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Introduction and Notation

Introduction

Optimisation of dynamic information systems (e.g. learning or
evolutionary systems).

Three kinds of problems

Deterministic : maximise f(x).
Stochastic : maximise Ep{f(x)} =

∑
f(x) p(x).

Adaptive : estimate p(x) and maximise Ep{f(x)}.

Learning, evolving and adaptive systems:

PerformanceOO
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In practice, stochastic and non-deterministic algorithms are generally
more successful (e.g. simulated annealing, genetic algorithms).
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Introduction and Notation

Representation in Paired Spaces

Ω — a measurable set, a locally compact space.

X, Y — linear spaces in duality via 〈·, ·〉 : X × Y → R:

〈x, y〉 :=
∑
Ω

x(ω) y(ω) , 〈x, y〉 :=

∫
Ω

x(ω) dy(ω) , 〈x, y〉 := tr {xy}

Observables and Measures

X := Cc(Ω, R) space of continuous function with compact support.

Y := M(Ω) space of Radon measures on Ω.

Remark

X is an ordered, commutative, linear ∗-algebra with ‖x‖∞ = supx(ω)

Y is a module over X ⊂ Y with ‖y‖1 = |〈1, y〉|
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Motivation

Exponential Family

Let {yβ}x be a family of

yβ := eβx y0 , y0 > 0

Normalisation p = y/‖y‖1 for ‖y‖1 = |〈1, y〉| gives

pβ = eβx−Ψ(β) y0

where Ψ(β) := ln〈1, eβx y0〉
Observe that yβ for β > 0 are mutually absolute continuous

y1(E) = 0 ⇐⇒ y2(E) = 0 ∀E ∈ R(Ω)

A number of properties: Rao-Cramer, maximum entropy.
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Motivation

Composite Systems and Transition Kernels

Let Ω = A×B, (A,A), (B,B).

Conditional probability p(Ai | b):

p(Ai | Bj) =
p(Ai ∩Bj)

P (Bj)
, p(Bj) > 0

p(Ai | Bk) is a transition kernel, if it is measurable w.r.t. B, ∀Ai ∈ A.

A function a = f(b) corresponds to deterministic kernel

p(Ai | b) = δf(b)(Ai) =

{
1 if f(b) ∈ Ai

0 otherwise

Observe that

dpβ(a | b) = eβx(a,b)−Ψ(β,b) dp0(a) → δf(b)(a) as β →∞
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Optimisation and Information Utility

Optimisation

Let (Ω,.) be a preference relation (total pre-order).

Let x : Ω → R be a utility representation:

a . b ⇐⇒ x(a) ≤ x(b)

Let (Ω,R, p) be a probability space, and Ep{x} := 〈x, p〉.
Let P(Ω) := {y : y ≥ 0 , ‖y‖1 = 1} be a statistical manifold
Then, for all p, q ∈ P(Ω)

q . p ⇐⇒ Eq{x} ≤ Ep{x}
We can extend (P,.) to (Y, .) by {y : 〈x, y〉 ≥ 0}:

z . y ⇐⇒ 〈x, z〉 ≤ 〈x, y〉

Remark

Ep{x} (〈x, ·〉) is a unique functional such that . on P(Ω) (Y ) is
compatible with the linear structure of Y and Archimedian.

Roman V. Belavkin (Middlesex University) Optimal measures and transition kernels February 11, 2011 10 / 35
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Optimisation and Information Utility

Information

Information distance I : P × P → R+ ∪ {∞} (e.g. distance in
variation, Fisher information metric).

Kullback-Leibler divergence (Kullback, 1959):

IKL := Ep{ln p− ln q} =
〈
ln

p

q
, p

〉

Definition (Information resource)

A closed functional F : Y → R ∪ {∞} such that F (y)|P = I(y, y0).

Example (Relative information)

FKL(y) :=


〈
ln y

y0
, y

〉
− 〈1, y − y0〉 if y > 0 and y0 > 0

〈1, y0〉 if y = 0 and y0 > 0
∞ otherwise
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Optimisation and Information Utility

Utility (Value) of Information

Consider the problem (Shannon, 1948; Jaynes, 1957; Stratonovich,
1965):

sup{Ep{x} : IKL(p.q) ≤ λ}

Related problem:

inf{IKL(p, q) : Ep{x} ≥ υ}

Generalisation: given x ∈ X let x : R → R:

x(λ) := sup{〈x, y〉 : F (y) ≤ λ}

with x(λ) := −∞ if λ < inf F , and ∃x : x(∞) = ∞.

Function x(λ) has inverse

x−1(υ) := inf{F (y) : 〈x, y〉 ≥ υ}
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Useful Facts

Unbounded Information

P(Ω) is a compact, convex set in Y .

Let extP ⊆ ∂P be the set of extreme points δ ∈ P

Proposition

∀x ∈ X, ∃ δx ∈ extP such that

〈x, δx〉 = sup{〈x, p〉 : p ∈ P}

Proof.

∃∆ ⊆ extP : 〈x, δx〉 = sup{〈x, p〉 : p ∈ P} , ∀ δx ∈ ∆

⇐⇒ 〈x, p̄〉 = sup{〈x, p〉 : p ∈ P} , ∀ p̄ ∈ cl co ∆

∆ = ∅ ⇐⇒ 〈x, p̄〉 > 〈x, p〉 , ∀ p ∈ cl co extP
=⇒ p̄ /∈ P (cl co extP = P)
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Useful Facts

Necessary and Sufficient Optimality Conditions

Proposition

Element yβ solves x(λ) := sup{〈x, y〉 : F (y) ≤ λ} iff:

yβ ∈ ∂F ∗(βx) , F (yβ) = λ , β−1 ∈ ∂x(λ) , β−1 > 0
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yβ ∈ ∂F ∗(βx) , F (yβ) = λ , β−1 ∈ ∂x(λ) , β−1 > 0

Proof.
1 The Lagrangian function is

K(y, β−1) = 〈x, y〉+ β−1[λ− F ∗∗(y)]

2 Zero in ∂K(y, β−1) gives the following Kuhn-Tucker conditions:

βx ∈ ∂F ∗∗(yβ) , F ∗∗(yβ) = F (yβ) = λ , β−1 ∈ ∂x(λ)

3 Sufficient by convexity of F ∗∗.
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yβ ∈ ∂F ∗(βx) , F (yβ) = λ , β−1 ∈ ∂x(λ) , β−1 > 0

Example

For FKL(y)

yβ = eβ x y0 =⇒ pβ = eβ x−Ψ(β) y0

If x(a, b) = −1
2(a− b)2, a,b ∈ R1, pβ is Gaussian with σ2 = β−1.
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Useful Facts

Geometric Interpretation

1

0
1

P
3

P1

Convex F (y) = const
Linear 〈x, y〉 = const

The gradient of information
must coincide with the gradient
of the expected utility:

∂〈x, yβ〉 ∈ β−1∂F (yβ)

Optimal solutions are derived
from the above eikonal inclusion

yβ ∈ ∂F ∗(βx)

If F is strictly convex, then yβ is
unique.
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Useful Facts

Geometric Interpretation

1

0
1

P
3

P1

β < 0

β > 0

β = 0

U = sup{〈x, y〉 : F (y) ≤ I}

I = inf{F (y) : 〈x, y〉 ≥ U}

Optimal trajectory The gradient of information
must coincide with the gradient
of the expected utility:
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Useful Facts

Optimal Value Function x(λ)

Proposition

Function x(λ) := sup{〈x, y〉 : F (y) ≤ λ} is concave and strictly increasing
for λ ∈ (inf F, F (δx)).

Proof.

Let yβ1 , yβ2 be solutions for λ1 ≤ λ2.

〈x1 − x2, y1 − y2〉 ≥ 0 , ∀ yi ∈ ∂F ∗(xi)

=⇒ (β2 − β1)〈x, yβ2 − yβ1〉 ≥ 0 , (yβ ∈ ∂F ∗(βx))

=⇒ β1 ≤ β2 , (〈x, yβ2 − yβ1〉 ≥ 0)

=⇒ β−1 ∈ ∂x(λ) is antitone

=⇒ x(λ) is concave

=⇒ x(λ) is strictly increasing if λ ∈ (inf F, F (δx))
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Useful Facts

Zero Solution

Proposition

Let yβ ≥ 0 for all λ = F (y). Then yβ = 0 implies

x = 0 or inf F = F (0) or F (δx) = F (0)

Proof.

Assume x 6= 0 and

inf F < F (0) < F (δx)

=⇒ inf F < F (y1) < F (0) < F (y2) < F (δx) (F is closed)

=⇒ 〈x, y1〉 < 0 < 〈x, y2〉 (x(λ) str.inc.)

=⇒ 〈x+ − x−, y1〉 < 0 < 〈x+ − x−, y2〉 (x+, x− ∈ X+ is reproducing)

=⇒ x+ < x− and x+ > x− (yβ ≥ 0)

=⇒ x = 0
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=⇒ inf F < F (y1) < F (0) < F (y2) < F (δx) (F is closed)

=⇒ 〈x, y1〉 < 0 < 〈x, y2〉 (x(λ) str.inc.)

=⇒ 〈x+ − x−, y1〉 < 0 < 〈x+ − x−, y2〉 (x+, x− ∈ X+ is reproducing)

=⇒ x+ < x− and x+ > x− (yβ ≥ 0)

=⇒ x = 0
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Main Results

Subsets of Measure Zero

σ-algebra R(Ω) ⇐⇒ linear algebra (space) X := Cc(Ω)

Sub-algebra R(E) ⊂ R(Ω) ⇐⇒ sub-algebra (sub-space) M ⊂ X

Measure y(E) = 0 on E ⊂ Ω ⇐⇒ y(M) = 〈x, y〉 = 0, y ∈ M⊥

M⊥ := {y ∈ Y : 〈x, y〉 = 0 , ∀x ∈ M}

Dual of M ⊂ X is factor space M∗ = Y/M⊥ of equivalence classes

[y] ∈ Y/M⊥ , [0] = M⊥

Let PM : X → M ⊂ X be a continuous linear projection.

Then the restriction of F ∗ to M and its dual are

F ∗(x)|M = F ∗(PMx) F ∗∗([y]) := inf{F ∗∗(y) : y ∈ [y]}
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Main Results

Mutual Absolute Continuity

Theorem

Let {yβ}x 3 yβ ≥ 0 for all λ = F (y) and F ∗ strictly convex. Then

1 ∃ {y◦β}x ⊆ {yβ}x such that y◦β are mutually absolutely continuous
∀λ ∈ (inf F, F (δx)).

2 y0 and δx (inf F = F (y0) and sup{〈x, y〉 : y ∈ domF} = 〈x, δx〉) are
absolutely continuous w.r.t. all y◦β.

3 If F ∗∗ is strictly convex, then {y◦β}x = {yβ}x \ {y0, δx}.

Proof.

yβ(M) = 0 ⇐⇒ yβ ∈ [0] ∈ ∂F ∗(βPMx), 0 < β−1 < ∞
PMx = 0 or inf F ∗∗ = F ∗∗([0]) or F ∗∗([δx]) = F ∗∗([0])

∂F ∗∗(y) = {x} implies βPMx = 0, ∀β ∈ R.

∀λ ∈ [inf F, supF ] ∃ yβ ∈ {yβ}x : yβ(M) = 0

Construct {y◦β}x: M = sup{M ′ ⊂ X : ∃ y◦β ∈ {yβ}x, y◦β(M ′) = 0}
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Main Results

Strict Convexity of F ∗

If F ∗ is not strictly convex, then for some x ∈ X

∃β1x 6= β2x ∈ ∂F (yβ)

If x is understood as a utility, then information F does not
‘distinguish’ between β1x or βx2:

F (yβ) = λ ⇐⇒ β1x 6= β2x

Information distance I(y, y0) = F (y) is often required to satisfy the
additivity axiom (Chentsov, 1972):

I(yz, y0z0) = I(y, y0) + I(z, z0)

Hence
∂F (·) = ln(·) and ∂F ∗(·) = exp(·)
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Main Results

Optimal Transition Kernels

Corollary

Let pβ ∈ P(A×B) be solutions ∀λ = F (p). Let F ∗ be strictly convex.
Let p0 ∈ ∂F ∗(0) ⊂ Int(P(A×B)).

Then pβ is deterministic if and only if λ ≥ F (δx) or 〈x, pβ〉 = 〈x, δx〉.

Proof.

(⇒) Assume pβ ⇐⇒ F (pβ) < F (δx) (〈x, pβ〉 < 〈x, δx〉) is deterministic:

pβ(f(Bj) | Bj) = 1 and pβ(A \ f(Bj) | Bj) = 0

=⇒ pβ(A \ f(Bj), Bj) = 0 , pβ /∈ Int(P(A×B))

=⇒ pβ /∈ ∂F ∗(0) , F (pβ) = λ ∈ (inf F, F (δx))

=⇒ pβ(A \ f(Bj), Bj) = 0 , ∀λ ∈ [inf F, supF ]

=⇒ ∃ p0(A \ f(Bj), Bj) = 0 and p0 /∈ Int(P(A×B))

(⇐) obvious.
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Main Results

Strict Inequalities

Corollary

Let pβ ∈ P(A×B) be solutions ∀λ = F (p). Let F ∗ be strictly convex.
Let p0 ∈ ∂F ∗(0) ⊂ Int(P(A×B)).

Then for all deterministic pf ∈ P(A×B):

〈x, pf 〉 < 〈x, pβ〉 F (pf ) = F (pβ) ∈ (inf F, F (δx))

F (pf ) > F (pβ) 〈x, pf 〉 = 〈x, pβ〉 ∈ (υ0, 〈x, δx〉)

Proof.

Based on inequalities (equalities ⇐⇒ pβ ∈ ∂F ∗(βx)):

〈x, y〉 ≤ F ∗(x) + F (y) , F (y) ≥ 〈x, y〉 − F ∗(x)

β〈x, pβ〉 = F ∗(βx) + F (pβ) , F (pβ) = β〈x, pβ〉 − F ∗(βx)
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Example

Example: Motivation

Construct an example, where ∃λ ∈ (inf F, F (δx)) or υ ∈ (υ0, 〈x, δx〉)
and for any deterministic pf

Epf
{x} = −∞ if I(pf , p0) ≤ λ

I(pf , p0) = ∞ if Epf
{x} ≥ υ

Strict inequalities 〈x, pf 〉 < 〈x, pβ〉, F (pf ) > F (pβ) of Corollary 6
would imply that for non-deterministic solution pβ

Epβ
{x} > −∞ and I(pβ, p0) ≤ λ

I(pβ, p0) < ∞ and Epβ
{x} ≥ υ

Roman V. Belavkin (Middlesex University) Optimal measures and transition kernels February 11, 2011 26 / 35



Example

Example: Motivation

Construct an example, where ∃λ ∈ (inf F, F (δx)) or υ ∈ (υ0, 〈x, δx〉)
and for any deterministic pf

Epf
{x} = −∞ if I(pf , p0) ≤ λ

I(pf , p0) = ∞ if Epf
{x} ≥ υ

Strict inequalities 〈x, pf 〉 < 〈x, pβ〉, F (pf ) > F (pβ) of Corollary 6
would imply that for non-deterministic solution pβ

Epβ
{x} > −∞ and I(pβ, p0) ≤ λ

I(pβ, p0) < ∞ and Epβ
{x} ≥ υ

Roman V. Belavkin (Middlesex University) Optimal measures and transition kernels February 11, 2011 26 / 35



Example

Communication Channel

p ∈ P(A×B), where p = p(Ai ∩Bj) = p(Ai | Bj) p(Bj).

No information is communicated if p(Ai | Bj) = p(Ai).
The maximum of information is communicated by deterministic
pf (Ai | b) = δf(b)(Ai), where f is an injective function.
If |f(B)| < |B| (non-injective), then a = f(b) communicates less
information than an injective function.
Constant functions |f(B)| = 1 communicate no information.

Definition (Shannon Information)

FS(p) = IKL(p, q), where p = p(Ai ∩Bj) and q = p(Ai) p(Bj)
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Example
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If |f(B)| < |B| (non-injective), then a = f(b) communicates less
information than an injective function.
Constant functions |f(B)| = 1 communicate no information.

Definition (Shannon Information)

FS(p) = IKL(p, q), where p = p(Ai ∩Bj) and q = p(Ai) p(Bj)

FS(p) :=

∫
A×B

ln

[
dp(a, b)

dp(a) dp(b)

]
dp(a, b)

=

∫
B

dp(b)

∫
A

ln

[
dp(a | b)
dp(a)

]
dp(a | b)

= H(a)−H(a | b)
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FS(pβ) =

∫
A

dp(a)

∫
B

ln
dp(b | a)

dp(b)
dp(b | a)

=

∫
A

dp(a)

∫
B

{
β x(a, b)− ln

∫
B

eβ x(a,b) db− ln
dp(b)

db

}
dp(b | a)

= β Epβ
{x} −Ψ0(β) + H{p(b)}
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Constant functions |f(B)| = 1 communicate no information.

Definition (Shannon Information)

FS(p) = IKL(p, q), where p = p(Ai ∩Bj) and q = p(Ai) p(Bj)

FS(pf ) =

∫
B

dp(b)

∫
A

ln
δ(f(b)− b)

dp(a)
δ(f(b)− b)

= −
∫

B
dp(b) ln

(
dp(f(b))

)
= −

∫
B

dp(b) ln

(
|B|

|f(B)|
dp(b)

)
= ln |f(B)| − ln |B|+ H{p(b)}
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Example

Optimal Mean-Squared Communication

Let a ∈ A, b ∈ (B,B, p) and utility x : A×B → R.

Find p(Ai | b) that maximises

Ep{x} =

∫
A

∫
B

x(a, b) dp(a, b) =

∫
B

dp(b)

∫
A

x(a, b) dp(a | b)

subject to F (p(A ∩B)) ≤ λ.

Assume A = B = R and x : A×B → R is

x(a, b) = −1

2
(a− b)2
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Example

Optimal Constant Function

Let dp(a | b) = dp(a) (no information λ = 0).

Then pf ⇐⇒ f(b) = const (i.e. |f(B)| = 1).

Optimal ā = f(b) can be found from

∇aEp{x} = ∇a

∫
B

x(a, b) dp(b) = 0

For x(a, b) = −1
2(a− b)2 this gives ā = Ep{b} and

Epf
{x} = −1

2

∫
B

(a− b)2 dp(b) ≤ −1

2
Var{b}

If dp(b) = [π(b2 + 1)]−1 db (Cauchy distribution), then

Epf
{x} ≤ −∞
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Example

Optimal Deterministic Kernel

Let dp(a | b) 6= dp(a) (i.e. information λ > 0).

Then pf ⇐⇒ f(b) = a non-constant (e.g. |f(B)| = 2).

Optimal ā = f(b) can be found by maximising

Epf
{x} = −1

2

|f(B)|∑
i=1

∫
Bi

(āi − b)2 dp(b)

If |f(B)| ∈ N and dp(b) = [π(b2 + 1)]−1 db (Cauchy distribution),
then

Epf
{x} ≤ −∞

If |f(B)| = ∞, then a = f(b) communicates infinite information.
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Example

Optimal Non-Deterministic Kernel

Take Shannon information FS(p) = IKL(dp(a, b), dp(a) dp(b)).

Then dpβ(a | b) is exponential, and for x(a, b) = −1
2(a− b)2

dpβ(a | b) =
eβ x(a,b) da∫
A eβ x(a,b) da

=
1√

2πβ−1
e−

1
2
β(a−b)2 da

The expected utility is

Epβ
{x} = −1

2

1√
2πβ−1

∫
B

dp(b)

∫ ∞

−∞
(a− b)2 e−

1
2
β(a−b)2 da

= −1

2

√
2πβ−3√
2πβ−1

∫
B

dp(b) = −1

2
β−1

Lagrange multiplier β−1 is related to FS(p) = λ

β = 2πe1−2[H{p(b)}−λ]

Epβ
{x} > −∞ if H{p(b)} − λ < ∞ or β > 0.
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Example

Another Example

If A = B = N, then any information constraint λ < supF on
a = f(b) implies |f(B)| < ∞.

Take x(a, b) = −1
2(a− b)2 and p(b) in the form

p(b) =
1

b3ζ(3)
=

1

b3
∑

b∈N b−3

Then Epf
{x} = −∞ for all F (pf ) < supF .
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Conclusions

Conclusions

Defined optimal measures in optimisation problems with constraint on
an abstract information resource F (p) ≤ λ.

There are families of mutually absolutely continuous optimal
measures, if the dual F ∗ of information is strictly convex.

Strict convexity of F ∗ is natural in the context of optimisation.

Deterministic transition kernels are strictly sub-optimal if information
is bounded.

There exist examples when Ep{x} = −∞ for any deterministic kernel
satisfying information constraint.

No contradiction with theory of optimal statistical decisions.
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