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Abstract. There are many examples of intelligent and learning sys-
tems that are based either on the connectionist or the symbolic ap-
proach. Although the latter has been successfully combined with sta-
tistical learning to create a hybrid system, it is not clear how sym-
bolic processing can emerge from a connectionist system. The hu-
man mind is a living proof that such a transition must be possible.
Inspired by biological cognition, our project explores the ways sym-
bolic processing can emerge in a system of neural cell assemblies
(CAs). Here, we present a meta–process that regulates learning of as-
sociations between the CAs. The process is compared with stochastic
learning theory, and its outcome is a set of optimal rules implemented
in simulated neurons and learned by Hebbian adaptation of synaptic
weights. A neural simulation shows rules can be learned.

1 INTRODUCTION

In recent decades, theories of cognition have been developed using
different paradigms — some are based entirely on studies and sim-
ulations of biological neural processing, while others pursue a more
abstract approach by simulating the behaviour. The former facilitated
the solution of a great variety of engineering problems (e.g. signal
processing, pattern recognition), while the latter have revolutionised
cognitive psychology [17]. Despite the successes, the process of uni-
fication of neural and symbolic cognitive systems has been slow even
though human cognition — the main subject of both approaches —
is a clear indication that they are two sides of the same coin.

Although a single neuron can classify a large number of patterns,
it is believed that groups of connected cells called cell assemblies
(CAs) form the basis of human cognition [7, 18]. However, recent ad-
vances in modelling human–level cognition have mostly been made
using symbolic cognitive architectures, such as SOAR [17] and ACT–
R [1]. The success of the latter can be explained largely because it
uses a hybrid approach, where symbols are applied selectively based
on statistical associations and other sub–symbolic computations. The
work described in this paper is part of a project attempting to achieve
complex symbolic processing and learning in a connectionist system.

Previously, the authors have demonstrated how states in a CA–
based system can be controlled and used to perform a typical sym-
bolic task (counting) [11]. This work has developed into a much more
ambitious project called CABOT, where the same principles are ap-
plied in a system based entirely on CAs that integrates elements of
vision, categorisation, natural language processing and learning in
virtual environments. This paper presents a part of this project —
learning the connections between different CAs — that implement
combinations of symbolic representations and ultimately the emer-
gence of logical rules. In this system, learning is modification of
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synaptic weights via a Hebbian rule, but a meta–learning process
emerges from the interaction of large groups of neurons in different
modules.

In the next section, the model of a fatiguing, leaky, integrate and
fire (fLIF) neuron, CAs, and the use of CAs as symbols are described.
In the third section, information–theoretic analysis of stochastic
learning will be outlined and its implementation in our system will
be presented. The fourth section will present a simple experiment il-
lustrating the working of the system and its relation to other works
will be discussed. The biological plausibility of the learning process
will also be considered in the last section.

2 OVERVIEW OF THE ARCHITECTURE

Below is an overview of the neural model and its parameters. A more
detailed presentation can be found in [10].

2.1 Fatiguing Leaky Integrate and Fire neurons

Biological neurons are complex systems, and the levels of details
varied significantly even in the early models [8, 16]. Our system uses
spiking, fatiguing, leaky, integrate and fire (fLIF) neurons, an exten-
sion of the LIF model [15]. Our model is a compromise between
computational efficiency and biological plausibility reflecting prop-
erties that are, in our opinion, important for the emerging dynamics.

The ‘integrate and fire’ component is based on the classical idea
[16] that the neuron ‘fires’ if its action potential, A, exceeds a cer-
tain threshold value θ. The action potential is a function of the inner
product (integrator) (w, x) =

Pk

i=1 wi xi, where x ∈ R
k is the

stimulus vector (pre–synaptic), and w ∈ R
k is the synaptic weight

vector of the neuron. Here, R
k is k–dimensional Euclidean space,

where k is the number of synapses to the neuron. If x is the output of
all pre–synaptic neurons, then x is a binary vector.

The action potential depends on the pre and post–synaptic activity
over several time moments:

At+1 =
At

dt

+ (wt, xt) , dt ≡



+∞ if fired
d ≥ 1 otherwise

Thus, the action potential is accumulated if the neuron does not fire.
Parameter d > 1 allows for some of this activation to ‘leak’ away.
This is the LIF model.

The threshold of a neuron is also dynamic

θt+1 = θt + Ft , Ft ≡



F+ ≥ 0 if fired
F− < 0 otherwise

where values F+ and F− represent the fatigue and fatigue recovery
rates. Thus, if a neuron fires at time t, its threshold increases, and it
is less likely to fire at time t + 1.



Finally, the weights wt can adapt according to the compensatory
learning rule [10], which is an implementation of the Hebbian prin-
ciple [7], where wt+1 depends on the correlation between the pre–
synaptic, xt, and the post–synaptic, yt, activities. One can see that the
post–synaptic activity is a non–linear functional of the pre–synaptic
activity: yt : xt → R.

2.2 Cell assemblies

The system is based on networks of sparsely connected cells. The
topology of the network is pre–defined by some random pattern, and
it can be highly recurrent, similar to the Hopfield networks [9]. Un-
like the Hopfield nets, however, the links are unidirectional, making
our model more biologically plausible.

The non–linearity of the cells in the network leads to a complex
dynamics similar to that in attractor nets with some of the states being
more probable. These stable states can be characterised by groups
of cells that remain significantly more active than the other cells in
the system. Such reverberating groups of cells are often referred to
according to Hebb [7] as cell assemblies (CAs). Hebb also felt that
CAs were the neural basis of symbols.

An important property of CAs’ dynamics is their persistence [13].
When enough neurons fire to start the reverberating circuit, the CA
ignites. Once ignited, the activity within the cells in a CA may be suf-
ficient to support itself. Many variables can contribute to this effect.
In particular, the fatigue and recovery rate parameters in our system
effect persistence. A CA can be extinguished by another CA, which
can ignite, for instance, due to the change of the external pattern.

Sensory stimuli of fLIF neurons allows Hebbian learning to en-
code and store information about that stimuli. Note that CAs are not
necessarily disjoint sets of cells. A single cell may be a member of
several overlapping CAs. This feature can be used to encode hierar-
chies of patterns [10].

2.3 Symbolic processing with CAs

In the system described, a network with several CAs encoding a set
of external patterns is referred to as a module. Several modules can be
interconnected to create more complex systems. It was demonstrated
earlier that state transitions in such systems are sufficiently control-
lable to implement a broad range of algorithms similar to symbolic
systems. For example, a simple system with four CAs A, B, C and
D oscillating in the ABCD order can be created using two modules
AC and BD, where the CAs are linked by excitatory connections as
shown below.
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@@
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@@
@ B

C //
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~~~~~~~
D

The same principle can be used to simulate more complex behaviour.
For example, a system of 7 modules and 40 CAs was used to imple-
ment a simple counting task [11]. More complex systems have been
used to parse natural language and implement finite state automata.

Although the CAs within the individual modules of these systems
could form via Hebbian learning between the cells in the network, the
connections between the modules had to be set in a controlled way
for the system to operate in the desired manner. The next stage in
the development of the project is the ability to learn the connections
between different modules, and that is the main focus of this paper.
Before describing the process, we note that learning of the connec-
tions between different modules involves a meta–process. Indeed,

although the connections between the correlated cells are strength-
ened via Hebbian learning, it is the meta–process that controls which
neurons fire and thus which connections are supported. This meta–
process is based on stochastic learning theory, which is briefly out-
lined in the next section.

3 STOCHASTIC LEARNING

The meta–process for learning the connectivity between the modules
is based on the stochastic action–selection algorithms implemented
earlier in cognitive architectures and stochastic symbolic systems [3,
4]. Theoretical foundations of this theory are based on the variational
problems of information theory [19, 20], a generalisation of which is
outlined below.

3.1 Optimisation with information constraints

Rational action selection is related to the theories of choice and op-
timisation. Fundamental in the theory of choice is the concept of a
preference relation on a set (total and transitive binary relation). Of-
ten, the preference relation can be represented by a monotone func-
tion u : Ω → R referred to as the utility, and the choice problem is
solved by maximisation of u(ω) (i.e. optimisation).

Under uncertainty, the choice problem is solved by using the pref-
erence relation on set P of all probability measures, which are non–
negative functions p : F → [0, 1] defined on the σ–algebra F of
Ω, and such that p(Ω) = 1. The preference relation on P is induced
by the expected utility (p, u) =

R

Ω
u(ω)p(ω)dω, so that for any p,

q ∈ P , measure p is preferred if (p, u) ≥ (q, u), and it is the classi-
cal Bayesian estimation procedure [23, 24].

More generally, the problem of optimisation under uncertainty can
be viewed as maximisation in the conjugate space. Indeed, given a
Banach space U , the conjugate space V is the totality of all linear
functionals (v, u), where (·, ·) is the inner product. Thus, given utility
function u ∈ U , the maximisation of the expected utility corresponds
to finding the maximum element p ∈ P ⊂ V , where P is the set of
all probability measures.

It is often the case that the choice set under uncertainty is not the
entire set P , but some subset of it defined by constraints. In partic-
ular, adaptive and learning problems are concerned with constraints
on information, which can be defined in general form using the in-
formation divergence:

I(p, q) =

Z

Ω

ln
dp

dq
p(dω) (1)

where measures p, q ∈ P are such that p is absolutely continuous
with respect to the reference measure q, and dp/dq is the Radon–
Nikodym derivative. Note that for q = const, information diver-
gence corresponds to minus entropy, and when p and q are the condi-
tional and the marginal probabilities respectively, then I(p, q) is the
Shannon information.

The important properties of information divergence is that it is
convex, non–negative and its minimum is achieved for p = q (see
[14]). The maximum of I(p, q), which can be infinite, is achieved for
p → δωω′ , which are the probability measures concentrated entirely
on single elements of Ω (here δωω′ is the Kronecker symbol). Thus,
the constraints I(µ, ν) ≤ I = const < ∞ define some convex set
P ′ ⊂ P , and the problem can be formulated as the following convex
optimisation problem with information constraints:

max
p∈P ′

(p, u) , P ′ ≡ {p ∈ P : I(p, q) ≤ I < ∞}



This variational problem can be solved via the standard procedure of
Lagrange multipliers. The solution is the probability measure:

p(dω) = q(dω) eβu(ω)−Γ(β) (2)

where β ≥ 0 is the Lagrange multiplier defined by I(µ, ν) = I ,
and Γ(β) = ln

R

Ω
eβu(ω)q(dω) due to the normalisation condi-

tion (p(Ω) = q(Ω) = 1). Note that the Gibbs distribution, known
from thermodynamics, is a special case of function (2) (i.e. when
q(dω) = const). Probability measure (2) corresponds to the max-
imum of the expected utility when the information divergence is
bounded above I(p, q) ≤ I . Furthermore, the problem of minimi-
sation of information divergence with constraints on expected utility
(p, u) ≥ U has the solution in exactly the same form, but parameter
β determined from condition (p, u) = U . The relation between the
information–utility constraints and parameter β, defining the optimal
solution, can be expressed using the Legendre–Fenchel transform of
potential Γ(β):

I(U) = sup
β

[Uβ − Γ(β)] , Γ(β) = sup
U

[β U − I(U)] (3)

which corresponds to the following canonical equations

U(β) =
dΓ(β)

dβ
, β(U) =

dI(U)

dU
(4)

In particular, the second equation above suggest that an increase
of the expected utility and information during learning corresponds
to a positive value of parameter β. Moreover, Γ(β) is convex, and
therefore I(U) is convex as well (property of the Legendre–Fenchel
transform). Thus, β(U) is a non–decreasing function. One can see
from (2) that for all dω ⊆ Ω such that q(dω) > 0 and u(ω) > −∞,
the condition β > 0 implies p(dω) > 0 as well. Thus, the optimal
solution for optimisation with information constraints is a stochastic
process (i.e. non–deterministic, or p(dω) 6= 1 for all ω ∈ Ω).

It has been known for a long time that stochastic algorithms out-
perform deterministic strategies in problems involving information
constraints, such as the problems of rare event estimation and adap-
tive problems. The Gibbs distribution has been used in many opti-
misation techniques and machine learning algorithms to control ex-
ploration (e.g. simulated annealing). A similar random strategy has
been employed by the ACT–R cognitive architecture [1] to simulate
statistical learning of human subjects and animals. The information–
theoretic analysis, outlined here, allows for a solid theoretical justi-
fication of this result. Moreover, the information–utility constraints
can be used to determine the optimal dynamics by controlling pa-
rameter β (or the temperature parameter defined as T ≡ 1

β
).

It has been shown earlier how the entropy feedback from the pos-
terior probability can be used to control β in the ACT–R architecture,
which significantly improves cognitive models of human and animal
learning [3]. A similar stochastic control has been used to implement
optimal learning and adaptation of agents in stochastic environments
[4]. The next section describes how such a stochastic process was
implemented in our system of CAs of fLIF neurons, and how it is
used to learn the connections between different CAs and modules.
We shall also discuss biological plausibility of this meta–process.

3.2 Stochastic control in cell assemblies

In the problems of learning agents, one often considers the set X
of input patterns (e.g. describing the environment or the goals) and
the set Y of actions of the agent. In our system, these sets can be

represented by two modules, Goals and Actions, with CAs in the
first module representing the input patterns (i.e. goals) and CAs in
the second module representing different acts:

Goal 1
...

Goal m

//
//

//

Act 1
...

Act n

Our aim of learning the connections between these two modules
can be described as learning some binary relation R ⊂ X × Y .
In fact, this is similar to defining a preference relation on set Ω =
X × Y . Indeed, if some pairs (x, y) are preferred to the others, then
given x ∈ X , there is a preference relation on Y . Moreover, if the
agent has a preference relation on Ω = X ×Y , then obviously it has
to learn R ⊂ X × Y that corresponds to this preference relation.

Initially, there are excitatory connections from every CA in mod-
ule X to all CAs in module Y , which means that all pairs (x, y)
are equally preferred (i.e. indifference) and given goal x ∈ X , any
action y ∈ Y can be triggered. However, due to Hebbian learning,
the connection x → y is reinforced if a particular pair of CAs ig-
nite together, giving the pair a higher chance to ignite together in the
future. Thus, simply by virtue of Hebbian learning, the system can
learn eventually some random preference relation. The meta–process
is designed to support the learning only of a particular preference re-
lation, and it involves two additional modules: Explore and Value.

Value // Explore

�� ����
Goal 1

...
Goal m

//
//

//

Act 1
...

Act n

The purpose of the Explore module is to randomise the activity of
the Action module. The Explore module contains cells that can be ac-
tive without any external stimulation due to spontaneous activation.
The connectivity and the parameters of the cells in the module are
such that the activation can support itself. The cells in the Explore
module send excitatory signals to all CAs in the Action net, and the
weights of these connections do not change. Thus, the activity in the
Explore module can trigger randomly any CA in the Action module,
and this process does not have a memory. The activity of the Explore
module implements the effect of the temperature parameter T = 1

β

in equation (2).
The purpose of the Value module is to represent the values of the

utility function — higher activity in the Value module corresponds
to higher utility values u = u(x, y). The input of the module can be
configured according to the application. For example, it may receive
inputs from the environment so that the activity of the Value module
represents the agent’s preference relation on the states of the environ-
ment. In the simplest case of a binary utility function (i.e. the utility
has only two values corresponding to a success or failure), the Value
module should have only two distinct states (on or off). For example,
the module may ignite if the change of the environment is recognised
as positive.

The Value module sends inhibitory connections to the Explore
module, so that high activity of the Value cells may shut down the
activity in the Explore module. As a result, any CA that has been ig-
nited in the Action module will persist until it is shut down by another
Action CA. The latter may ignite if the input from the Goal module
changes or if the activity of the Explore module resumes. This con-
nectivity implements a very simple yet effective learning scheme. If



a particular goal–action pair (x, y) results in a high utility value, then
high activity of the Value module inhibits the Explore module, and
the responsible goal–action pair is allowed to persist longer. Since x
and y co-fire longer than x and ȳ (where ȳ is a different CA than y)
the x → y connection increases relative to the x → ȳ connection
due to Hebbian learning.

Because the meta–process supports strengthening of the connec-
tions between the goal–action pairs corresponding to high utility val-
ues, the system learns the preferred binary relation R ⊂ X × Y .
As a consequence, the average activity of the Value module should
increase with time, while the activity of the Explore module should
decrease. This dynamic corresponds to an increase of the expected
utility value (p, u) = U , and the decrease of the temperature param-
eter T = 1

β
making the system less random and more deterministic.

The process of learning the binary relation R ⊂ X × Y favouring
high utility values results in a transition from a stochastic system to
an almost deterministic rule–based system. The process of learning
the connections x → y between the CAs can be seen as the emer-
gence of ‘if–then’ rules, where the conditions are represented by CAs
in one module and the actions by CAs in another.

4 EXPERIMENTAL EVALUATION

The working of the described meta–process has been implemented
and tested in our system based on fLIF neurons, and here we report
its performance in a fairly simple experiment. The code of the system
and the described below experiment is available at
http://www.cwa.mdx.ac.uk/CABot/CANT.html

4.1 Learning dichotomies

In this simple experiment, there are two CAs in the Goal module
(goal 1, goal 2) and two CAs in the Action module (act 1, act 2).
Each module consisted of 800 cells, with 400 cells in each CA. The
modules were set up with connections with low weights from every
goal CA to all action CAs, shown by four dashed arrows on the left
diagram below. The task was to learn two rules, shown by two solid
arrows on the right diagram, by increasing the connection weights.

Goal 1 //___

$$I
I

I
I

I Act 1

Goal 2 //___

::u
u

u
u

u
Act 2

Goal 1 // Act 1

Goal 2 // Act 2

The training procedure consisted of a random presentation of an in-
put pattern activating one of the goal CAs every 100 cycles. It takes
on average 10–20 cycles for one of the action CAs to ignite. If the
correct action is selected, then the activation of the Value module
inhibits the Explore module after another 10–20 cycles, and the ac-
tivities of the goal and action CAs persist until a new pattern is pre-
sented. Otherwise, if an incorrect action is selected, the activity from
the Explore module causes another action CA to ignite after approx-
imately another 10–20 cycles.

4.2 Results and analysis

Figure 1 shows the proportion of the correct actions selected (verti-
cal axis) as a function of cycle number (horizontal axis). The chart
shows the results of five similar experiments. One can see that the
system initially makes only half of the choices correctly. After 3000
cycles, the proportion of correct choices increases to 70–90%. Note

that the goal may change up to 10 times per 1000 cycles (every 100
cycles). Because the goal sequence was randomly generated in each
experiment, there is a variance in the results represented by different
curves on Figure 1. The increase of the probability of success cor-
responds to an increase in the expected utility value (p, u) = U .
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Figure 1. The proportion of correct action choices (ordinate) as a function
of cycles (abscissa). The curves represent results of different trials.
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Figure 2. Activities of the Value and Explore modules in one experiment.

Figure 2 shows the percentage of neurons firing per cycle in the
Value and the Explore modules in one of the experiments. One can
clearly see that the activities anticorrelate. An increase in the Value
module coincides with the decrease of the Explore module activity.
More significantly, the chart shows that the average activity of the
Value module increases as learning progresses, while the average ac-
tivity of the Explore module decreases. As expected, this dynamic
corresponds to the optimal dynamics of U and parameter T = 1

β
,

where β = β(U) is an increasing function defined by equation (4).
Because learning of the connections between the correct pairs of

CAs depends on the differences between the times the ‘correct’ and
‘incorrect’ CAs persist in the system, the parameters controlling the
dynamics of CAs in the modules may significantly influence the ef-
fect of the meta–process and the ability of the system to learn. For
example, the values of the fatigue and fatigue recovery rates of the
cells influence the persistence of the CAs as well as how rapidly one
CA may extinguish another. Another important parameter is the con-
nectivity of the cells in the module. The networks in the system are
sparsely connected, and the average number of cells each cell is con-
nected to can also significantly contribute to the behaviour of the
CAs. The learning rate parameter of the Hebbian learning rule can
also significantly influence the performance of the system. If the rate
is too high, then binding of an incorrect pair of CAs may occur before
the meta–process has its effect.



5 CONCLUSION

Computational learning theory has advanced greatly during recent
decades, and there are excellent examples of connectionist and sym-
bolic learning systems. Yet it is not clear how biological cognition
combines these quite different approaches in one system. This ques-
tion has been partially resolved by the ACT–R cognitive architecture
[1], which uses a hybrid approach and combines the symbolic system
with sub–symbolic computations based on statistical learning princi-
ples. In this work, we attempt to close the gap from the opposite
direction. By using cell assemblies (CAs) as representations of sym-
bols, we achieve a level of control in a complex system sufficient to
implement symbolic algorithms. One of the problems that remains
difficult to solve is how the connections between different and quite
remote CAs can be learned in this system, the focus of the current
paper.

The solution proposed is based on a stochastic meta–process that
randomises the activation of the system according to the utility of
its experience. This method has many similarities with the reinforce-
ment learning algorithms, where randomisation is used to control ex-
ploration [12, 22], and with the adaptive networks where the reward
signals were used to train artificial neurons [2, 21]. Here we have
demonstrated how such a process can be implemented in a sparsely
connected system of fLIF neurons, where CAs can be employed for
symbolic–like processing. The implementation is inspired by earlier
cognitive modelling work, where entropy feedback was used to con-
trol the stochastic learning in ACT–R, significantly improving models
of action selection in human subjects and animals [3]. Information–
theoretic analysis suggests that such a control corresponds to optimi-
sation with information constraints.

Finally, recent studies in the neuroscience of exploratory be-
haviour suggest that the method proposed may have some biological
plausibility. In particular, a recent study failed to identify conclu-
sively any specific area of the brain correlated with the exploration
function, and the model based on the Gibbs distribution was pro-
posed as the most plausible [5]. Some researchers have speculated
about the role of tonically active cholinergic neurons in the basal
ganglia and striatal complex [6]. These neurons account for a small
proportion of the connections, and they are quite uniform and non-
topographic. It was suggested that these neurons may play the role
of stochastic noise. Interestingly, their activation is reduced when the
reward path is activated. This idea has remarkable parallels with the
functioning of the Value and Explore modules in our system. Be-
cause learning occurs throughout the brain, it is possible that similar
meta–processes exist in various areas of the central nervous system.

Our project is developing towards a complex system where many
modules are combined together, implementing very different infor-
mation processing functions. All the modules, however, are based on
the same biologically inspired paradigm — cell assemblies of fLIF
neurons. The implementation of the stochastic meta–learning process
to allow rule acquisition in our system is an important step in its evo-
lution, and the development of a biologically plausible mechanism
creates new opportunities for the project as well as our understand-
ing of biological cognition.
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