
In IEEE Information Theory Workshop, Paraty, Brazil 2011.

Mutation and Optimal Search of Sequences in
Nested Hamming Spaces

Roman V. Belavkin
School of Engineering and Information Sciences
Middlesex University, London NW4 4BT, UK

Email: R.Belavkin@mdx.ac.uk

Abstract—A representation of evolutionary systems is defined
by sequences in nested Hamming spaces, which is analogous to
variable length coding. Asexual reproduction is considered as a
process of finding optimal codes, and conditions are formulated
under which the optimal search operator is a simple random
mutation, corresponding to binomial or Poisson process. Transi-
tion probability between spheres around an optimal sequence in
each Hamming space is derived and used for optimal control of
mutation rate. Several control functions are discussed, including
a minimal information control that has a number of interesting
properties. The theory makes a number of predictions about
variability of length and mutation of DNA sequences in biological
organisms.

I. INTRODUCTION

The discovery of DNA has prompted an interest in applying
information-theoretic ideas to biology. Kolmogorov suggested
that probabilistic interpretation of information can be related
to ‘hereditary information’ and adaptation based on the mech-
anisms of mutation [1]. A relation of information to fitness has
also been explored recently [2]. Naturally, relations between
optimality criteria, such as a fitness function, and coding
of information have long been the subject of information
and information utility theories [3], [4]. Here, we develop
this approach further to understand better some properties of
biological systems.

In the next section, we define a collection of nested Ham-
ming spaces to represent organisms with variable length l ∈ N
of DNA sequences. This is motivated by the fact that mutation
rates in many modern biological organisms approximately
equal 1/l, but l varies significantly [5]. The theory compares
evolution to a search for optimal codes in Hamming spaces of
sequences with increasing lengths.

Sections III–V are devoted to optimal search operators
and their controls. In particular, we show that under certain
condition a simple random mutation implements an optimal
search operator. Biological organisms are known to have
some control over mutation rates via the mutation repair
mechanisms, and in Section V we show different ways of con-
trolling mutation rates. Optimal search in each space quickly
leads to small mutation rates below 1/l. Information theoretic
approach allows us to define optimal control with a number of
additional interesting properties, such as maintaining diversity
in a population.

II. REPRESENTATION IN NESTED HAMMING SPACES

Let Θ be the set of all habitats, and let Ω be the set of
all individual organisms, each of which is represented by a
sequence (α1, . . . , αl) of length l and α letters. We consider
sequences with the same length as elements of a Hamming
space Hl

α := {1, . . . , α}l (i.e. equipped with the Hamming
metric d(a, b) := |i : ai 6= bi|). Thus, the sets of sequences
of length up to l and the set of all finite sequences are
respectively:

Ωl =
l⋃

k=1

Hk
α , Ω =

⋃
l∈N

Hl
α

Clearly, Ωl ⊂ Ωl+1 (nested sets of Hamming spaces). The
population of all living organisms can be considered as a code
κ : Θ → Ω or a randomised code defined by a joint probability
measure P (ω, θ).

Many results of noiseless coding theory can be applied
to this representation. For example, if habitats θ (source
signals) have entropically sable distribution P (θ) (e.g. if θ
are statistically independent), then for all perfectly decodable
codes κ(θ) = ω the expected length satisfies inequality

EP {l(κ(θ))} ≥ H{θ}/ lnα

where H{θ} := EP {− lnP (θ)} is the (expected) entropy of
θ. This inequality predicts that organisms, occupying more
‘exotic’ or specialised habitats should generally have longer
DNA. Of course, this simplification does not take into account
one of the most important concepts of evolutionary theory —
selection according to fitness.

Selection is a preference relation .θ (total pre-order) on
Ω, defining which organisms are better adapted to a particular
habitat θ. This preference relation is represented (not uniquely)
by a fitness function f : Ω×Θ → R:

a .θ b ⇐⇒ f(a, θ) ≤ f(b, θ)

When a particular habitat θ is fixed, then we shall use simpler
notation . and f(ω). Fitness is usually interpreted (or mea-
sured) as a replication rate, and for this reason often defined
to have non-negative values. This is, however, not essential,
as the same pre-order . can be induced by a function with
negative values. From the point of optimisation or information
theories, the values x = f(ω) can be thought of as utilities or
negative costs.



An optimal (top) element for habitat θ will be denoted >(θ)
or >, if there is no confusion about θ, and it exists if f(>) =
sup f(ω). We shall denote by fl and f≤l restrictions of the
fitness function to subsets Hl

α and Ωl. Clearly, top elements
exist in every finite subset Hl

α or Ωl, but not necessarily in
Ω. The inclusion Ωl ⊂ Ωl+1 implies

sup f≤l(ω) ≤ sup f≤l+1(ω)

Thus, if habitat θ is occupied by >l ∈ Ωl (not necessarily
unique), then other organisms cannot ‘outcompete’ them un-
less their DNA has greater length. This suggests that compe-
tition for a specific habitat should generally lead to increasing
complexity. We now define the following property of a fitness
function.

Definition 1 (Monotonic landscape). Let (Ω, d) be a metric
space, and let f : Ω → R be a function with f(>) = sup f(ω)
for some > ∈ Ω. We say that f is locally monotonic (locally
isomorphic) relative to metric d if for each > there exists a
ball B(>, r) := {ω : d(>, ω) ≤ r} 6= {>} such that for all
a, b ∈ B(>, r):

−d(>, a) ≤ −d(>, b) =⇒ ( ⇐⇒ ) f(a) ≤ f(b)

We say that f is monotonic (isomorphic) relative to d if
B(>, r) ≡ Ω.

We shall often assume that fl is locally monotonic relative
to (or isomorphic with) the Hamming metric on Hl

α.

Example 1 (Negative distance). If f is isomorphic to d, then
one can replace f(ω) by the negative distance −d(>, ω). The
number of values of such f is equal to the number of spheres
S(>, r) := {ω : d(>, ω) = r}. One can easily show also that
when f is isomorphic to d, then there is only one > element:
f(>1) = f(>2) ⇐⇒ d(>2,>1) = d(>2,>2) = 0 ⇐⇒
>1 = >2.

Example 2 (Needle in a haystack). Let f(ω) be defined as

f(ω) =
{

1 if d(>, ω) = 0
0 otherwise

This function is often used in studies of performance of genetic
algorithms (GAs). In biological literature, > element is often
referred to as the wild type, and a two-valued landscape is used
to derive error threshold and critical mutation rate [5]. One
can check that if for each > ∈ Ω there exists B(>, r) 6= {>}
containing only one >, then two-valued f is locally monotonic
relative to any metric. Indeed, conditions of the definition
above are satisfied in all such B(>, r) ⊂ Ω. If Ω has unique
>, then the conditions are satisfied for B(>,∞) = Ω.

For monotonic f , spheres S(>, l) cannot contain elements
with different values x = f(ω). We can generalise this
property to weak or ε-monotonicity, which requires that the
variance of x = f(ω) within elements of each sphere S(>, l)
is small or does not exceed some ε ≥ 0. Monotonicity of f
depends on the choice of metric, and one can define different
metrics on Ω. Generally, one prefers metric d2 to d1 if the

neighbourhoods, where f is monotonic relative to d2, are
‘larger’ than for metric d1: B1(>, r) ⊆ B2(>, r) for all
Bi(>, r), where f is monotonic relative to di. In this respect,
the least preferable is the discrete metric: d(a, b) = 0 if a = b;
0 otherwise. The abundance of neutral mutations in nature
supports an intuition that biological fitness landscapes are at
least weakly locally monotonic relative to the Hamming metric
on Hl

4.

III. OPTIMALITY AND INFORMATION

We shall now recall some basic principles of optimisation
with information constraints that is used to solve the optimal
coding problems in information theory, and it will allow
us understand better the search problem for optimal DNA
sequences.

Observe that Ω by our definition is the union of finite
sets Hl

α, and therefore it is countable. Thus, we can consider
sequences as elements of a probability space (Ω,R, P ). Mea-
sures on a σ-algebra R(Ω) can be conveniently represented
as linear functionals on an algebra of functions. Let X :=
Cc(Ω,R, ‖ · ‖∞) be the normed algebra of continuous real
functions with compact support in a locally compact topolog-
ical space Ω. Its dual is the Banach space Y := M(Ω,R, ‖·‖1)
of real Radon measures [6]. Here, the duality is with respect
to bilinear form 〈·, ·〉 : X × Y → R:

〈x, y〉 :=
∑
ω∈Ω

x(ω) y(ω)

Functions v(ω) = f≤l(ω, θ1) and w(ω) = f≤l(·, θ2), cor-
responding to fitness in different habitats and restricted to
finite subsets Ωl, are elements of algebra X . Probability
measures on R(Ω) are positive elements of Y with norm one:
‖y‖1 =

∑
Ω y(ω) = 1. The set of all probability measures is

P(Ω) := {y ∈ Y : y ≥ 0 , ‖y‖1 = 1}

This set is weakly compact and convex, and for commutative
algebra X it is a simplex. We equip P(Ω) with information
topology induced by an information distance I : P × P →
R∪{∞}. Observe also that expected fitness EP {x} is a linear
functional x(p) = 〈x, p〉. We define the following optimal
value functions:

φ∗(x;λ) := sup{EP {x} : I(p, q) ≤ λ} (1)
ψ∗(x; υ) := inf{I(p, q) : EP {x} ≥ υ} (2)

These functions are inverse of each other, when considered
as functions of the constraint: υ = φ∗(x;λ) = (ψ∗)−1(x;λ).
Optimality conditions have been obtained in the general case,
when I(·, q) is a closed (lower semicontinuous), but not
necessarily differentiable or convex function [7]. The most
important and unique in a certain sense (see [8] for analysis
from the point of evolution operators) is the classical Kullback-
Leibler information divergence [9]:

IKL(p, q) := 〈ln[p/q], p〉 (3)

As is well-known, it is strictly convex and Gâteaux differ-
entiable, and the extreme values of functions (1) (or (2))



with respect to IKL are achieved if and only if the following
conditions are satisfied:

P (ω;β) = eβ x(ω)−ψ(x;β)Q(ω) (4)

IKL(p, q) = λ , β−1 =
d

dλ
φ∗(x;λ) (5)(

Ep{x} = υ , β =
d

dυ
ψ∗(x; υ)

)
(6)

where ψ(x;β) = ln〈eβ x, q〉 is the cumulant generating
function. Note that ψ(x;β) and free energy φ(x;β−1) =
−β−1ψ(x;β) are Legendre-Fenchel dual functions of φ∗(x;λ)
and ψ∗(x; υ) [7]:

φ(x;β−1) = inf{β−1λ− φ∗(x;λ)} (7)
ψ(x;β) = sup{βυ − ψ∗(x; υ)} (8)

The following relations are useful for natural parametrisation
of family of solutions (4):

υ =
d

dβ
ψ(x;β) , λ = β

d

dβ
ψ(x;β)− ψ(x;β) (9)

IV. OPTIMAL MUTATION OPERATORS

Let a ∈ Hl
α be a parent sequence of b. We refer to r =

d(a, b) as mutation radius. Let q ∈ P(Hl
α) be the probability

distribution Q(ω) of parent sequences. We now consider the
following optimisation problem:

ψ∗(r; υ) := inf{IKL(p, q) : EP {r} ≥ υ} (10)

Its solution defines optimal distribution p ∈ P(Hl
α), min-

imising information divergence from q and with expected
mutation radius no less than υ. The following proposition
defines conditions for the optimal operator as simple point
mutation with binomial distribution.

Proposition 1. Assuming a uniform distribution Q(ω) = α−l

of parent sequences in Hamming space Hl
α, the optimal distri-

bution of child sequences satisfying condition (10) is achieved
by independently mutating each letter with probability

µ =
υ

l

The asymptotic of this mutation operator as l → ∞ corre-
sponds to Poisson process with mutation rate υ.

Proof: Assuming x(b) = d(a, b) and Q(a) = α−l, the
extremal distribution (4) is

P (b;β) = eβ d(a,b)−ψ(r;β)

where ψ(r;β) is the cumulant generating function

ψ(d(a, b);β) =

= ln
∑
b∈Hl

α

eβ d(a,b) = ln
l∑

r=0

(α− 1)r
(
l

r

)
eβ r

= l ln[1 + (α− 1)eβ ]

We used the fact that the number of sequences in sphere
S(a, r) := {ω : d(a, ω) = r} is

|S(a, r)| = (α− 1)r
(
l

r

)
(11)

The extremal distributions of equivalence classes is P (r;β) =
|S(a, r)|P (b;β). The relation between β and υ = E{r} is

υ =
d

dβ
ψ(x;β) =

l

1 + e−β/(α− 1)

the inverse of which gives parametrisation

β = ln
υ

l − υ
− ln(α− 1)

Substituting the above expression for β into P (r;β) we obtain

P (r; υ/l) =
(
l

r

) (υ
l

)r (
1− υ

l

)l−r
Thus, P (r;β) corresponds to binomial distribution with pa-
rameter µ = υ/l.

As is well-known, the asymptotic of P (r; υ/l) as l → ∞
is Poisson process:

lim
l→∞

P (r; υ/l) =
υr

r!
e−υ

which follows from the following facts

lim
l→∞

l!
(l − υ)r(l − r)!

= 1 , lim
l→∞

(
1− υ

l

)l
= e−υ

Parameter υ = Ep{r} is interpreted as the expected rate —
the average number of mutations in a unit interval.

We emphasise that binomial and Poisson distributions were
obtained here as solutions to optimisation problem (10) with
constraint IKL(p, q) ≤ λ (or its inverse with Ep{x} ≥ υ) and
a constant reference measure. The latter corresponds to β = 0,
which gives µ0 = 1− 1/α. For l→∞, this corresponds to a
Poisson process with infinite rate.

V. OPTIMAL MUTATION RATES

Let us consider the problem of finding optimal sequence
> in each Hl

α ⊂ Ω. We assume here that fitness fl is
isomorphic to Hamming distance d(>, ω). The search process
is preformed by a simple mutation of the parent sequences.
The main tool for optimising mutation rates is Markov prob-
ability of transitions between different levels of fitness, or for
fl(ω) = −d(>, ω) between spheres around >.

Let a be the parent of b, and denote n = d(>, a), m =
d(>, b) and r = d(a, b). We define the following probabilities:

P (r | n) := P (b ∈ S(a, r) | a ∈ S(>, n))
P (m | n, r) := P (b ∈ S(>,m) | a ∈ S(>, n), b ∈ S(a, r))

P (m ∩ r | n) := P (S(>,m) ∩ b ∈ S(a, r) | a ∈ S(>, n))
P (m | n) := P (b ∈ S(>,m) | a ∈ S(>, n))



Proposition 2. The probability of transition between spheres
of radii n and m around > in a Hamming space Hl

α under
simple mutation with rate µ ∈ [0, 1] is

Pµ(m | n) =
l∑

r=0

|S(>,m) ∩ S(a, r)|n
(α− 1)r

µr(1− µ)l−r (12)

where

|S(>,m) ∩ S(a, r)|n = (13)∑
(α− 2)r0

(
n− r−
r0

)
(α− 1)r+

(
l − n

r+

)(
n

r−

)
Here, | · |n denotes condition d(>, a) = n, and summation
runs over r0, r+ and r− satisfying r+ ∈ [0, (r +m − n)/2],
r− ∈ [0, (n − |r − m|)/2], r− − r+ = n − max{r,m} and
r0 + r+ + r− = min{r,m}.

Proof: Expansion of probability Pµ(m | n) gives

Pµ(m | n) =
l∑

r=0

Pµ(m ∩ r | n) =
l∑

r=0

P (m | n, r)Pµ(r | n)

For simple mutation, probability Pµ(r | n) is binomial
distribution with parameter µ (Proposition 1). Probability
P (m | n, r) is defined by the number of elements in the
spheres S(a, r), S(>,m) and their intersection as follows:

P (m | n, r) =
|S(>,m) ∩ S(a, r)|n

|S(a, r)|
(14)

Number |S(a, r)| is given by equation (11). Equation (13) is
obtained by counting the numbers r− of deleterious, r0 neural
and r+ advantageous mutations in r, guarded by conditions
based on metric inequalities for r, m and n (e.g. |n −m| ≤
r ≤ n+m).

The collection of mutation rates µ(n) for all n = d(>, a) is
a mutation rate control function. The optimal control can be
defined in different ways. Traditional approach to sequential
optimisation seeks a control maximising expected fitness over
a sequence ω0, . . . , ωt, . . . , where t represents generation
number or time. One can show that for t = 1 (one generation),
the optimal mutation rate function, minimising conditional
expected value Eµ{m | n}, is the following step function:

µ(n) :=

 0 if n < l(1− 1/α)
1
2 if n = l(1− 1/α)
1 otherwise

(15)

This control is not optimal for t > 1, as it does not change the
distribution if d(>, a) < l(1− 1/α) for all parents sequences.

Another approach is to minimise the expected time of con-
vergence to >. This problem can be solved using fundamental
matrix of an absorbing Markov chain for Pµ(m | n) and nu-
merical methods. However, a useful and simple approximation
is given by maximising probability of mutating to >:

Pµ(m = 0 | n) = (α− 1)−nµn(1− µ)l−n

Taking its derivative over µ to zero gives n− lµ = 0 or

µ(n) =
n

l
(16)

This linear control is optimal for two-valued fitness functions,
such as discussed in Example 2, because conditional expected
fitness depends only on the above probabilities. For other
relatively monotonic or isomorphic landscapes this control
gives good expected times of convergence to >. However, its
performance in the initial stages is quite poor.

Some improvement in the initial stage (but increased time
of convergence) is achieved by µ(n) maximising probability
of ‘success’:

Pµ(m < n | n) =
n−1∑
m=0

Pµ(m | n)

Mutation rate control for this criterion was obtained by Bäck
for the case of binary sequences [10]. Transition probabil-
ity (12) can be used to compute such a control for arbitrary
alphabets.

Finally, we point out that sequential optimisation can be
performed with respect to cumulative expected fitness (i.e. the
sum of expected fitness values for all generations). Because
the objective function is additive and transition probabilities
are Markov, this problem can be formulated as dynamic pro-
gramming. The complexity of the problem, however, increases
rapidly with the length of sequences making the precise
solution intractable. A good approximation can be performed
using the following information-theoretic approach.

The main idea is to replace the problem of sequential
optimisation in time by optimisation in information distance,
as defined by functions (1) or (2). One can show that optimal
evolution in information IKL is achieved if Markov transition
probability has the form:

Pβ(m | n) = eβ(n−m)−ψ(n−m;β) P (m) (17)

Expression β(n − m) − ψ(n − m;β) represents minimal
information subject to E{n − m | n} ≥ υ. This can be
seen from equation (8), which shows that function ψ is
Legendre-Fenchel dual of minimal information ψ∗, defined by
equation (2). In fact, any conditional probability is expressed
as P (m | n) = eι(m,n)P (m), where ι(m,n) = lnP (m |
n) − lnP (m) is random information transmitted by n about
m. The fact that ι(m,n) = ψ∗(n −m; υ) is related to µ(n)
can be understood by representing transition probability (12)
in the exponential form:

Pµ(m | n) =
l∑

r=0

|S(>,m) ∩ S(a, r)|n
(α− 1)r

er ln µ
1−µ +l ln[1−µ]

Our evaluation shows that optimal values λ = ψ∗(x; υ), or
their inverse values υ = φ∗(x;λ) (see equation (1)), are
achieved if µ(n) is defined by the cumulative distribution func-
tion of P0(m) assuming a uniform distribution of sequences
in Hl

α:

µ(n) = P0(m < n | n) =
n−1∑
m=0

P0(m) (18)

Distribution P0(m) can be obtained by counting sequences
in spheres S(>,m), and it is equivalent to > mutating with
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Fig. 1. Expected distance to optimum > ∈ H10
4 as a function of information

divergence λ from initial distribution. Different curves correspond to different
controls µ(n) of mutation rate; φ∗(n; λ) represents theoretical optimum.

probability µ0 = 1 − 1/α. This method gives exceptional
performance in the initial stages as well as good overall
performance in terms of cumulative expected fitness.

Figure 1 shows expected distance Ep{d(>, ω)} as function
of information divergence IKL(p, q) achieved by different con-
trols µ(n) of mutation rate in Hamming space H10

4 . Results for
other Hamming spaces are very similar. One can see that the
minimum information control (18) achieves almost perfectly
theoretical values φ∗(n;λ), shown by a bold solid curve.
Figure 2 shows standard deviations σ from Ep{d(>, ω)} = υ
in populations, as υ decreases (i.e. getting closer to >). The
minimum information control (18), unlike other functions,
maintains the smallest deviation. Moreover, it matches closely
theoretical curve σ(υ) =

√
υ(1− υ/l), shown in bold, which

is derived assuming simple mutation of > sequence with
mutation rate µ = υ/l. Thus, the minimum information
control (18) maintains distributions of sequences in Hl

α, that
are ‘spherical’ around >.

VI. DISCUSSION

We have shown how biological organisms can be rep-
resented by codes of variable length in the set of nested
Hamming spaces, and evolution by asexual reproduction has
been compared to a processes of finding optimal codes. The
model presented has a number of simplifications. For example,
optimality of simple mutation is based on additivity of the
fitness function with respect to letters in a sequence. This
would imply that biological organisms can be characterised
by a set of weakly interacting random variables, which is not
really the case, and it contradicts the epistasis phenomenon
in nature. Furthermore, probabilities of mutation between
different letters are not equal in biological DNA, which shows
that a one-parameter mutation operator is not truly biological.
A more realistic model can be obtained by considering a metric
on sequences that depends on different letters in the alphabet.
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We also have not considered other search operators, such as
recombination of sequences (i.e. sexual reproduction).

The approach presented, however, allowed us to make some
predictions about mutation mechanisms, variability of muta-
tion rates and lengths of sequences. It also demonstrated how
information theoretic ideas can facilitate our understanding of
nature. Mathematical tools developed can also be useful in
engineering problems.
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