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Representation in Nested Hamming Spaces Habitats, Phenotypes and Genotypes

Representation in Nested Hamming Spaces

Habitats : θ ∈ Θ (environments)

Phenotypes : ω ∈ Ω (organisms).

Genotypes : ω ⇐⇒ (α1, . . . , αl) (DNA sequences).

Hamming space : Hl
α := {1, . . . , α}l with metric d(a, b) := |{i : ai 6= bi}|.

Nested spaces : Ωl ⊂ Ωl+1 ⊂ · · · ⊂ Ω∞, where

Ωl :=
⋃
k≤l

Hk
α , Ω∞ :=

⋃
l∈N

Hl
α

Coding : κ : Θ → Ω∞ (deterministic) or P (ω, θ).

Evolution : search for optimal codes:

>θ :=
∨
θ

Ωl
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Representation in Nested Hamming Spaces Relatively Monotonic Landscapes

Relatively Monotonic Landscapes

Selection : pre-ordering .θ of phenotypes Ω in habitat θ.

Fitness : is utility representation f : Ω×Θ → R of .θ:

a .θ b ⇐⇒ f(a, θ) ≤ f(b, θ)

Reproduction : occurs by mutation and recombination in Hl
α.

Definition (Relatively Monotonic Landscape)

f is locally monotonic (isomorphic) relative to a metric d, if there exist
B(>, l) := {ω : d(>, ω) ≤ l}, > = supΩ, such that ∀ a, b ∈ B(>, l):

−d(>, a) ≤ −d(>, b) =⇒ ( ⇐⇒ ) f(a) ≤ f(b)
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Mutation and Adaptation Point Mutation Operator

Point Mutation
Let a 7→ b ∈ Hl

α and denote q := P (a), p := P (b).

Variational problem

Linear programming problem:

maximize Ep{d(a, b)} subject to Ep{ln(p/q)} ≤ λ

The inverse convex programming problem:

minimize Ep{ln(p/q)} subject to Ep{d(a, b)} ≥ υ

Proposition

Solution to the variational problem is achieved by independently mutating
each letter with probability µ = υ/l. For l →∞ this corresponds to
Poisson process with mutation rate υ.
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r
a

6
rb
r

&%
'$

r>
Q

Q
Q

Q
Q

Q
Q

Qs

n

XXXXXXXXXz

m

a 7→ b ∈ S(a, r).

r is mutation radius

Pµ(m | n) =?

Expand for all r ∈ [0, l]:

Pµ(m | n) =
l∑

r=0

P (m | n, r) Pµ(r | n)

In a Hamming space Hl
α:

Pµ(r | n) =

(
l

r

)
µ(n)r(1− µ(n))l−r

and

P (m | n, r) =
|S(>,m) ∩ S(a, r)|d(>,a)=n

|S(a, r)|
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Evolution and Optimal Mutation Rates Markov Evolution

Markov Evolution

Let x = f(ω) be the value of fitness.

Reproduction ωs 7→ ωs+1

P (xs+1 | xs) conditional probability of xs 7→ xs+1.

T :=
(
P (xs+1 | xs)

)
— Markov operator, ps := P (xs)

ps+1 = Tps =
∑
xs

P (xs+1 | xs) P (xs) ⇒ ps+t = T tps

Adaptation E{xs+t} ≥ E{xs}, where E{xs} :=
∑

xs P (xs).

Control

µ — parameter controlling Pµ(xs+1 | xs).

µ(x) — control function, Tµ(x), Eµ(x){xs+t}.
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Evolution and Optimal Mutation Rates Optimal Evolution in Time

Optimal Evolution in Time

Instantaneous

Maximum adaptation in no more than λ generations

maximize Eµ(x){xs+t} subject to t ≤ λ

Minimum number of generations to achieve adaptation υ

minimize t ≥ 0 subject to Eµ(x){xs+t} ≥ υ

Cumulative

sup
µ(x)

t∑
λ=0

Eµ(x){xs+λ} ≤
t∑

λ=s

sup
µ(x)

{Eµ(x){xs+λ} : t ≤ λ}
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Evolution and Optimal Mutation Rates Analytical Solutions for Special Cases

Adaptation in One Generation

Minimize E{ns+t} subject to t ≤ 1.

In this case the optimal function is

µ(n) :=


0 if n < l(1− 1/α)
1
2 if n = l(1− 1/α)
1 otherwise
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Evolution and Optimal Mutation Rates Analytical Solutions for Special Cases

Step function
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Evolution and Optimal Mutation Rates Analytical Solutions for Special Cases

Maximizing Probability of Success

Probability of ‘success’ Pµ(m < n | n) (Bäck, 1993, for Hl
2).

Define µ̂(n) such that

Pµ̂(m < n | n) = max
µ

Pµ(m < n | n)

This corresponds to maximization of E{u(m,n)}, where

u(m,n) :=

{
1 if m < n
0 otherwise
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Evolution and Optimal Mutation Rates Analytical Solutions for Special Cases

max Pµ(m < n | n)}
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Evolution and Optimal Mutation Rates Analytical Solutions for Special Cases

Mutation to Optimum

Probability of mutating directly to optimum

Pµ(m = 0 | n) = (α− 1)−nµn(1− µ)l−n

Maximization conditions P ′
µ = 0 and P ′′

µ ≤ 0 give n− lµ = 0 or

µ(n) =
n

l

Remark

For n = 1 we have µ = 1/l (error threshold).

Optimal for Boolean landscapes (Needle in a haystack).
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Evolution and Optimal Mutation Rates Analytical Solutions for Special Cases
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Evolution and Optimal Mutation Rates Analytical Solutions for Special Cases

Evolution of Fitness in Time
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Evolution and Optimal Mutation Rates Analytical Solutions for Special Cases

Information Divergence in Time
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Evolution and Optimal Mutation Rates Optimal Evolution in Information

Optimal Evolution in Information

Instantaneous

Maximum adaptation in no more than λ generations

maximize Eµ(x){xs+t} subject to t ≤ λ

Minimum number of generations to achieve adaptation υ

minimize t ≥ 0 subject to Eµ(x){xs+t} ≥ υ

Cumulative

sup
µ(x)

t∑
λ=0

Eµ(x){xs+λ} ≤
t∑

λ=s

sup
µ(x)

{Eµ(x){xs+λ} : t ≤ λ}
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Evolution and Optimal Mutation Rates Optimal Evolution in Information

Optimal Evolution in Information

Information Dynamics (Belavkin, 2010, 2011)

Maximum adaptation in no more than λ bits between ps and ps+t:

maximize Eµ(x){xs+t} subject to E{log(ps+t/ps)} ≤ λ

Minimum number of bits to achieve adaptation υ

minimize E{log(ps+t/ps)} subject to Eµ(x){xs+t} ≥ υ

Cumulative

sup
µ(x)

t∑
λ=0

Eµ(x){xs+λ} ≤
t∑

λ=s

sup
µ(x)

{Eµ(x){xs+λ} : t ≤ λ}
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Evolution and Optimal Mutation Rates Optimal Evolution in Information

Information Heuristics t ≤ λ ⇐⇒ IKL(ps+t, ps) ≤ λ

The optimal µ corresponds to CDF of P0(m):

µ(n) = P0(m < n) =
n−1∑
m=0

P0(m)

P0(m) is computed from uniform distribution P0(ω) = α−l:

P0(m) =

(
l

m

) (
1− 1

α

)m (
1

α

)l−m

=

(
l

m

)
(α− 1)m

αl

Informed Mutation Rate

In a (weakly) monotonic landscape we can use CDF of empirical frequency
Pe of observed fitness values:

P0(m) ⇐⇒ Pe(x) and P0(m < n) ⇐⇒ Pe(xr > x)
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Evolution and Optimal Mutation Rates Optimal Evolution in Information

Minimal Information Control

0

0.25

0.5

0.75

1

0 5 10 15 20 25 30

P
0
(m

<
n
)

Distance to optimum, n = d(>, ω)

α = 2
α = 4

Roman Belavkin (Middlesex University, London) Mutation and Optimal Search October 7, 2011, ITW 23 / 28
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Evolution of Fitness in Information
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Evolution and Optimal Mutation Rates Optimal Evolution in Information

Fitness Variance and Expectation
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Conclusions and Questions

Summary, Conclusions and Questions

Representation of open-ended evolution by variable length codes.

Definition of relatively monotonic fitness landscape (clarifying that
‘rugged’ is relative).
Point mutation as solution to variational problem.
Derived transition probabilities Pµ(m | n) in Hl

α.
Obtained optimal control of mutation rate for evolution in
information.
Implementation of Kolmogorov’s programme on relation of
information to heredity and mutation.
Theory of information utility (or value) (Stratonovich, 1965) extended
to evolving and adaptive systems.

Question

Have biological organisms evolved such controls?

Including control of mutation rate adds cost in complexity.

Does the gain in performance outweigh this cost?
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