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Abstract

Human subjects often violate the rational decision–making
theory, which is based on the notion of expected utility and
axioms of choice (Neumann & Morgenstern, 1944; Savage,
1954). The counterexamples, suggested by Allais (1953) and
Ellsberg (1961), deserve special attention because they point
at our lack of understanding of how humans make decisions.
The paradoxes of decision–making are particularly important
for the ACT–R theory which currently relies on expected util-
ity. This paper presents two alternative methods: A random
prediction method that uses subsymbolic computations and a
method that uses symbolic reasoning for qualitative decision–
making. Both methods are tested on ACT–R models of the
paradoxes, and the advantages of each method are discussed.

Introduction
Decision–making under uncertainty (i.e. when the outcomes
of decisions are not certain) is an extremely important sub-
ject in economics, artificial intelligence, cognitive science
and psychology. The mathematical theory of choice has been
influenced largely by the works of Bernoulli (1738/1954),
von Neumann and Morgenstern (1944), Savage (1954) and
Anscombe and Aumann (1963). The central idea of this the-
ory is to express preferences of an agent by some utility func-
tion u : X → R such that

x � y ⇐⇒ u(x) > u(y) , (1)

where� is a strict preference relation — a binary relation that
satisfies among other the antisymmetric and transitive prop-
erties: x � y ⇒ x � y and x � y � z ⇒ x � z. Note that
strict preference is an idealisation and a mathematical model
of real human behaviour (indeed, strict preference of apples
over oranges implies one would never choose an orange).

Under uncertainty, one defines probability measures P on
some set of prizes Z , and condition (1) is usually replaced by

p � q ⇐⇒
∑

z∈Z

p(z)u(z) >
∑

z∈Z

q(z)u(z) , (2)

where p, q ∈ P are two probability distributions correspond-
ing to different x ∈ X (elements of the choice set), and the
sums on the right represent the expected utilities E{u}. Al-
though different approaches have been considered in treating
sets Z and P (i.e. a set of prizes or acts, objective or subjec-
tive probabilities), the theories are usually translated into the
following recommendation for a decision–maker

Decision(x) = arg max
x∈X

E{u} (3)

Thus, a rational agent should make decisions that maximise
the expected utility. This principle, known as the max E{u}
principle, has been used successfully in many applications for
economics, artificial intelligence and cognitive science.

Despite the successes, however, soon after its emergence,
the theory of rational decision–making has been strongly crit-
icised by some psychologists and economists. Perhaps, the
most obvious problem is that the max E{u} principle fails
to suggest the choice when expected utilities of alternatives
are equal. This situation is sometimes referred to as the ra-
tional donkey paradox (i.e. when a donkey is placed between
two identical haystacks). Therefore, some additional mecha-
nism must be involved in choosing, such as a roulette wheel.
Interestingly, it has been noticed experimentally that human
subjects always express some degree of randomness in their
choice behaviour (Myers, Fort, Katz, & Suydam, 1963). Cog-
nitive architectures, such as ACT–R (Anderson & Lebiere,
1998), have to use noise in the utility in order to model this
‘imperfect’ property of choice. Moreover, several studies
have demonstrated recently that this noisy or ‘irrational’ com-
ponent of decision–making may, in fact, play an important
function optimising the behaviour in stochastic environments
(Belavkin & Ritter, 2003).

Another famous and powerful counter example to the
maxE{u} principle has been suggested by Allais (1953), in
which he presented subjects with a choice of different lotter-
ies and asked them which they preferred to play. One example
of such a choice of lotteries is described below and shown on
Figure 1:

A: 1/3 chance of winning $300 or 2/3 of not winning any-
thing;

B: A sure win of $100.

One can easily check that both lotteries have equal expected
utilities ($100 exactly). Thus, there should be no preference
according to the maxE{u} principle. However, most of the
subjects (about 70%) prefer B over A demonstrating risk–
averse behaviour. Interestingly, when the problem is pre-
sented with gains replaced by losses (i.e. loosing money in-
stead of winning), then the preferences of subjects also revert,
and a risk–taking behaviour is observed. Indeed, consider the
example below (see Figure 2):

C: 1/3 chance of loosing $300 or 2/3 of not loosing anything;

D: A sure loss of $100.
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Figure 1: When choice involves gains, then for majority of
subjects A ≺ B (risk averse).
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Figure 2: When choice involves losses, the preferences revert
to C � D (risk taking).

Once again, the expected utilities of C and D are equal. How-
ever, in many similar studies, the majority of subjects pre-
ferred C � D (i.e. take the risk).

Even more intriguing, Allais demonstrated that participants
often switched their preferences after the probability distri-
butions have been multiplied by some constant factor, which
is in violation of the so–called independence axiom of the
von Neumann and Morgenstern theory. This phenomenon is
known as the Allais paradox, and it has been tested by many
researchers using not only college students as subjects, but
even professional traders (List & Haigh, 2005).

There have been several theories attempting to accom-
modate the inconsistency of human choice with the rational
decision–making theory. One of them is the prospect theory
due to (Tversky & Kahneman, 1981), which suggests that a
function π(p) on a probability should be used rather than the
probability itself. Such adjustments can explain some viola-
tions of the independence axiom, but there is no account for
the stochastic nature of choice in the prospect theory. More-
over, replacing probability by a function still suggests that
the decision–makers involve some sort of averaging opera-
tors (like expected value). There is experimental evidence,
however, in favour of the idea that humans often do not use
the average.

An important illustration is the paradox, suggested by Ells-
berg (1961). One version of this paradox can be explained as
follows. You are asked to draw a ball from one of two urns
labelled A and B. Each urn contains 100 balls some of which
are black and the rest are white. You have been told that urn
A contains exactly 50 white balls, but it is not known how
many white balls are in urn B. Before you draw a ball, you
have to select the colour. If you draw a ball of the same colour
you have named, you win $100. Which urn will you choose
to draw the ball from? According to the expected utility, one
should be indifferent between A and B. The majority of sub-
jects, however, prefer urn A with known probabilities, even
though the ‘average’ probability of each colour in urn B is
the same as for urn A (i.e. 1/2) (see Figure 3). Thus, subjects
prefer more certain information, and at least in this problem
they do not average the odds.

It is clear from the discussion above that the expected util-
ity theory fails to provide a good model of human decision–
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Figure 3: A variation on the Ellsberg paradox. Probabilities
of lottery B are unknown. The majority prefers A � B.

making behaviour. This problem is particularly important
for cognitive science since many models and underlying ar-
chitectures rely heavily on the maxE{u} principle. In this
paper, two alternative methods will be discussed. The next
section will be dedicated to the theory of random decision–
making that uses Monte–Carlo techniques to generate predic-
tions. This method can explain some of the data associated
with the Allais paradox. The following section will consider
data from different studies and discuss whether subsymbolic
or symbolic mechanisms should be used to model the choices
subjects make for lotteries communicated through instruc-
tion. A simple symbolic model will presented. This model
will use symbolic representations to encode the lotteries and
use qualitative reasoning to make decisions. The issues re-
lated to encoding the decision–making problems will also be
considered. The paper will conclude by a discussion of the
results and the possible directions for future research.

Subsymbolic Model
In this section, subsymbolic mechanisms for decision–
making will be considered. This is because ACT–R, the cog-
nitive architecture used by the author to implement the mod-
els, employs subsymbolic computations to make decisions
(i.e. the conflict resolution). However, this algorithm will be
modified in order to accommodate new theories. The method
presented here is based on the Markov decision process the-
ory and implements Monte–Carlo technique to make deci-
sions randomly and sample the distributions simultaneously.

Rational and Irrational Components of Choice
One can see from the discussion in previous section that most
of the paradoxes occur when the max E{u} principle is used
to make decisions. Indeed, the main objective of a rational
agent to maximise the utility (1) has been replaced by max-
imisation of its expected value (2). It is known from the the-
ory of optimal parameter estimation (as well as regression)
that the expected value function produces optimal estimator
when quadratic error measures a mismatch (the cost). How-
ever, the outcomes of many decision–making problems can
only be described in terms of successes or failures, and the
precise distance to the best solution is not known. When
the mismatch is represented by a binary function (i.e. a δ–
function), then the optimal estimator is the maximum of prob-
ability. For Gaussian distributions, which historically have
been considered more often (and due to the maximum en-
tropy principle), the expected value also corresponds to the
maximum of probability. More recently the assumption of
non–Gaussianity have proven to be very fruitful (e.g. the
Independent Components Analysis, non–linear filtering). In
general, for non–Gaussian distributions, the expected value
E{x} does not necessarily identify the most probable x ∈ X .
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Figure 4: Two very different distributions with equal E{u}.

Indeed, both distributions on Figure 4 have the same expected
values, but the expected value of a bi–modal distribution on
the right corresponds to x between the two maximums. In
fact, it is quite possible that E{x} /∈ X . For example, lot-
tery A on Figure 1 presents set of prizes Z = {$0, $300},
and one can easily check that E{z} = $100 /∈ Z . One can
see that decisions made according to maxE{u} will be in
general different than for maxP (u).

Apart from expected and most probable values, the distri-
butions may have very different other characteristics, such
as variances σ2, and the maxE{u} method does not take
them into account. Moreover, the preference relation in (2)
assumes that distributions p and q are accurate. The distri-
butions, however, can be seen as subjective approximations
of some objective distribution, information about which can
only be received through sampling. In this setting, the sub-
jective expected value E∗{u} (or max P ∗(u)) is only an ap-
proximation of the objective, which may be quite different
(see Figure 5). If the choice of decisions is made according
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Figure 5: Subjective approximation of objective distribution.

to maxP ∗(u) (or maxE∗{u}), then the sampling of objec-
tive P will not be very efficient because maxP corresponds
to the minimum of information I = − log P ∼ 1

P (this is, in
fact, the least informative sampling strategy). Samples from
parts of distribution other than max P can allow for a faster
updating of the distributions. Therefore, a decision–maker
under uncertainty should optimise two conflicting objectives:

1. Maximise information about the utility (min P ).

2. Maximise the utility (maxP ).

These two objectives represent the problem of balancing ex-
ploration and exploitation.

A method for simultaneous sampling and decision–making
using a random process (i.e. Monte–Carlo style) has been
suggested and evaluated using decision–theoretic agents in
stochastic environments (Belavkin, 2005). This method uses

random predictions of utilities, which are generated using
their prior distributions P (u). This type of sampling is op-
timal for the maximum of probability: The most probable u
corresponds to maxP (u) (can be different from E{u}). Fur-
thermore, because each sample can be slightly off maxP (i.e.
suboptimal or ‘irrational’), the method implements a better
sampling strategy. Note, however, that the expected value of
these random predictions is E{u}. Moreover, because they
are distributed according to P (u), all other characteristics,
such as variance of u, are used.

The performance of agents using the random (i.e. ‘irra-
tional’) method was compared with agents using the classical
maxE{u} method. These experiments demonstrated that the
random agents can significantly outperform the maxE{e}
when distributions of utility are uncertain and non–Gaussian
(Belavkin, 2005). The next section of this paper will present
a modification to the ACT–R rule selection mechanism that
incorporates the Monte–Carlo technique.

Monte–Carlo Rule Selection for ACT–R
It has been mentioned earlier that the ACT–R cognitive archi-
tecture (Anderson & Lebiere, 1998) uses noise in the utility
equation to account for the stochastic or ‘irrational’ proper-
ties of human choice behaviour. Thus, ACT–R also imple-
ments some form of random rule selection mechanism. How-
ever, this mechanism assumes Gaussian distribution of utility.
Indeed, the choice between several alternative decisions (i.e.
rules) in ACT–R is implemented by the subsymbolic conflict
resolution mechanism: A rule with the highest utility U i is
selected, where

Ui = PiG − Ci + noise(σ2) (4)

Here, G is called the goal value, Pi is the probability that
the goal will be achieved if the rule fires, and Ci is the cost
associated with evaluating the rule. Gaussian noise of zero
mean and variance σ2 corrupts the utilities, which allows for
modelling many psychological experiments. The noise al-
lows also ACT–R to choose between alternatives with iden-
tical prospects (i.e. equal expected utilities). However, the
rational component of the utility (PiG − Ci) is based on the
expected utility. Indeed, once a rule is selected, there are two
possible outcomes: Success (goal achieved) or failure (other-
wise). Let U s be the utility of success and U f the utility of
failure. The probability of success is Pi, and 1 − Pi is the
probability of failure. The expected utility is

E{Ui} = PiU
s + (1 − Pi)Uf = Pi(Us − Uf) + Uf

If we denote U s−Uf as G (goal value) and U f as −C (cost),
then the above equation will be identical to (4). Note that
Us = Uf in ACT–R terms means that the goal value is zero.

One can see that ACT–R, as many other applications, re-
lies on the maxE{u} principle, and, therefore, the conflict
resolution mechanism of ACT–R alone cannot model the data
from the paradoxes discussed earlier. The use of noise ran-
domises the utility, but the distributions are assumed to be
Gaussian, and it cannot capture properties of more unusual
distributions, such as used in lotteries on Figures 1 and 3.
A modification of the conflict resolution using Monte–Carlo
technique has been implemented in the following way.



The ACT–R architecture considers only two possible out-
comes of each decision: Success or Failure. The statistics
about these events is stored for each rule i in its probability of
success Pi. This probability can be used to generate random
predictions about the outcomes using the inverse probability
distribution function (PDF) method:

Success ∨ Failure = F−1(p) , p ∈ [0, 1] ,

where F is the PDF (cumulative) for Pi, and p is a uniform
random number on [0, 1]. The utilities of these two outcomes
in ACT–R notation are

G − Ci ∨ −Ci

That is, the system expects either to pay the cost and gain
some goal value, in case of success, or just to pay the cost
and gain nothing, in case of failure. These random predictions
are generated for each rule, and the rule with the maximum
random prediction is selected. In addition, the costs can be
randomised using Gamma noise, as described by Belavkin
and Ritter (2004). This should exclude the possibility of two
rules in the conflict set having equal utilities.

The method, described above, can be used to explain some
of the results associated with the Allais paradox. Indeed, Fig-
ure 6 shows PDFs for lotteries A and B on Figure 1. Note that
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Figure 6: Distribution functions for lotteries on Figure 1

for lottery A, we should win nothing two out of three times,
while in lottery B we always win £100. Thus, according to
the random utility method, two out of three times the ran-
dom utility of lottery A will be smaller than that of lottery B
(Figure 7). This confirms that approximately 70% of subjects
prefer B � A.

Utility A and B
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Figure 7: Random utilities for Lotteries A and B. There is a
2/3 chance that B � A.

One can easily verify in a similar manner that for lotter-
ies C and D the reverse preference holds C � D. Indeed,
two out of three times the random utility of lottery C will be
greater than that of lottery D.

The random utility method using inverse PDF has been im-
plemented as an overlay for the ACT–R version 5. A simple
model of a two choice task has been implemented to test the

subsymbolic mechanism. In this model, a choice of two lot-
teries is represented by a chunk that has two alternatives as
slot values. Two rules are competing for the goal each select-
ing a different alternative. The information about the gains
and probabilities of each lottery is encoded in the subsym-
bolic form for each rule. For example, for lottery A and B
(Figure 1), the two rules has the following settings:

PA = 1/3 , CA = $0 , PAG − CA = $100
PB = 1 , CB = $200 , PBG − CB = $100

For lottery C and D (Figure 2), the following settings were
used

PC = 2/3 , CC = $300 PCG − CC = −$100
PD = 0 , CD = $100 PDG − CD = −$100

In both cases, the goal value was set to $300 representing
the difference between the utilities of success and failure.
One can see from above that in both cases the standard ex-
pected utilities (PG − C) of ACT–R of conflicting rules are
equal, and, therefore, the model should express no preference.
When the same model is run using the random utility method,
the preferences should be A ≺ B and C � D. The results of
both models are shown on Figure 8 confirming the prediction.

A B C D

0%

100%

Lotteries

Preference

 ACT-R
 ACT-R + Rand Utility 

Figure 8: Preferences for lotteries A, B, C and D of the ACT–
R model using the PG − C and random methods for conflict
resolution.

One can see that the random utility method changes the
performance of the model quite dramatically. It is more sen-
sitive to the characteristics of the utility distributions, which
can be quite different despite having equal expected values.
The random utility method is also more dynamic: Unlike the
noise in ACT–R, which has static variance σ2, the utility dis-
tributions are constantly changing as a result of learning, and
controlling the uncertainty allowing for a better adaptation of
the decision–making mechanism. However, there are reasons
for which the subsymbolic model, described above, cannot be
considered as the model of the Allais paradox. These reasons
will be explained in the next section, in which another model
based on symbolic computation will be presented.

Symbolic Model
One should question the validity of using subsymbolic mech-
anisms to model the task of choosing between lotteries, such
as on Figure 1. The main purpose of subsymbolic compu-
tations is to capture the statistical properties of the learning



mechanisms in the brain. This statistical (or Bayesian) learn-
ing assumes some sampling procedures (e.g. trial and er-
ror) of distributions that evolve over time. Quite clearly, the
tasks in the lottery problem are very different. Indeed, the
information about the odds and monetary gains is commu-
nicated through instruction in a symbolic form, not through
trial and error. Moreover, as has been discussed earlier and
tested elsewhere (Belavkin, 2005), the main advantage of the
random utility method is because it implements a better sam-
pling strategy of distributions, which are uncertain. In the
lottery task, on the other hand, the distributions are given to
the participants, and they cannot perform several trials.

The Effect of the Probability

Furthermore, the inverse PDF method suggests that the pro-
portion of people that chooses a lottery with higher monetary
gain should depend only on the odds of this lottery to be suc-
cessful, and not on the amount of the gain itself. Indeed, by
looking at Figure 7, one can see that the results will be the
same, if lottery A offers a gain of $200 or $300. The only
parameter that matters there is PA = 1/3 — the probability
of success in A.

The analysis of several studies on choice between lotteries
fails to support the idea of such a clear dependence between
the probability and the proportion of people opting for a risky
lottery. Tversky and Kahneman report results of several ex-
periments involving choices of lotteries similar to A and B. In
one example, the probability of winning $600 (against a sure
win of $200) is 1/3. They report 28% of participants opting
for this risky option. In another experiment, with PA = 1/4
(win $1000 against a sure win of $240) only 16% chose A.
However, List and Haigh report results of their experiment
with identical parameters, but with 38% of subjects choosing
the risky option. The comparison of data from other similar
experiments, where the expected utilities of both alternatives
are equal and one option having a sure win, indicates against
strong dependence between the probability and the propor-
tion of people choosing the risky option. This may be because
subsymbolic mechanisms are not playing a significant role in
such tasks, and that symbolic reasoning may yield a better
model. Note that the average of those choosing lottery A cal-
culated from several studies is 27%.

To address these issues, a symbolic model has been im-
plemented using the ACT–R production system. This model
implements simple logical strategies and implements qualita-
tive analysis of the decision–making problem. The model is
described below.

The Logic of Choice

The symbolic model of the Allais paradox uses chunks and
production rules of ACT–R to encode symbolic representa-
tions of lotteries and reasoning required to make choice. The
reasoning implements qualitative analysis of quantities, such
as monetary gains and probabilities of the alternatives, and
the decisions are made according to the following preference
relations:

∼ indifference (any can be chosen)

� preference (e.g. if x � y, then x is chosen)

If more than one pair of relations is considered, then a union
is assumed (i.e. logical or). This can be proven using the
following equality

� ∧ ≺ = ∼ = � ∨ ≺

In probabilistic terms, ∼ means that there is equal chance of
any of the two objects to be chosen. The union operation also
can be used to estimate the probability when more than one
preference relation holds. For example, ∼ or � yields proba-
bility 3/4 that the first object will be chosen. This disjunctive
logic allows for a very simple production system using sim-
ple rules that compare the properties in parallel and assign the
preference relations. Any of these rules can fire, and, there-
fore, the probability that an object is selected depends on how
many of its properties are preferred.

The choice of two objects (e.g. the lotteries) is represented
in the model by a chunk of special type choice that has pairs
of slots for each property that can be different. For example,
slots name1 and name2 hold the names of each alternative
lottery:

(ab ISA choice name1 A name2 B ...)

All rules in the model can apply until slot chosen of the goal
chunk is not nil and holds the name of a chosen object.

Each property of the two objects is compared, and if the
value of one object is preferred to a value of another, then
this object is preferred. If the values are equal, then indiffer-
ence holds. Numerical values can be compared either directly
(e.g. if x > y, then x � y) or using a set of categories such
as {large, medium, small}. The issue of converting quanti-
tative information into qualitative will be discussed later.

Encoding the Lotteries

One can see from Figures 1 or 2 that each lottery, apart from
its name, can be described by the following four properties:
Gain (U s), the probability of gain (P s), loss (U f ) and the
probability of loss (P f ). A preference relation is inferred by
production rules comparing any of these four properties. For
example, if U s

A > Us
B , then A � B. If the values are equal,

then indifference holds, and any lottery can be selected.
It is easy to see that if one lottery has a number of advan-

tages (i.e. several properties are preferred), then there is a
higher chance that it will be selected, because the are more
rules in the conflict set that will choose it. The preference is
less obvious when different properties have different prefer-
ences. For example, one lottery may have higher gain than
another, but with lower probability, such as on Figure 1. Re-
call that these examples were designed in such a way that they
have equal expected utilities. However, qualitative analysis
can yield different results. The table below shows values of
each property for lotteries A, B, C and D with the preference
relations assigned to each pair:

Property: A B C D
Us $300 � $100 $0 ∼ $0
P s 1/3 ≺ 1 1/3 � 0
Uf $0 ∼ $0 -$300 ≺ -$100
P f 2/3 ≺ 0 2/3 � 1

Union ≺ �



The bottom row shows cumulative preferences between the
lotteries that are computed by a union of preferences on all
properties. One can see that A ≺ B and C � B. Moreover,
it is also possible to compute the probability of these pref-
erences. For example, A is preferred to B with probability
3/8 ≈ 38%, which is confirmed by the ACT–R model. In-
terestingly, this is exactly the proportion that List and Haigh
report in their study. Of course, this may be just a coinci-
dence, and, as has been mentioned earlier, other authors re-
port sightly different results (e.g. 28% and 16% in Tversky
& Kahneman, 1981). However, the symbolic model may ex-
plain why there is no clear dependence between the probabil-
ity of a gain in one lottery and the proportion of people that
choose it: The number of properties that are different may
play a greater role, because each pair of properties is evalu-
ated separately.

Another important issue to consider is the way the val-
ues of properties are encoded. Indeed, the discussion above
uses numerical values. However, one may speculate that
the numbers have to be converted into categories, such as
{large, medium, small}. This creates additional ambiguity
of how, for example, small probabilities 0,01 and 0,02 are
categorised: As both small and equal or one greater than an-
other? This ambiguity may explain the violations of the inde-
pendence axiom noticed by Allais.

Finally, the symbolic model suggests a very elegant expla-
nation of the Ellsberg paradox. Indeed, one can see from Fig-
ure 3 that both lotteries have identical gains and losses. The
only different property is how certain is the information: The
probabilities of lottery B are not known. If a decision–maker
prefers certainty, then A � B follows.

Discussion
Decision–making is a complex and very important process
that is involved in almost every other aspect of cognition.
This is why the study of the paradoxes unexplained by the
theory is so important for cognitive science. These paradoxes
have been mainly associated with the expected utility theory,
pioneered by Bernoulli and developed by von Neumann and
Morgenstern. In this paper, two other theories have been
considered: The random (or irrational) and the qualitative
decision–making methods. The former is based on the the-
ory of Markov–decision processes and Monte–Carlo statisti-
cal estimation. This theory can bear significant advantages
over the maxE{u} method in stochastic environments with
unknown and non–Gaussian utility. The method can be used
as a model of subsymbolic learning processes in the brain,
that is when learning involves accumulation of some statis-
tics through trial and error (i.e. unsupervised).

The latter theory is based on qualitative analysis and
Boolean logic. Qualitative decision–making allows one to
make decisions using logical inferences without any quan-
titative computations. This method can be used to model
tasks where information is encoded symbolically and com-
municated through instruction.

It has been shown both analytically and using models that
these methods enable one to simulate and explain decision–
making data that do not follow the expected utility theory.
However, there is still a long way before we fully understand
how these different mechanisms interact and work together.

ACT–R is a cognitive architecture that can use both types of
computations. This is why it has been chosen to build and
test the models. However, the current algorithms in ACT–R
use the traditional theory that is prone to paradoxes. The new
conflict resolution algorithm is publicly available on the au-
thor’s webpage. The methods, outlined in this paper, have
been tested on simple models of the famous paradoxes of
decision–making, but a wider testing on a variety of models is
desirable. The author believes this is the way towards a better
theory of human decision–making without the paradoxes.

References
Allais, M. (1953). Le comportement de l’homme rationnel

devant le risque: Critique des postulats et axiomes de
l’École americaine. Econometrica, 21, 503–546.

Anderson, J. R., & Lebiere, C. (1998). The atomic compo-
nents of thought. Mahwah, NJ: Lawrence Erlbaum.

Anscombe, F. J., & Aumann, R. J. (1963). A definition of
subjective probability. Annals of Mathematical Statistics,
34, 199–205.

Belavkin, R. V. (2005, December). Acting irrationally to
improve performance in stochastic worlds. In M. Bramer,
F. Coenen, & T. Allen (Eds.), Proceedings of AI–2005,
the 25th SGAI International Conference on Innovative
Techniques and Applications of Artificial Intelligence (Vol.
XXII, pp. 305–316). Cambridge: Springer.

Belavkin, R. V., & Ritter, F. E. (2003, April). The use of en-
tropy for analysis and control of cognitive models. In F. De-
tje, D. Dörner, & H. Schaub (Eds.), Proceedings of the Fifth
International Conference on Cognitive Modelling (pp. 21–
26). Bamberg, Germany: Universitäts–Verlag Bamberg.
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