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Introduction

Introduction: Optimal Mutation Rates

Mutation is an innovation process in GA search.

Important for adaptation of organisms (Fisher, 1930; Orr, 2005).

Operations research

Setting µ = 1/l (Mühlenbein, 1992; Ochoa, Harvey, & Buxton, 1999;
Eigen, McCaskill, & Schuster, 1988).

Control (Ackley, 1987; Fogarty, 1989; Yanagiya, 1993; Bäck, 1993;
Vafaee, Turán, & Nelson, 2010).

Biology

Controlled (to a degree) by the organism (e.g. DNA repair, Hakem,
2008).

Closely related species can have different µ (e.g. bacterium
Deinococcus radiodurans, Cox, Keck, & Battista, 2010).

May depend on changes in the environment (Bjedov et al., 2003).

Roman Belavkin (Middlesex University, London) Optimal Mutation Rate Control August 11, 2011, ECAL 5 / 27



Introduction

Introduction: Optimal Mutation Rates

Mutation is an innovation process in GA search.
Important for adaptation of organisms (Fisher, 1930; Orr, 2005).

Operations research

Setting µ = 1/l (Mühlenbein, 1992; Ochoa et al., 1999; Eigen et al.,
1988).

Control (Ackley, 1987; Fogarty, 1989; Yanagiya, 1993; Bäck, 1993;
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Theory Parameter Control Problem

Preliminaries

Individuals and Fitness

Let Ω — all individual organisms, f : Ω → R fitness function, x = f(ω).

Reproduction ωs 7→ ωs+1

P (xs+1 | xs) conditional probability of xs 7→ xs+1.

T :=
(
P (xs+1 | xs)

)
— Markov operator, ps := P (xs)

ps+1 = Tps =
∑
xs

P (xs+1 | xs) P (xs) ⇒ ps+t = T tps

Adaptation E{xs+t} ≥ E{xs}, where E{xs} :=
∑

xs P (xs).

Control

µ — parameter controlling Pµ(xs+1 | xs).

µ(x) — control function, Tµ(x), Eµ(x){xs+t}.
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Theory Parameter Control Problem

Optimal Fitness Value Functions

Instantaneous

Maximum adaptation in no more than λ generations

x(λ) := sup
µ(x)

{Eµ(x){xs+t} : t ≤ λ}

Minimum number of generations to achieve adaptation υ

x−1(υ) := inf
µ(x)

{t ≥ 0 : Eµ(x){xs+t} ≥ υ}

Cumulative

sup
µ(x)

t∑
λ=0

Eµ(x){xs+λ} ≤
t∑

λ=s

x(λ)
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Theory Parameter Control Problem

Optimal Fitness Value Functions

Information Dynamics (Belavkin, 2010, 2011)

Maximum adaptation in no more than λ bits between ps and ps+t:

x(λ) := sup
µ(x)

{Eµ(x){xs+t} : E{log(ps+t/ps)} ≤ λ}

Minimum number of bits to achieve adaptation υ

x−1(υ) := inf
µ(x)

{E{log(ps+t/ps)} : Eµ(x){xs+t} ≥ υ}

Cumulative

sup
µ(x)

t∑
λ=0

Eµ(x){xs+λ} ≤
t∑

λ=s

x(λ)
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Theory Relatively Monotonic Landscapes

Relatively Monotonic Landscapes

Representation : alphabet {1, . . . , α}, genotypes ω ⇐⇒ (α1, . . . , αl).

Hamming space : Hl
α := {1, . . . , α}l with metric d(a, b) := |{i : ai 6= bi}|.

Definition (Relatively Monotonic Landscape)

f is locally monotonic (isomorphic) relative to a metric d, if there exist
B(>, l) := {ω : d(>, ω) ≤ l}, > = supΩ, such that ∀ a, b ∈ B(>, l):

−d(>, a) ≤ −d(>, b) =⇒ ( ⇐⇒ ) f(a) ≤ f(b)

Example (Needle in a haystack)

f(ω) = 1 if d(>, ω) = 0; f(ω) = 0 otherwise.
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r
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r>
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Q
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Q

Q
Q

Qs

n

XXXXXXXXXz

m

a 7→ b ∈ S(a, r).

r is mutation radius

Pµ(m | n) =?

Expand for all r ∈ [0, l]:

Pµ(m | n) =
l∑

r=0

P (m | n, r) Pµ(r | n)

In a Hamming space Hl
α:

Pµ(r | n) =

(
l

r

)
µ(n)r(1− µ(n))l−r

and

P (m | n, r) =
|S(>,m) ∩ S(a, r)|d(>,a)=n

|S(a, r)|
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Theory Analytical Solutions for Special Cases

Adaptation in One Generation

Minimize E{ns+t} subject to t ≤ 1.

In this case the optimal function is

µ(n) :=


0 if n < l(1− 1/α)
1
2 if n = l(1− 1/α)
1 otherwise

Roman Belavkin (Middlesex University, London) Optimal Mutation Rate Control August 11, 2011, ECAL 11 / 27



Theory Analytical Solutions for Special Cases

Adaptation in One Generation

Minimize E{ns+t} subject to t ≤ 1.

In this case the optimal function is

µ(n) :=


0 if n < l(1− 1/α)
1
2 if n = l(1− 1/α)
1 otherwise

Roman Belavkin (Middlesex University, London) Optimal Mutation Rate Control August 11, 2011, ECAL 11 / 27



Theory Analytical Solutions for Special Cases

Step function
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Theory Analytical Solutions for Special Cases

Maximizing Probability of Success

Probability of ‘success’ Pµ(m < n | n) (Bäck, 1993, for Hl
2).

Define µ̂(n) such that

Pµ̂(m < n | n) = max
µ

Pµ(m < n | n)

This corresponds to maximization of E{u(m,n)}, where

u(m,n) :=

{
1 if m < n
0 otherwise
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Theory Analytical Solutions for Special Cases

max Pµ(m < n | n)}
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Theory Analytical Solutions for Special Cases

Mutation to Optimum

Probability of mutating directly to optimum

Pµ(m = 0 | n) = (α− 1)−nµn(1− µ)l−n

Maximization conditions P ′
µ = 0 and P ′′

µ ≤ 0 give n− lµ = 0 or

µ(n) =
n

l

Remark

For n = 1 we have µ = 1/l (error threshold).

Optimal for Boolean landscapes (Needle in a haystack).
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Theory Analytical Solutions for Special Cases

Linear function
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Theory Analytical Solutions for Special Cases

Information Heuristics t ≤ λ ⇐⇒ IKL(ps+t, ps) ≤ λ

The optimal µ corresponds to CDF of P0(m):

µ(n) = P0(m < n) =
n−1∑
m=0

P0(m)

P0(m) is computed from uniform distribution P0(ω) = α−l:

P0(m) =

(
l

m

) (
1− 1

α

)m (
1

α

)l−m

=

(
l

m

)
(α− 1)m

αl

Informed Mutation Rate

In a (weakly) monotonic landscape we can use CDF of empirical frequency
Pe of observed fitness values:

P0(m) ⇐⇒ Pe(x) and P0(m < n) ⇐⇒ Pe(xr > x)
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Theory Analytical Solutions for Special Cases

‘Informed’ Mutation function
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Practice: Evolving Optimal Mutation Rates

Introduction

Theory
Parameter Control Problem
Relatively Monotonic Landscapes
Mutation and Adaptation in a Hamming Space
Analytical Solutions for Special Cases
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Experimental Results
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Practice: Evolving Optimal Mutation Rates Inner and Meta GA

Practice: Evolving Optimal Mutation Rates

Inner GA

Genotypes : sequences in Hl
α.

Populations : 100 individuals.

Generations : t = 500.

Evolution : mutation only.

Objective : maximize x = f(ω).

Meta GA

Genotypes : functions µ(x), µ ∈ [0, 1].

Populations : 100 individuals.

Generations : t = 5 · 105.

Evolution : tournament selection, recombination, mutation.

Objective : maximize E{x} in Inner GA at the last generation.

Roman Belavkin (Middlesex University, London) Optimal Mutation Rate Control August 11, 2011, ECAL 20 / 27



Practice: Evolving Optimal Mutation Rates Inner and Meta GA

Practice: Evolving Optimal Mutation Rates

Inner GA

Genotypes : sequences in Hl
α.

Populations : 100 individuals.

Generations : t = 500.

Evolution : mutation only.

Objective : maximize x = f(ω).

Meta GA

Genotypes : functions µ(x), µ ∈ [0, 1].

Populations : 100 individuals.

Generations : t = 5 · 105.

Evolution : tournament selection, recombination, mutation.

Objective : maximize E{x} in Inner GA at the last generation.

Roman Belavkin (Middlesex University, London) Optimal Mutation Rate Control August 11, 2011, ECAL 20 / 27



Practice: Evolving Optimal Mutation Rates Experimental Results

Experimental Results

1 H30
2 (i.e. α = 2, l = 30) and fitness f(ω) = −d(>, ω), where d is

Hamming metric.

2 H10
4 (i.e. α = 4, l = 10) and fitness f(ω) = −d(>, ω), where d is

Hamming metric.

3 H10
4 (i.e. α = 4, l = 10) and fitness f(ω) defined by a complete

DNA-protein affinity landscape for 10-base-pair sequences (Rowe,
Platt, Wedge, Day, & Kell, 2010), which we refer to as the aptamer
landscape.

Output

µe(x) — evolved mutation rate functions.

Pe(xr > x) — CDFs of empirical distributions Pe(x) of fitness.
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Practice: Evolving Optimal Mutation Rates Experimental Results
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Conclusions and Questions

Conclusions and Questions

Analytical formulae for Pµ(m | n) in Hl
α.

Defined relatively monotonic landscapes to clarify the role of a
representation space (i.e. ‘rugged’ is relative).

Exact optimization is hard, but possible in some cases and
approximate for others.

New heuristic µ(x) = Pe(xr > x) based on empirical CDF and
information dynamics.

Evolved control functions in Protein-DNA affinity landscapes confirm
our conjecture that natural fitness is (weakly) monotonic relative to
Hl

4 of DNA sequences (⇒ control of µ benefits natural evolution).

Question

Including control of mutation rate adds cost in complexity.

Does the gain in performance outweigh this cost?

Have biological organisms evolved such controls?
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