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Abstract

The ways of modelling some of the most profound effects of emotion and arousal on cognition are discussed.
Entropy reduction is used to measure quantitatively the learning speed in a cognitive model under different
parameters’ conditions. It is noticed that some settings facilitate the learning in particular stages of problem
solving more than others. The entropy feedback is used to control these parameters and strategy, which in
turn improves greatly the learning in the model as well as the model match with the data. This result may
explain the reasons behind some of the neurobiological changes, associated with emotion and its control of
the decision making strategy and behaviour.

1 Introduction

It is popular to believe now that emotion is an impor-
tant (if not essential) component of intelligence (Salovey
and Mayer, 1990). This is, however, hard to prove unless
some quantitative methods are introduced that will allow
us to evaluate such claims in an experiment. An example
of such an experiment could be a competition between
several agents, with architectures incorporating various
theories of emotion and cognition. In practice, however,
the results of such an experiment would be very hard to
interpret because of the great number of components (e.g.
perception, memory, planning, action, etc) involved in the
agents’ architectures.

The research described in this paper pursues a different
approach by studying the effects of emotion on decision
making and learning. Using entropy reduction as a quan-
titative measure of learning allows for a better analysis
and comparison of the results from different experiments.

The ability to learn is one of the most important fea-
tures of intelligent systems. While leaving to philoso-
phers the question of what is the purpose of learning, let
us assume that this process is beneficial to intelligent sys-
tems, and the faster and more effectively it occurs the
better. From information theory point of view learning
is equivalent to reducing the uncertainty (entropy) about
the environment and the system itself within this envi-
ronment. Many areas of artificial intelligence have al-
ready successfully employed the mathematical apparatus
of information theory, which advanced greatly the neural
networks learning algorithms, search methods and case–
based reasoning systems. Recently, the notions of infor-
mation and entropy have been applied to analyse and con-
trol cognitive models (Belavkin and Ritter, 2003). In par-
ticular, it became possible for the models implemented in
hybrid cognitive architectures, such as ACT–R (Anderson
and Lebiere, 1998), which mixes the high level symbolic

processing with the low level subsymbolic computations
accounting for fuzzy or probabilistic properties of cogni-
tion.

The comparison of model results with data (e.g. from
human subjects or animals) is one of the most important
aspects of the cognitive modelling research. A cognitive
model of a classical animal learning experiment will be
used in this study to evaluate theoretical predictions.

In the next Section, the most general effects of basic
emotions and arousal on behaviour will be discussed and
grounded in the relevant literature. The ambiguity of the
term emotion will be avoided by replacing it with the prin-
ciple components of emotions.

The notion of entropy and its application to cognitive
models will be discussed in Section 3. This section will
repeat some of the previous work (Belavkin and Ritter,
2003). Section 4 will highlight how speed of learning in
the model varies as a function of some parameters in the
architecture. These parameters (namely the noise vari-
ance and goal value used in decision making mechanism)
have been used before to simulate different levels of moti-
vation and arousal (Lovett and Anderson, 1996; Anderson
and Lebiere, 1998; Belavkin, 2001). The entropy reduc-
tion will be used to measure the speed of learning in the
model.

Section 5 will discuss the idea of using the entropy of
success as a feedback parameter to control the decision
making mechanism of the architecture. It will be shown
how the entropy evaluating model’s own performance
moderates the choice strategy and controls the behaviour
making it more adaptable. In addition, the model’s match
with the data improves, which supports the idea that a
similar strategy control takes place in subjects. Some
more speculative ideas about the role of emotion in eval-
uating the entropy and controlling the behaviour will be
discussed in the end of the paper.



2 The Principle Components of
Emotions

The important role of emotion in cognition has been ex-
tensively discussed in the literature, particularly over the
last two decades (Salovey and Mayer, 1990; Damasio,
1994; LeDoux, 1996). Despite the great interest in the
subject of emotion across several disciplines of science,
there is still a lack of understanding and clear definition of
what emotion actually is. Psychologists and philosophers
still cannot agree on some of the fundamental points in
the subject, such as what comes first: Feelings or thought?
(Schachter and Singer, 1962; Zajonc, 1980).

This ambiguity is multiplied when one attempts to inte-
grate emotion into a unified theory of cognition, and into
its computational implementations, such as ACT–R (An-
derson and Lebiere, 1998) or SOAR (Newell, 1990). The
need to include emotion into cognitive models, however,
is rarely disputed (Simon, 1967). With the existence of
many computational models of affect (see Hudlicka and
Fellous (1996) for a review) and even a greater number of
different emotions (Lambie and Marcel, 2002), the prob-
lem seems to be intractable. However, the dimensionality
can be reduced if we concentrate our research on measur-
able and the more consistent features of the phenomena,
or what we shall call the principle components of emo-
tions.

Probably the most common measure of various emo-
tional experiences is valence indicating whether an emo-
tion is positive or negative. Cannon (1929) argued that all
emotions can be classified into ‘fight or flight’, which is
probably not far from the truth. Another important mea-
sure is arousal, or the intensity of emotional experience.
Arousal is a broad term covering a variety of phenomena,
but generally it is associated with different levels of ac-
tivation of the autonomic nervous system (ANS), and it
can be influenced by external or internal stimulation in-
cluding emotion (Humphreys and Revelle, 1984). As has
been shown by Russell (1983, 1989), valence and arousal
are the two most common dimensions in classifications of
emotions, and they are included in many other classifica-
tions (Plutchik, 1994).

Both valence and arousal are measurable and even pre-
dictable. Indeed, negative emotions occur when we ex-
perience a failure in achieving a particular goal. On the
contrary, a success is accompanied by positive emotions.
Arousal can be either measured directly in subjects (e.g.
using galvanic skin response), or predicted based on the
strength of the stimuli (e.g. reward or penalty). There-
fore, in this paper, when discussing the role of emotion in
cognition, we shall concentrate on the effects of arousal
and valence, and we shall not consider other aspects of
the phenomenon, such as particular emotions or their role
in social interaction and so on.

On an individual level, emotion is known to play a
role in different aspects of cognition, such as perception,
memory, action and learning (LeDoux, 1996). There is

quite a lot of experimental evidence suggesting the re-
lation between arousal and cognitive performance. For
example, the studies of the inverted–U effect showed
the relation between arousal and the speed of learning
(Yerkes and Dodson, 1908; Mandler and Sarason, 1952;
Matthews, 1985). Another series of experiments showed
how the expectation of positive or negative outcomes may
change the decision making strategy (Tversky and Kah-
neman, 1981; Johnson and Tversky, 1983). Below is the
summary of some effects of valence and arousal that can
be useful in designing a cognitive model:

• Positive valence is associated with success, choice
involving gains and risk aversive behaviour. Nega-
tive valence is associated with failure, choice involv-
ing losses, and the behaviour is usually more risk
taking (Tversky and Kahneman, 1981; Johnson and
Tversky, 1983).

• Low arousal is associated with low level of stimula-
tion or motivation, actions requiring less efforts are
more likely. High arousal is associated with high
level of stimulation or motivation, actions involv-
ing more efforts are more probable (Humphreys and
Revelle, 1984).

It has been suggested before (and will be discussed in
Section 4 of this paper) how to achieve the above types
of behaviour in cognitive models using parameters ma-
nipulation (Belavkin, 2001). The speed of learning in the
model under these parameters settings will be measured
by means of entropy reduction. In the next section, we
discuss some definitions of entropy and an example of
calculating it in a cognitive model.

3 Information and Learning

Learning is one of the most important characteristics of
intelligence. It allows a subject or a system to improve
the performance in certain tasks or class of problems. The
most obvious measure of such an improvement is an in-
crease of success rate, or equivalently a reduction of fail-
ures (errors). Ultimately, learning reduces the uncertainty
of the outcome with the success being a more probable.
Thus, entropy reduction could be a convenient measure of
learning. However, in practice it is impossible to measure
directly in subjects the parameters necessary for entropy
computations (e.g. synaptic weights), and traditionally
learning is judged based on external observations (i.e. the
reduction of errors such as shown on Figure 1).

Unlike the brains of subjects, however, cognitive ar-
chitectures allow for a relatively easy access to all the
internal variables. This opened a possibility to measure
the learning in cognitive models directly by calculating
the entropy change or information (Belavkin and Ritter,
2003). The advantage of using entropy is that it provides
a compact display of the internal changes in a model as



a result of learning, which may not always have exter-
nal manifestations. In this section, the use of entropy to
describe learning in intelligent systems will be described
and shown on an example of a cognitive model.

3.1 Entropy and surprise

In the most general case, entropy H is a monotonic func-
tion describing the complexity (or uncertainty) of a sys-
tem, such as H = lnM , where M is the number of states
a system can be in. This canonical definition assumes
no information about the probabilities of individual states.
If, however, we know the probabilities P (ξ) of different
(random) states ξ, then the entropy can be calculated as:

H(ξ) = −E{lnP (ξ)} = −
∑

ξ

P (ξ) lnP (ξ) , (1)

where E{·} denotes the expected value operator. If all
states ξ are equally probable, then entropy (1) equals
lnM , and it corresponds to the maximum value of H
for given M . Thus, the uncertainty can be reduced if by
means of Bayesian estimation we find out which states
have greater likelihood. Shannon (1948) defined infor-
mation as the difference between entropy before and after
an observation of some event y:

I(x, y) = H(x) − H(x | y)

Here, x denotes some variable, the information about
which is received indirectly through observation of y.

Interestingly, information and entropy have been used
before to explain one basic emotion — surprise. Indeed,
the lower is the probability P of event ξ, the greater is
the amount of information − lnP (ξ) received when this
event happens (i.e. the greater is the surprise). This early
observation points to the possibility that our nervous sys-
tem and body reacts to the amount of information re-
ceived, and the feedback seems to be proportional to this
amount. Note, however, that surprise can be positive as
well as negative, and the reaction can be different in each
case. In this paper, we shall look more carefully into the
nature of such a feedback, and investigate using a cogni-
tive model whether this feedback is beneficial for an in-
telligent system (i.e. helps in learning and adaptation).

3.2 Uncertainty of success

It is quite difficult to estimate the entropy of a large sys-
tem with many states (e.g. a cognitive model). How-
ever, for an intelligent system it is possible to look at the
problem from a different perspective: The uncertainty of
whether it achieves the goal or not (Belavkin and Ritter,
2003). The entropy of success has been defined as

HSF = − [P (F) ln P (F) + P (S) lnP (S)] , (2)

where P (S) is the probability of success in achieving the
goal, and P (F) is the probability of failure. Note that

P (F) = 1−P (S). If a system (e.g. a cognitive model) has
to choose from a set of n alternative decisions to achieve
the goal, then the probability of success is:

P (S) =
n∑

i=1

P (S, i) =
n∑

i=1

P (S | i)P (i) , (3)

where P (S, i) is the joint probability of successful out-
come and ith decision, P (S | i) is the conditional prob-
ability of success given that ith decision has been made,
and P (i) is the probability of ith decision. Thus, to cal-
culate the entropy of success HSF, one should estimate
probabilities P (S | i) and P (i), which depend on specific
architectural implementation (i.e. SOAR, ACT–R, neural
networks, etc).

Conditional probabilities P (S | i) represent the prior
knowledge about the likelihood to achieve a success, if
certain decisions (and associated actions) are taken. Note
that a problem solver may not be aware of or not consid-
ering some decisions initially. However, the number of
decisions n to choose from may increase with time as the
result of learning. Probability P (i) depends on the way
the decision making (e.g. rule selection algorithm) is im-
plemented. Thus, P (i) is more related to the architecture
rather than the knowledge of a system. As an example, let
us consider the ACT–R cognitive architecture (Anderson
and Lebiere, 1998).

3.3 Computation of entropy in ACT–R

ACT–R (Anderson and Lebiere, 1998) is a general pur-
pose hybrid cognitive architecture for developing cogni-
tive models that can vary from simple reaction tasks to
simulations of pilots navigating airplanes and operators
of airtraffic control systems. ACT–R follows the approach
of unified theories of cognition (Newell, 1990), in which
several theories about different aspects of cognition are
used in a single simulation system. Today, ACT–R has
emerged as the architecture of choice for many cognitive
modelling problems.

In ACT–R, decisions are encoded in a form of produc-
tion rules, and during the model run the number of suc-
cesses and failures of each rule is recorded by the archi-
tecture. This information is used to estimate empirically
the probabilities P (S | i) of success for ith rule:

P (S | i) ≈ Pi =
Successesi

Successesi + Failuresi
. (4)

Here Pi is statistics of ith rule. In addition, ACT–R

records the efforts (i.e. time) spent after executing the rule
and actually achieving the goal (or failing). This informa-
tion is used to calculate the average cost Ci of ith rule.
Parameters Pi and Ci represent subsymbolic information
about the decisions, and can be learned statistically. On
symbolic level, a model can learn new rules as well as
new facts used by these rules.

When several alternative rules are available that match
the current working memory state (i.e. the current goal,



perception, retrieved facts), then one rule has to be se-
lected using the conflict resolution mechanism. In ACT–
R, this is done by maximising the expected utility of rules
in the conflict set: i = arg maxUi , where

Ui = PiG − Ci + ξ(σ2) . (5)

The above equation has allowed ACT–R to model suc-
cessfully some important properties of human (and ani-
mals) decision making: Probability matching (use of P i

in utility); The effect of a payoff value (G represents
the goal value); Stochasticity (the utility is corrupted by
zero–mean noise of variance σ2) (Anderson and Lebiere,
1998).

Although there are other mechanisms in ACT–R, such
as chunks (facts) retrieval, that may affect rules’ selection,
the probability P (i) that ith rule will be chosen can be
approximated by Boltzmann equation as:

P (i) ≈ eŪi/τ

∑n
j=1 eŪj/τ

, (6)

where Ūi is the utility not corrupted by the noise, and
τ =

√
6σ/π is called the noise temperature. Now, using

approximations (6) and (4), one can calculate the success
probability (3) and entropy of success (2).

3.4 A model example

The reduction of entropy of success has been used to anal-
yse the learning in an ACT–R model of the Yerkes and
Dodson (1908) experiment (Belavkin, 2003). In this clas-
sical experiment, mice were trained over several days to
escape a discrimination chamber (a box with two doors)
from one particular door, and the number of errors was
measured for every day. Figure 1 shows an example of
the learning curve representing the number of errors pro-
duced by the model in this task during 10 tests per each
simulated day. The learning curve, however, does not pro-
vide a very detailed picture of what is learned and when.

The performance of the model improves because it
learns new production rules, and then by trying these rules
the model updates their statistics (Pi and Ci) and uses
the most efficient and effective ones. Figure 2 shows the
traces of probabilities Pi of production rules relevant to
the problem goal in the same experiment. One can see
that as new rules and statistics are learned after Day 1,
the number of errors decreases (see Figure 1). However,
the model produces more errors during Days 5, 6 and 7,
which means that the model did not have sufficient knowl-
edge, and the errors forced the model to learn more rules.
The model learned new rule during Day 5, but the trace
of its statistics indicates that the rule was not very help-
ful (probability of success quickly decreased to P i ≈ .5).
The new rules learned on Day 7 turned out to be more
successful, and the model did not produce any errors after
Day 8. One can see that the probability trace reveals much
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Figure 1: Error curve produced by the model in one ex-
periment.
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Figure 2: Dynamics of probabilities of rules matching the
problem goal. The number of curves increases as new
rules are being learned.
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Figure 3: Relative entropy of success of the choice rules.
Entropy increases on errors (see Figure 1) and when new
rules are learned.

more about the learning in the model than the number of
errors.

Figure 3 shows the dynamics of relative entropy of
success (relative to the maximum entropy ln 2), calcu-
lated using equations (4) and (6) over the probabilities
of rules shown on Figure 2. The entropy clearly decays
over time indicating the amount of information gained by
the model. Also, the entropy increases when the model
produces errors, which confirms the idea that entropy of
success predicts how certain is the outcome. However,
one may notice that the entropy increases most dramati-
cally when new rules are learned (i.e. Days 5 and 7). This
can be explained as follows. When new rules are cre-
ated, the number n of decisions increases, thus making
the system more complex (recall that entropy is a func-



tion of the number of states). Moreover, the probabilities
P (S | i) of the new rules initially have default prior esti-
mates (e.g. .5), and they can only be updated statistically
after their application. If the new rules improve the per-
formance, then the entropy of success reduces again (see
Day 8, Figure 3).

This example illustrates how entropy change or infor-
mation can be used as a quantitative measure of learning
in a cognitive model. In the next section, the entropy will
help analyse how the speed of learning in the model varies
as a function of parameters settings in the ACT–R archi-
tecture.

4 Variable speed of learning

In ACT–R, the choice of decisions does not depend only
on the statistical information about the rules (i.e. esti-
mates of probabilities). Indeed, choice probability (6) de-
pends also on two global parameters in the architecture:
The amount of noise (noise variance σ2 parameter) and
the goal value G used in the utility equation (5). Asymp-
totic analysis of choice probability as a function of σ 2

and G has suggested how different levels of arousal and
valences can be simulated in an ACT–R model (Belavkin,
2001):

• At a low noise variance σ2, the choice is more ratio-
nal and driven by utility maximisation. Thus, it can
be well suited for simulation of the risk aversive be-
haviour typical for choice with positive expectations
(Tversky and Kahneman, 1981; Johnson and Tver-
sky, 1983).

• On the contrary, high noise variance leads to a risk
taking, irrational choice, which is less defined by
utility maximisation. According to Tversky and
Kahneman (1981), this is characteristic of choice
with high expectation of a negative outcome.

• At a low goal value G, the costs Ci make more sig-
nificant contribution to the utility (5). Thus, deci-
sions with higher costs are less likely to be chosen.
This is suitable for simulating a low arousal state.

• On the contrary, high goal value G is better for simu-
lating a high arousal level, because under these con-
ditions the model is more likely to take costly deci-
sions.

Let us measure how the speed of learning in the model
changes under different conditions. We shall use the en-
tropy reduction as a measuring tool. However, because
one of the parameters to be changed is noise variance, it
is necessary to make the calculation of entropy indepen-
dent of these changes. This means substituting the choice
probability (6), which depends on τ (noise temperature),
by a different probability. For example, we can assume
that the choice of a rule is completely random: P (i) = 1

n ,

where n is the number of rules (decisions). In this case,
probability of a success P (S) can be calculated as

P (S) =
1
n

n∑

i=1

Pi . (7)

The entropy associated with this probability (calculated
similarly by eq. 2) can be used to estimate the knowledge
accumulated in the system in the form of empirical prob-
abilities Pi, because it is independent of the way the deci-
sions are made. We refer to this entropy as the entropy of
knowledge Hk.

The experiments showed that Hk decays differently un-
der different noise variance settings. It turns out that al-
though noise hinders the performance of the model, at the
same time it may help learn faster. Figure 4 illustrates the
probability learning in the model for two noise settings:
The left plot shows traces of probabilities with low noise
(τ = 1% of goal value G), and the right plot for high
noise settings (τ = 20%).1 One can see that at a higher
noise settings (top right), probabilities of rules were up-
dated much more often than at a lower noise (top left).
Therefore, the model on the right has better estimates of
probabilities. Also, the new and probably more successful
rules have been learned earlier in the case of high noise.
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Figure 4: Probability learning under a low noise (left) and
a high noise conditions (right).
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Figure 5: Dynamics of entropy under a low noise (left)
and a high noise condition (right).

The corresponding traces of entropies Hk are shown
on Figure 5. One can see that by day 10 the entropy on
the right plot had decayed significantly more than on the
left plot. Thus, by day 10 the model with a greater noise
gained more information than the model with less noise.

1Here noise temperature is calculated as a proportion of the goal
value: 1

G
τ · 100%.



These results confirm the idea that exploratory behaviour,
triggered by an noise increase in ACT–R, facilitates learn-
ing in the model.

In the next section, the question of adaptation of be-
haviour and dynamic control over the parameters in the
architecture will be discussed.

5 Entropy feedback and adaptation

The analysis of Hk reduction for different noise settings
suggested that an intelligent system could benefit from
dynamic control over the noise variance. Indeed,

1. At the beginning of solving a problem, exploratory
behaviour (high noise) would help gain the informa-
tion about the task or the environment more quickly.

2. After the important knowledge has been acquired,
the choice should concentrate on more successful de-
cisions, which is achieved by the reduction of noise.
This should improve the performance.

3. If the environment changes and the number of errors
suddenly increases, then a noise increase can speed–
up the learning and adaptation of behaviour.

Note that the dynamics of the noise variance, described
above, corresponds to the dynamics of entropy in the
model (e.g. Figure 3). A simple way to control the noise
variance by the entropy parameter has been proposed re-
cently (Belavkin, 2003). More specifically, noise temper-
ature τ was modified in time as:

τ(t) = τ0HSF(t) , (8)

where t is time, and τ0 = τ(0) is the initial value of the
noise. One can view the noise here as a compensation
for the ‘missing information’, and the otherwise rational,
utility–based choice behaviour is corrupted proportion-
ally to the uncertainty.

As predicted, the model with dynamic noise converges
faster to a successful behaviour (no errors), and adapts
better to changes. What is even more interesting, is that
the model fit to the data has improved as well: In one
experiment, R2 increased from .77 to .86 and the root
mean square (RMS) error reduced from 13.2% to 8.8%.
Figure 6 shows the learning curves from the static noise
model (top) and dynamic noise model (bottom) compared
against the data from Yerkes and Dodson (1908). There
has been a similar improvement across several data sets
Belavkin and Ritter (2003).

The dynamics of noise variance, controlled by the en-
tropy feedback, implements one well–studied heuristics.
Indeed, by looking at the Boltzmann equation (6), one can
notice that the decrease of noise temperature τ is similar
to the optimisation by simulated annealing (Kirkpatrick
et al., 1983).

Furthermore, noise variance is not the only parameter
in the ACT–R conflict resolution that can optimise the
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Figure 6: Static noise model (top) and dynamic noise
model (bottom) compared with the data (Yerkes and Dod-
son, 1908). The dynamic model achieves the better
match.

learning process. It was shown that goal value G con-
trols the type of the search (Belavkin, 2001): Low G
implements the breadth–first search, while high G corre-
sponds to the depth–first search strategy. A search method
combining these two strategies is known as the best–first
search (from breadth to depth). Thus, gradual increase
of G during problem solving can implement the best–first
search method.

One can see that the suggested dynamical control of
the decision making parameters in the architecture im-
plements some well–known optimisation heuristics, and,
therefore, should improve the overall problem solving
performance.

6 Discussion

It has been shown in the previous section how dynamic
control over two parameters in the ACT–R cognitive ar-
chitecture improves the learning and adaptive capabilities
of the model. In particular, entropy of success has been
used as a feedback parameter to control the choice strat-
egy. In addition, this control has improved the match be-
tween the model and data. On the other hand, the same
parameters have been used to simulate the effects of the
principle components of emotions (valence and arousal).
Therefore, the dynamic changes of the parameters dur-
ing problem solving may correspond to the changes in
the behaviour due to experiencing emotions of positive or
negative valence and the resulting changes of the arousal
level. This idea is supported by a number of works in
neuroscience and artificial neural networks.

Indeed, in neural networks, the effect of noise can be
simulated by changing the bias (or activation threshold)
of neurons (Hinton and Sejnowski, 1986). Some neuro-
transmitters in the brain have a similar effect, and there
are areas of the brain (e.g. amygdala) that have connec-
tions with the areas of neocortex believed to be responsi-



ble for decision–making (LeDoux, 1996).
The role of such interactions have been discussed in

the reinforcement learning literature (Sutton and Barto,
1981; Barto, 1985). However, one of the unknown vari-
ables there is the amount of reinforcement (e.g. the noise
temperature). It has been shown how the entropy of suc-
cess may help optimise this parameter. Interestingly, en-
tropy and noise temperature have been used for control in
the work on analogy by Hofstadter and Marshall (1993).

Today, the idea that emotion plays an important role
in controlling and regulating the decision making and ac-
tions aspects of cognition is shared by many researchers
(Bartl and Dörner, 1998; Sloman, 2001). The results, dis-
cussed in this paper, illustrated how the learning in an in-
telligent system can be improved by using the entropy of
success of the system to moderate and control its own be-
haviour. These observations suggest that appreciation of
the system’s own performance (entropy of success) and
regulating the decision making strategy may indeed be
one of the main functions of the emotional system in the
brain. Including such an information theoretic feedback
mechanism into the design of cognitive models, agent ar-
chitectures or robots will not only improve their perfor-
mance, but also will extend our knowledge about the mind
and emotion within its context.
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W. B. Cannon. Bodily changes in pain, hunger, fear and
rage. Appleton, New York, 1929.

A. R. Damasio. Descartes’ Error: Emotion, Reason, and
the Human Brain. Gosset/Putnam Press, New York,
NY, 1994.

G. E. Hinton and T. J. Sejnowski. Learning and relearning
in boltzmann machines. In Parallel Distributed Pro-
cessing, pages 282–317. MIT Press, Cambridge, Mass.,
1986.

D. R. Hofstadter and J. B. D. Marshall. A self–watching
cognitive architecture of high–level perception and
analogy–making. Technical Report 100, Indiana Uni-
versity Center for Research on Concepts and Cogni-
tion, 1993.

Eva Hudlicka and Jean-Marc Fellous. Review of com-
putational models of emotion. Technical Report 9612,
Psychometrix, Arlington, MA, April 1996.

Michael S. Humphreys and William Revelle. Personal-
ity, motivation, and performance: A theory of the re-
lationship between individual differences and informa-
tion processing. Psychological Review, 91(2):153–184,
April 1984.

E. Johnson and A. Tversky. Affect, generalization, and
the perception of risk. Journal of Personality and So-
cial Psychology, 45:20–31, 1983.

S. Kirkpatrick, C. D. Gelatt, and Jr. M. P. Vecchi. Opti-
mization by simulated annealing. Science, 220(4598):
671–680, May 1983.

John A. Lambie and Anthony J. Marcel. Consciousness
and the varieties of emotion experience: A theoretical
framework. Psychological Review, 109(2):219–259,
2002.

Joseph E. LeDoux. The emotional brain. Simon & Schus-
ter, New York, 1996.

Marsha C. Lovett and John A. Anderson. History of suc-
cess and current context in problem solving: Combined
influences on operator selection. Cognitive Psychology,
31:168–217, 1996.

G. Mandler and S. B. Sarason. A study of anxiety and
learning. Journal of Abnormal and Social Psychology,
47:166–173, 1952.

G. Matthews. The effects of extraversion and arousal on
intelligence test performance. British Journal of Psy-
chology, 76:479–493, 1985.

Allen Newell. Unified theories of cognition. Harvard Uni-
versity Press, Cambridge, Massachusetts, 1990.



R. Plutchik. The psychology and biology of emotion.
HarperCollins College Publishers, New York, 1st edi-
tion, 1994.

J. A. Russell. Two pan–cultural dimensions of emotion
words. Journal of Personality and Social Psychology,
45:1281–1288, 1983.

J. A. Russell. Measures of emotion. In The Measurement
of Emotions, volume 4. Academic Press, New York,
1989.

P. Salovey and J. D. Mayer. Emotional intelligence. Cog-
nition and Personality, 9(3):185–211, 1990.

S. Schachter and J. E. Singer. Cognitive, social, and psy-
chological determinants of emotional state. Psycholog-
ical Review, 69:379–399, 1962.

Claude E. Shannon. A mathematical theory of communi-
cation. Bell System Technical Journal, 27:379–423 and
623–656, July and October 1948.

Herbert A. Simon. Motivational and emotional controls
of cognition. Psychological Review, 74:29–39, 1967.

Aaron Sloman. Varieties of affect and the CogAff archi-
tecture schema. In Colin Johnson, editor, Proceedings
of the AISB’01 Symposium on Emotion, Cognition and
Affective Computing, pages 39–48, Heslington, York,
England, March 2001. AISB.

Richard S. Sutton and Andrew G. Barto. Toward a mod-
ern theory of adaptive networks: Expectation and pre-
diction. Psychological Review, 88(2):135–170, 1981.

Amos Tversky and Daniel Kahneman. The framing of
decisions and the psychology of choice. Science, 211:
453–458, 1981.

R. M. Yerkes and J. D. Dodson. The relation of strength
of stimulus to rapidity of habit formation. Journal of
Comparative Neurology and Psychology, 18:459–482,
1908.

R. Zajonc. Feeling and thinking: Preferences need no
inferences. American Psychologist, 35:151–175, 1980.


