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Deterministic : maximise f(x).
Stochastic : maximise E,{f(z)} = " f(x) p(z).
Adaptive : estimate p(z) and maximise E,{f(z)}.
@ Learning, evolving and adaptive systems:

Performance Information

@ In practice, stochastic and non-deterministic algorithms are generally
more successful (e.g. simulated annealing, genetic algorithms).
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o Let {yg}, be a family of

ﬁxy()? Z/0>0

Yp = €
e Normalisation p = y/||y||1 for ||y|l1 = [{(1,y)| gives

_ Be-¥(P)

ps Yo

where W(3) := In(1, €% )
@ Observe that yg for 3 > 0 are mutually absolute continuous

n(£)=0 <= p(E)=0 VEeR(Q)

@ A number of properties: Rao-Cramer, maximum entropy.
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o p(A; | By) is a transition kernel, if it is measurable w.r.t. B, V A4; € A.
@ A function a = f(b) corresponds to deterministic kernel

1 if £(b) € A
p(Ai | b) =05y (Ai) = { 0 otherwise

@ Observe that

dps(a | b) = Pr(a.b)—V(B.b) dpo(a) — 5f(b)(a) as 3 — oo
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Optimisation and Information Utility
Optimisation
o Let (Q, <) be a preference relation (total pre-order).
o Let z: 2 — R be a utility representation:
asb << z(a) <z(b)

o Let (2, R,p) be a probability space, and E,{z} := (z,p).
o Let P(Q) :={y:y >0, ||y]l1 =1} be a statistical manifold
@ Then, for all p, ¢ € P(Q2)

¢Sp = Eifa} <Ep{z}
@ We can extend (P, ) to (Y, <) by {y: (z,y) > 0}:
Sy = (z2) < (2,9

Remark

Ep{z} ((x,-)) is a unique functional such that < on P(Q) (Y') is
compatible with the linear structure of Y and Archimedian.
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Information

o Information distance I : P x P — R4 U {oo} (e.g. distance in
variation, Fisher information metric).

o Kullback-Leibler divergence (Kullback, 1959):

Ik, =Ey{lnp—Ing} = <In Q,p>
q

Definition (Information resource)

A closed functional F': Y — R U {oo} such that F'(y)|p = I(y,vo)-

Example (Relative information)

<In%,y>—(1,y—yo> if y>0andyy >0

Frro(y) =9 (1, y0) ify=0and yo >0
00 otherwise
v
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Utility (Value) of Information

e Consider the problem (Shannon, 1948; Jaynes, 1957; Stratonovich,
1965):
sup{Ep{z} : Ikr(p.q) < A}

@ Related problem:
inf{IxL(p,q) : Ep{x} > v}
@ Generalisation: given z € X let 7 : R — R:
T(A) = sup{(z,y) : F(y) < A}

with Z(\) := —o0 if A <inf F, and 3z : T(00) = o0.

@ Function () has inverse

7 1(v) = inf{F(y) : (z.y) = v}
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@ Let ext’P C OP be the set of extreme points § € P

Proposition
Vz e X, 39, € extP such that

(x,8,) = sup{{x,p) : p € P}

Proof
JA CextP (x,05) = sup{{z,p) :pe P}, Vo, € A
<~ (x,p) =sup{(x,p) :pe P}, VpeclcoA
A=) <= (z,p)> (x,p), Vp€EclcoextP
= p¢P (clcoext P = P)
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Necessary and Sufficient Optimality Conditions

Proposition
Element yg solves T(\) 1= sup{(z,y) : F(y) < A} iff:

ys € OF*(Bx), F(ys)=X, B reoz(r), B'>0
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Necessary and Sufficient Optimality Conditions

Proposition
Element yg solves T(\) 1= sup{(z,y) : F(y) < A} iff:

ys € OF*(Bx), F(ys)=X, B reoz(r), B'>0

Proof.
@ The Lagrangian function is

K(y, 87 = (z, ) + BTN = F*(y)]

@ Zero in OK(y, 371) gives the following Kuhn-Tucker conditions:

Bx € OF™(yg), F*™(ys)=F(ys) =X, B~ e€oz())
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Useful Facts

Necessary and Sufficient Optimality Conditions

Proposition
Element yg solves T(\) 1= sup{(z,y) : F(y) < A} iff:

ys € OF*(Bx), F(ys)=X, B reoz(r), B'>0

Proof.
@ The Lagrangian function is

K(y,57Y) = (,y) + 67 A = F*(y)]
@ Zero in OK(y, 371) gives the following Kuhn-Tucker conditions:
Bx € OF*(yg), F**(ys)=F(ys) =X, B 'eaz())

© Sufficient by convexity of F™**.
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Proposition
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Useful Facts

Necessary and Sufficient Optimality Conditions

Proposition
Element yg solves T(\) 1= sup{(z,y) : F(y) < A} iff:

ys € OF*(Bx), F(ys)=X, B reoz(r), B'>0

Example

o For FKL(Z/)

yp=e%yy = pg=elTVy,

o If z(a,b) = —3(a—b)?, a,b € R, pg is Gaussian with 0% = 371,
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Convex F'(y) = const

Linear (z, y) = const — ——
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> must coincide with the gradient
VR

ﬁ\\ of the expected utility:

Convex F'(y) = const
Linear (z, y) = const — ——

Az, yz) € B TOF (yp)
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Convex F'(y) = const

Linear (z, y) = const — ——

S
7/
ﬁ"\
7/
f\,\
7
7/
7/
7
7 7
7/
7/

4

P3

’
4

N

Roman V. Belavkin (Middlesex University)

Optimal measures and transition kernels

@ The gradient of information
must coincide with the gradient
of the expected utility:

Az, yz) € B TOF (yp)

@ Optimal solutions are derived
from the above eikonal inclusion

yg € OF*(px)
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Useful Facts

Geometric Interpretation

\ Optimal trajectory -----
\

\ U = sup{(z,y) : F(y) < I}
/ I =inf{F(y): (z,y) > U}

P3
AN
N

Py

Roman V. Belavkin (Middlesex University)

@ The gradient of information
must coincide with the gradient
of the expected utility:

Az, yz) € B TOF (yp)

@ Optimal solutions are derived
from the above eikonal inclusion

yp € OF"(Bx)

o If F'is strictly convex, then yg3 is
unique.
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Useful Facts

Optimal Value Function T(\)

Proposition

Function T(\) := sup{(z,y) : F(y) < A} is concave and strictly increasing
for X € (inf F, F(05)).
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Proposition

Function T(\) := sup{(z,y) : F(y) < A} is concave and strictly increasing
for X € (inf F, F(05)).

Proof.
Let yg,, Y3, be solutions for A\; < As.

(x1 —x2,y1 —y2) >0, Vy; € OF*(x;)

v
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Useful Facts

Optimal Value Function T(\)

Proposition

Function T(\) := sup{(z,y) : F(y) < A} is concave and strictly increasing
for X € (inf F, F(05)).

v

Proof.
Let yg,, Y3, be solutions for A\; < As.
(x1 —x2,y1 —y2) >0, Vy; € OF*(x;)
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Let yg,, Y3, be solutions for A\; < As.
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Function T(\) := sup{(z,y) : F(y) < A} is concave and strictly increasing
for X € (inf F, F(05)).

v

Proof.

Let yg,, Y3, be solutions for A\; < As.
(x1 —x2,y1 —y2) >0, Vy; € OF*(x;)
(B2 = Bu){@,ys, —yp) =0, (yp € OF"(Bz))
,81 S/B27 (<$?yﬁz_yﬁ1> 20)

B~ € 9x()) is antitone
Z()\) is concave
Z()) is strictly increasing if A € (inf F, F'(6,))
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Let yg > 0 for all A\ = F(y). Then yg = 0 implies

x=0 or infF=F() or F(é;)=F(0)

Proof.
Assume = # 0 and

inf FF < F(0) < F(0z)
= inf FF < F(y1) < F(0) < F(y2) < F(6z) (F is closed)
= (z,y1) <0 <(2,12) (Z(A) str.inc.)
= (7o) <O0<{zy—z_,p2)
— (

ry <x_ and xzy >x_ yg > 0)
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Useful Facts

Zero Solution

Proposition
Let yg > 0 for all A\ = F(y). Then yg = 0 implies

x=0 or infF=F() or F(é;)=F(0)

Proof.
Assume = # 0 and

inf ¥ < F(0) < F(6)
= inf FF < F(y1) < F(0) < F(y2) < F(6z) (F is closed)
= (T, y1) < 0 < (z,92) (Z(A) str.inc.)
= (xy —2_,y1) <0< (xy —2_,92) (z4+,x_ € X4 is reproduc
= x4 <xz_— and x4y >az_ (
_—

z=0
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Subsets of Measure Zero

o o-algebra R(Q) <= linear algebra (space) X := C.()
e Sub-algebra R(F) C R(Q2) <= sub-algebra (sub-space) M C X
o Measure y(E) =0on ECQ += y(M) = (z,y)=0,y€ M~+

M+t ={yeY:(x,y)=0,Vzec M}
e Dual of M C X is factor space M* =Y /M~ of equivalence classes

yleY/M*-,  [0]=M"

Let Py : X — M C X be a continuous linear projection.
@ Then the restriction of F* to M and its dual are

F @)l = F*(Pyx)  F7([y]) = inf{F™(y) -y € [y}
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Mutual Absolute Continuity

Theorem

Let {yg}s 2 yg > 0 for all \ = F'(y) and F* strictly convex. Then

Q I{yj}te C {yp}e such that yj are mutually absolutely continuous
VA e (inf F, F(d;)).

@ yo and 0, (inf F = F(yo) and sup{(z,y) : y € domF} = (x,0,)) are
absolutely continuous w.r.t. all yg.

© If F** is strictly convex, then {y3}. = {ys}s \ {¥0, 02}

Proof.
o y3(M) =0 < yg€[0] € OF*(BPyx), 0< B <00
@ Pyrz =0 or inf F** = F**([0]) or F™*([d,]) = F**([0])
e OF**(y) = {x} implies BPyz =0, V3 € R.
o VA€ [inf FisupF] Jyg € {ys}s : yg(M) =0
o Construct {y3},: M =sup{M' C X : 3yj € {ys}s, y3(M') =0}

Roman V. Belavkin (Middlesex University) ~ Optimal measures and transition kernels February 11, 2011 21 /3




Main Results

Strict Convexity of F™
o If F'* is not strictly convex, then for some x € X

31z # Baz € OF (yp)

Roman V. Belavkin (Middlesex University) ~ Optimal measures and transition kernels February 11, 2011 22 /35



Main Results

Strict Convexity of F™
o If F'* is not strictly convex, then for some x € X

Jb1x # Pox € 8F(y5)

o If x is understood as a utility, then information F' does not
‘distinguish’ between p1x or Bxo:

Flys) =\ <= [z # fox

Roman V. Belavkin (Middlesex University) ~ Optimal measures and transition kernels February 11, 2011 22 /35



Main Results
Strict Convexity of F™
o If F'* is not strictly convex, then for some x € X

Jb1x # Pox € 8F(y5)

o If x is understood as a utility, then information F' does not
‘distinguish’ between p1x or Bxo:

Flys) =\ <= [z # fox

e Information distance I(y,yo) = F'(y) is often required to satisfy the
additivity axiom (Chentsov, 1972):

I(yz,9020) = 1(y,y0) + I(2, 20)

Roman V. Belavkin (Middlesex University) ~ Optimal measures and transition kernels February 11, 2011 22 /35



Main Results
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o If F'* is not strictly convex, then for some x € X

Jb1x # Pox € 8F(y5)

o If x is understood as a utility, then information F' does not
‘distinguish’ between p1x or Bxo:

Flys) =\ <= [z # fox

e Information distance I(y,yo) = F'(y) is often required to satisfy the
additivity axiom (Chentsov, 1972):

I(yz,9020) = 1(y,y0) + I(2, 20)

@ Hence
OF(-)=In(-) and OF*(:) =exp(-)
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Main Results

Optimal Transition Kernels

Corollary

Let pg € P(A x B) be solutions ¥V X\ = F(p). Let F* be strictly convex.
Let po € OF*(0) C Int(P(A x B)).
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Then pg is deterministic if and only if X\ > F(6.) or (x,pg) = (x,04).

Proof.
(=) Assume pg <= F(pg) < F(0z) ({x,pg) < (x,0s)) is deterministic:

ps(f(Bj) | Bj) =1and pg(A\ f(Bj) | Bj) =0
= pp(A\ f(B;),Bj) =0, pg¢Int(P(Ax B))
= ppg ¢ OF*(0), F(pg)= A€ (inf F,F(d))
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(=) Assume pg <= F(pg) < F(0z) ({x,pg) < (x,0s)) is deterministic:

ps(f(Bj) | Bj) =1and pg(A\ f(B;) | B;) =0
ps(A\ f(Bj), Bj) =0, pg ¢ Int(P(A x B))
pg € OF7(0), F(pg) = A € (inf F, F(05))
pa(A\ f(Bj),Bj) =0, VA € [inf F,sup F|
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Optimal Transition Kernels
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Let ps € P(A x B) be solutions VA = F(p). Let F* be strictly convex.
Let pg € OF*(0) C Int(P(A x B)).
Then pg is deterministic if and only if X\ > F(6.) or (x,pg) = (x,04).

Proof.
(=) Assume pg <= F(pg) < F(0z) ({x,pg) < (x,0s)) is deterministic:
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3Ipo(A\ f(Bj), Bj) =0 and po ¢ Int(P(A x B))
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Let pg € OF*(0) C Int(P(A x B)).
Then for all deterministic py € P(A x B):
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Let ps € P(A x B) be solutions VA = F(p). Let F* be strictly convex.
Let pg € OF*(0) C Int(P(A x B)).
Then for all deterministic py € P(A x B):

(x,py) <(z,ps)  F(pr) = F(pg) € (inf F, F(5))
F(ps) > F(pg)  (x,pf) = (x,pp) € (Vo, (z,0z))
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Main Results

Strict Inequalities

Corollary

Let ps € P(A x B) be solutions VA = F(p). Let F* be strictly convex.
Let po € OF*(0) C Int(P(A x B)).
Then for all deterministic py € P(A x B):

(x,py) <(z,ps)  F(pr) = F(pg) € (inf F, F(5))
F(ps) > F(ps)  (z,pg) = (x,pp) € (Vo, (2, 0z))

Proof.
Based on inequalities (equalities <= pg € 0F*(Bx)):

(,y) < F () + F(y), F(y) > (z,y) — F*(2)
Blx,ps) = F*(Bx) + F(ps),  F(ps) = Bz, ps) — F*(Bx)

- e e o . 0l
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Example

Example: Motivation

o Construct an example, where 3\ € (inf F, F'(d;)) or v € (Do, (z,dz))
and for any deterministic p

Ep{z} = —c0  if I(ps,po) < A
I(pf,po) = o0 iprf{:U}ZU
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Example: Motivation

o Construct an example, where 3\ € (inf F, F'(d;)) or v € (Do, (z,dz))
and for any deterministic p

Ep{z} = —c0  if I(ps,po) < A
I(pf,po) = o0 iprf{x}ZU

e Strict inequalities (z,ps) < (x,pg), F'(py) > F(pg) of Corollary 6
would imply that for non-deterministic solution pg

Ep,{z} > —oco  and I(pg, po) < A
I(pg,po) < oo  and Ep {z} >v
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Example

Communication Channel
e p e P(A x B), where p = p(A; N Bj) = p(A; | Bj)p(Bj).
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@ No information is communicated if p(4; | B;) = p(4;).
@ The maximum of information is communicated by deterministic
pr(A; | b) = d¢)(Ai), where f is an injective function.

o If |f(B)| < |B| (non-injective), then a = f(b) communicates less
information than an injective function.

e Constant functions | f(B)| = 1 communicate no information.

Definition (Shannon Information)

Fs(p) = Ikr(p, q), where p = p(A; N Bj) and ¢ = p(A;) p(B;)
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e p e P(A x B), where p = p(A; N Bj) = p(A; | Bj)p(Bj).

@ No information is communicated if p(4; | B;) = p(4;).

@ The maximum of information is communicated by deterministic
pr(A; | b) = d¢)(Ai), where f is an injective function.

o If |f(B)| < |B| (non-injective), then a = f(b) communicates less
information than an injective function.

e Constant functions | f(B)| = 1 communicate no information.

Definition (Shannon Information)
Fs(p) = Ik L(p, q), where p = p(A; N Bj) and ¢ = p(A4;) p(B;)

Fs(p) = /AxBln [dp(a’b)] dp(a, b)

dp(a) dp(b)
_ dp(a | ) "
= [ ) [ [dp(a) ]dp< 5)
_ H(a)— H(a|b)
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o If |f(B)| < |B| (non-injective), then a = f(b) communicates less
information than an injective function.

e Constant functions | f(B)| = 1 communicate no information.

Definition (Shannon Information)

Fs(p) = Ikr(p, q), where p = p(A; N Bj) and ¢ = p(A;) p(B;)

B dp(b|a) ,
Fs(o) = [ dpta) [ B e o

BEp;{x} — Vo(B) + H{p(b)}

/Adp(a)/B{B;v(a,b)—ln/Beﬁx(a’b) db—lndz;(bb)} dp(b | a

v
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Communication Channel

e p e P(A x B), where p = p(A; N Bj) = p(A; | Bj)p(Bj).
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information than an injective function.

e Constant functions | f(B)| = 1 communicate no information.

Definition (Shannon Information)

Fs(p) = Ikr(p, q), where p = p(A; N Bj) and ¢ = p(A;) p(B;)

Fsop) = [ antt) [ an&(ﬂb)—b)

— —/de(b) In(dp(f(b))) =—/de(b) In <,}£3‘),dp(b)>

= In|f(B)| = In|B| + H{p(b)}

v

Roman V. Belavkin (Middlesex University) Optimal measures and transition kernels February 11, 2011

27 /35



Example

Optimal Mean-Squared Communication

o letac A, be (B,B,p) and utility z : A x B— R.
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Example

Optimal Mean-Squared Communication

o letac A, be (B,B,p) and utility z : A x B— R.
e Find p(A; | b) that maximises

Bo(o} = [ [ stenapar) = [ ao) [ senipfal)

subject to F(p(AN B)) < A.
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Example

Optimal Mean-Squared Communication

o letac A, be (B,B,p) and utility z : A x B— R.
e Find p(A; | b) that maximises

Bylo} = [ [ stanyanian) = [ o) [ stan)apta )

subject to F(p(AN B)) < A.
@ Assume A=B=Randxz: Ax B —Ris

#(a,D) = —5(a )
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Example

Optimal Constant Function

e Let dp(a | b) = dp(a) (no information A = 0).
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B

e For z(a,b) = —3(a — b)? this gives a = E,{b} and
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Roman V. Belavkin (Middlesex University) ~ Optimal measures and transition kernels February 11, 2011 29 / 35



Example

Optimal Constant Function

e Let dp(a | b) = dp(a) (no information A = 0).
o Then ps <= f(b) = const (i.e. [f(B)| =1).
e Optimal @ = f(b) can be found from

VoEp{z} =V, /B x(a,b)dp(b) =0
e For z(a,b) = —3(a — b)? this gives a = E,{b} and
By o) = =5 [ (a=02dp0) < —Var(t)

If dp(b) = [7(b* + 1)] db (Cauchy distribution), then

Ep{z} < —o0
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Example

Optimal Deterministic Kernel

o Let dp(a | b) # dp(a) (i.e. information A > 0).
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Example

Optimal Deterministic Kernel

o Let dp(a | b) # dp(a) (i.e. information A > 0).
e Then py <= f(b) = a non-constant (e.g. |f(B)| = 2).
e Optimal @ = f(b) can be found by maximising

|f(B)]
B, {2} = — > JRCEDREC

o If |[f(B)| € N and dp(b) = [r(b* + 1)] "t db (Cauchy distribution),
then
Epf{:v} < —o0
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Example

Optimal Deterministic Kernel

Let dp(a | b) # dp(a) (i.e. information A > 0).
Then py < f(b) = a non-constant (e.g. |f(B)| = 2).

Optimal @ = f(b) can be found by maximising

1 (B

B, {2} = — > JRCEDREC

If |f(B)| € N and dp(b) = [r(b?> + 1)]7 db (Cauchy distribution),
then
Epf{:v} < —o0

If | f(B)| = oo, then a = f(b) communicates infinite information.
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Example

Optimal Non-Deterministic Kernel

e Take Shannon information Fs(p) = Ixr(dp(a,b),dp(a)dp(b)).
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Example

Optimal Non-Deterministic Kernel

e Take Shannon information Fs(p) = Ixr(dp(a,b),dp(a)dp(b)).

@ Then dps(a | b) is exponential, and for z(a,b) = —3(a — b)?

ePr(ab) gq 1

- fA cBr(ab) dg 2731

dps(a | b) e 2P0 g

Roman V. Belavkin (Middlesex University) Optimal measures and transition kernels February 11, 2011

31/35



Example

Optimal Non-Deterministic Kernel

e Take Shannon information Fs(p) = Ixr(dp(a,b),dp(a)dp(b)).

@ Then dps(a | b) is exponential, and for z(a,b) = —3(a — b)?

eBead) dq 1

f eﬁa: a,b) da /27_‘_571

@ The expected utility is

dps(a | b) = e 2P0 g

a—b “b)2da

1 1

Epsfzt = _2W/ / (
LV2OZ [ gy = ~2pt
Nl >
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e Take Shannon information Fs(p) = Ixr(dp(a,b),dp(a)dp(b)).

@ Then dps(a | b) is exponential, and for z(a,b) = —3(a — b)?

eBead) dq 1

f eﬁa: a,b) da /27_‘_571

@ The expected utility is

dps(a | b) = e 2P0 g

a—b “b)2da

1 1
i - Lk o]
pg{ } 2 \/W (
1\/271'63 ():—7/3_1
2, /2m 31 2
e Lagrange multiplier 371 is related to Fs(p) = A
B = 2mel2H {p(0)}=A]
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Optimal Non-Deterministic Kernel

e Take Shannon information Fs(p) = Ixr(dp(a,b),dp(a)dp(b)).

@ Then dps(a | b) is exponential, and for z(a,b) = —3(a — b)?

eBead) dq 1

f eﬁa: a,b) da /27_‘_571

@ The expected utility is

dps(a | b) = e 2P0 g

a—b “b)2da

1 1
E,,{t} = —z——
pleh = 7 W/ JN
LV [ ey = —Lp1
2, /2m 31 2
e Lagrange multiplier 371 is related to Fs(p) = A
3 = 2mel~2AH{p(0)} -
o Ey {r} > —ocoif H{p(b)} — A <ooor3>0.
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Example

Another Example

o If A= B =N, then any information constraint A < sup F' on
a = f(b) implies | f(B)| < oc.
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Example

Another Example

o If A= B =N, then any information constraint A < sup F' on
a = f(b) implies | f(B)| < oc.
o Take z(a,b) = —3(a — b)? and p(b) in the form

1 1
TBB) Py

® Then E, {r} = —ooc for all F(py) <supF.

p(b)
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is bounded.

There exist examples when E,{z} = —oo for any deterministic kernel
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Conclusions

Conclusions

Roman V.

Defined optimal measures in optimisation problems with constraint on
an abstract information resource F'(p) < A.

There are families of mutually absolutely continuous optimal
measures, if the dual F* of information is strictly convex.

Strict convexity of F™* is natural in the context of optimisation.

Deterministic transition kernels are strictly sub-optimal if information
is bounded.

There exist examples when E,{z} = —oo for any deterministic kernel
satisfying information constraint.

No contradiction with theory of optimal statistical decisions.
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