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MOTIVATION

Understanding the main function of an object can give us

understanding about its organisation

Example Engine of a car — one function, different constraints,

many implementations.
What is the main function of the brain?

Cognitive architectures (ACT—R, SOAR) operate at a high (macro)

level. Neural models operate at a low (micro) level.

Can these models explain or predict macroscopic data about the
brain? (e.g. why 10! neurons in the human brain?)

Are our neural models sufficient ? (many are necessary )
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ORGANISATION of HUMAN NERVOUS SYSTEM

Central (CNS) Peripheral (PNS)

Brain (10! neurons) Somatic voluntary control

e Forebrain (2-10'0 neocortex) | Autonomic (ANS)

e Midbrain e Sympathetic (fight or flight)
e Hindbrain ® Parasympathetic (rest and di-
Spinal cord (10?) gesy)

e Enteric (10?)

PNS — (inputs)” (CNS)® (outputs)” — PNS

PNS connects CNS to the outside world through 12 pairs of cranial

\and 31 pairs of spinal nerves.




oman Belavkin, Middlesex University, August 27, 2007

-~

CRANIAL NERVES (12 pairs)

Nerve: Afferent (IN) Efferent (OUT) Fibres
olfactory smell 2 - 107
optic vision .2 - 107
vestibulocochlear hearing, balance .1 - 104
oculomotor eye, pupil size 3 - 104
trochlear eye 3 - 103
abducens eye .7 103
hypoglossal tongue 7 - 103
spinal-accessory throat, neck ?
trigeminal face chewing .1 103
facial 2/3 taste face 10 4

glossopharyngeal

vagus

1/3 taste, blood pressure

pain

throat, soliva secreation

heart, lungs, abdominal, throat

?

?

m

(Bear, Connors, & Paradiso, 2007; Poritsky, 1992)

.~ 4.81-107,

n. ~ 1.45 - 10°

/
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SPINAL NERVES (31 pairs)

Nerves: Number
cervical 8
thoracic 12
lumbar 5
sacral 5
coccyx 1

e Spinal nerves are both sensory and motor
e There are 10” neurons in spinal cord
ms =ng~2-31-4.5-10° = 2.8-10°

1,1 - 10° fibres in pyramidal decussation (motor fibres which pass

from the brain to medulla)

\_ /
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MY ESTIMATES

m=me.+m, ~ 4.84-107 (3-10%)
n=nc+ns ~ 426-10° (9,8-10°)

2,9 - 108 fibres in corpus callosum (connects the left and right
cerebral hemispheres).

Important:
M =>n
e S>> m, n,where S ~ 10" (n. of neurons in the brain)

o k < m,where k € [10°,10%] (n. of synapses)

o
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HYPOTHESES
What could be the main function of neurons and the CNS?
e Optimal estimation and control
e Optimal abstract model

e Optimal information coding
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OPTIMAL ESTIMATION and CONTROL

Let x € X be unobserved state of the world with preferences inducedbyc : X — R
(cost function).

Lety € Y be observed, u € U™ the estimate or control. The optimal

u"(y) = arg %Z?E{C(xau(y))’y}
= arg min / e(, u(y))P(dz | y)

For quadratic cost (e.g. ¢ = |x — u(y)|?) the optimal is

u*(y) = E{z |y} = E{a} + B" (y — E{y})

For Gaussian x, linear is optimal (Stratonovich, 1959; Kalman & Bucy, 1961)

/
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NEURON as a LINEAR MODEL

Y1
Ni
w
Yy ——2» —>u:<p(a—|—wTy)
/wy
Y3 (McCulloch & Pitts, 1943)

fweleta = E{x} — BT E{y}, and W = B, then NN implements optimal

linear transformation (estimation or control).
Hebbian learning w; =~ 3;(y, u) (Hebb, 1955; Sejnowski, 1977)

Principal or independent components analysis using NN (Oja, 1982; Hyvarinen &

Oja, 1998), self—organising maps (Kohonen, 1982)

It is possible to do linear u : Y™ — U™ with a single layer (S = 0) of n
neurons with kK = m (but k < m)

/
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Assume a layered structure with 7; nodes in ‘layer’ 7
k — maximum number of inputs (synapses) from ¢ + 1

h — maximum number of output connections (axon branches) to ¢

<L

maxr;4+1 = kr; maxr; = hr;41
We are talking about the same vertices connecting 2 and ¢ + 1

k

i1 = T’L’E

o
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PARTIALLY CONNECTED FORWARD NETWORKS

1
Using boundary conditions rg = n,r; = n (%) , T1+-1 = M. Thus

(h [+1
m | — =N
3

The number of layers (the order of connectivity)

B Inm — Inn

" Ink—Inh

Total number of hidden nodes

[

1 (1)
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ESTIMATING [ and S
e Settn = 4.84-107, n = 4.26 - 10°

e For 2 = = -9995, using (1) and (2) we get
[=9461, S =0.96-10"

e Note that h, &k € NN, and if k is minimised, maX|m|sed then

h=k—1.
e For 2 z — .9995, we have
k=2-10°

e Recall that k € [102, 10%] (n. of synapses of an average neuron)

/
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OPTIMAL NONLINEAR FILTERING

® Several linear units with an extra layer can A

approximate nonlinear functions. U

e Optimal linear algorithms require only the
first two moments, but are optimal only for
Gaussian P. Similar algorithms are opti-
mal in the sense of max P and suitable
for non-linear problems (Stratonovich,
1959).

e Forsmall k, P on YE C Y™ the Gaus-

sian approximation can be sufficient.

e Small k — faster convergence.

® The sum of Dirac 0—measures (i.e. Gaussians with o2 = 0) can be used to
approximate any P.

/
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NN as directed graph G = (V, E)

" degt (v) = > deg™ (v) = | |

Constraints:
degt(v) <k, deg”(v) <h

Maximising | /| for fixed |V'| (or minimising | V| for fixed | E|)

max El=(S+n)k=(S+m)h

k—h
Form = 4.84-10",n = 4.26 - 10°, k = 2 - 103 gives

\_ S~ 0.96- 10"

(3)

13
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OPTIMAL ABSTRACT MODEL

Directed graph, G = (V, ), can represent an abstract model.
Each link between two nodes is a binary relation, and a path of [
nodes between input and output nodes can be seen as [—operator

between y and u.

Fully connected directed graph represents Cartesian product

Y x ... x U — all possible relations (not interesting).

The mind can be seenasasubsetG C Y x - x U

representing the most important operators.

14
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OPTIMAL INFORMATION CODING

Consider CNS as a function of random variable, u : Y™ — U™.

If u(y) is not an isomorphism, then information contained in ¥ is generally
destroyed (|Y' | > |U|™).

For entropically stable y, we only need to encode

ey < |Y|™, (where H, = —FE{In P(y)})

The optimal code approaches uniform P (u) such that

max H, = |U|" = ey < |y |™
P(u)

If |U| = Y] (e.g. 2), then n. < m, and still encodes all information.

15
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NN for OPTIMAL CODING

e Many ANN algorithms maximise the entropy of the output. For

example, ICA can be implemented using
n
u”(y) = arg min Z H, — H,
u(y) \ T

The above minimum corresponds to maximum H ,, (optimal

coding).

e Linear ICA can be implemented using single layer network, which
does not correspond to S ~ 10'! and k& ~ 103.

e The constraints on connectivity lead to ‘multilayered’ network, and

therefore the brain may implement nonlinear u(y).

~

16
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OPTIMAL CODING

A network of S units has the capacity to communicate |U|”
realisations.

However, h units receive the same information, and the real

capacity is |U|%/".

Preserving information between input and output (perfect

communication) means

S
Y™ = U5, m= - (eg. [Y][=UI=2

Using our estimates of m and h, we obtain

S~ .97-10"

17



oman Belavkin, Middlesex University, August 27, 2007

-

o

CONCLUSIONS and DISCUSSION

® It is possible that the brain implements the optimal (nonlinear) control and optimal

coding. Their combination is a familiar variational problem

F = Pfﬁliﬁlx) (E{c(z,u(y)} + AE{In P(du | z)}) = R—-TC

(Free energy)

® Are neural models sufficient ? We need to consider:
— Partially connected, multilayer (nonlinear) networks
— Achieves maximum connectivity (or minimum number of nodes)
— Local and bounded connectivity leads to cell-assemblies (Hebb, 1955) (may

lead to topology preserving mapping like in SOM).

® A particular organisation of the brain is likely the result of optimisation due to

additional constraints: Sensory (m), motor (n), h / k—ratio.

~
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