi are the Lagrange multipliers related to the constraints λi, and the value
α = (α1, . . . , αm) = 0 corresponds to the unconstrained optimisation. The nec-
essary condition of conditional extremum is ∇K(ȳ, α) = 0, and if the Lagrange
function is concave in each argument, then this condition is also sufficient (e.g.
this is the case when f is concave, gi are convex and α ≥ 0).

Let us consider the case of one constraint g(y) ≤ λ and one Lagrange mul-
tiplier. The condition ∇K(ȳ, α) = 0 corresponds to the following partial condi-
tions:

∇yK(ȳ, α) = ∇f(ȳ)− α∇g(ȳ) = 0
∇αK(ȳ, α) = λ− g(ȳ) = 0

Here, ∇yK(y, α) denotes partial gradient of K(y, α) in subspace Y of Y ×R, and
∇αK(y, α) is just partial derivative of K(y, α) over α ∈ R. The first condition
states that the optimal solutions ȳ are such that the gradients of functions f and
g are proportional ∇f(ȳ) = α∇g(ȳ). In fact, the solutions are a one parameter
family ȳ = ȳ(α), and the parameter is related to the constraint α = α(λ). The
latter is obtained by inverting the second condition g(ȳ(α)) = λ. Another useful
observation is that α is the derivative of function f̄(λ) := sup{f(y) : g(y) ≤ λ}.
Indeed, f̄(λ) = K(ȳ, α) = f(ȳ) + α[λ− g(ȳ)], and therefore:

f̄ ′(λ) =
∂(f(ȳ) + α[λ− g(ȳ)])

∂λ
= α

Because f̄(λ) is a non-decreasing function, it follows that α ≥ 0.

3 Fundamental Variational Problem of Information
Theory and Statistical Physics

Having equipped ourselves with the background for solving conditional extremum
problems, let us now consider the following example. First, we shall see it simply
as an illustration of the method of Lagrange multipliers. Then we shall discuss
the importance of this example.
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Example 1 (Exponential family). Let f be a linear function of y ∈ Rm:

f(y) =
m∑

i=1

xiyi ,

where x ∈ Rm is a fixed vector. Thus, f is both concave and convex. Let g be
defined as follows

g(y) =


∑m

i=1(ln yi − 1)yi , if y > 0
0 , if y = 0
+∞ , if y < 0

This function is convex. Thus, the corresponding Lagrange function is concave

K(y, α) =
m∑

i=1

xiyi + α[λ−
m∑

i=1

(ln yi − 1)yi]

and conditions ∇f(ȳ) = α∇g(ȳ), g(ȳ) = λ, α ≥ 0 are both necessary and
sufficient for the conditional extremum. The gradients of functions f and g are:

∇f(y) = x , ∇g(y) = ln y

Therefore, x = α ln ȳ, and the solutions are defined by the following relations:

ȳ = ex/α ,

m∑
i=1

(α−1xi − 1)exi/α = λ

The first relation defines the optimal vector ȳ as a function of fixed vector x
and Lagrange multiplier α, which is determined by x and constraint λ using the
second relation.

Example 1 is more than a simple illustration of optimisation problem with
constraints — it plays a very important role in probability theory, thermodynam-
ics, statistical mechanics and information theory. To see this, let us normalise
the optimal vector ȳ:

p̄(xi) =
ȳi∑m
i=1 yi

=
exi/α∑m
i=1 exi/α

(1)

The function above is the Boltzmann (or Gibbs) distribution — a member of
exponential family of probability distributions. In fact, the one parameter expo-
nential family can be obtained as a solution of optimisation problem sup{f(y) :
g(y) ≤ λ} in Example 1 with slight modification of function g(y) and including
the normalisation condition

∑
yi = 1.

The objective function f(p) =
∑

xipi, evaluated at normalised positive vec-
tor p, corresponds to the expected value Ep{x} of random variable x. Function
g(p) =

∑
pi ln pi −

∑
pi = −H(p)− 1, where H(p) = −

∑
pi ln pi is the entropy

of distribution p. Thus, the problem in Example 1 can be considered as the
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problem of maximisation of expected value Ep{x} =
∑

xipi over all probability
distributions p satisfying the constraint on entropy H(p) ≥ −λ− 1.

The problem of maximisation of the expected value of random variable x
arises in numerous applications. Thus, in economics x may represent a utility
or profit, in game theory x is a payoff, and in cybernetics x is a reward func-
tion. Equivalently, in estimation problems −x may represent cost function to
be minimised. In physics, −f(p) = −

∑
xipi represents internal energy to be

minimised.
Entropy is an important measure of uncertainty, and the maximum entropy

principle in thermodynamics or statistical mechanics can be equivalently rep-
resented as minimisation of internal energy −f(p) (i.e. maximisation of f(p))
with constraints on entropy H(p) ≥ −λ− 1 (i.e. g(p) ≤ λ). The fact that Boltz-
mann distribution (1) is the solution of this problem is well-known in physics.
In thermodynamics, the Lagrange multiplier α corresponds to temperature, and
the expressions are often written using its inverse β = α−1.

Negative entropy is closely related to information. Thus, the constraint g(p) =
−H(p)−1 ≤ λ can be interpreted as a particular kind of information constraint.
Variational problems with information constraints were used in information the-
ory to determine the maximum channel capacity [3]. A similar problem was
used to study the utility of Shannon information [4]. The solutions of all these
problems can be explained as slight variations of Example 1.

These problems have deep relation to combinatorial optimisation, machine
learning, neural networks and cognitive science. Indeed, the Boltzmann distri-
bution (1) with variable temperature α is used in the simulated annealing [5]. In
machine learning, it is used to control the trade-off between exploration and ex-
ploitation [6]. In artificial neural networks, this distribution arises in Boltzmann
machines [7]. In cognitive science, it is used in some cognitive architectures for
conflict resolution that can simulate the ‘soft-max’ properties of human choice
strategies [8].

This relation between optimisation problems with information constraints
and learning and adaptive systems has been investigated recently in the area
of information dynamics [9, 10]. A theory has been developed in quite a general
setting. However, many results can be understood by using the simple problem
of Example 1 as an illustration, and for this reason it plays fundamental role in
the theory.
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