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DECISION MAKING

• Classical decision–making theory is due to von Neumann and

Morgenstern (1944), Savage (1954) and Anscombe and Aumann

(1963).

• Despite the differences in treating the uncertainty, the main idea

is that of a utility and its expected value (the EU), and the choice

made by maximising EU

Decision(i) = arg max
n∑

i=1

PiUi
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DECISION MAKING IN ACT–R

In ACT–R (Anderson & Lebiere, 1998), the choice between several

alternative decisions (i.e. rules) is implemented by the conflict

resolution mechanism. A rule with the highest utility is selected:

i = arg max Ui, where

Ui = PiG− Ci + noise(s)

rule’s properties :

Pi – probability of success

Ci – cost (e.g. time)

global parameters (constants) :

G – goal value

s – controls noise variance σ2

Distributions of Utilities,  G = 20,  s = 1.02

0 20

U = PG - C

P(U)

Rule 1: P = .5, C =  5
Rule 2: P = .9, C = 10
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ACT–R AND EXPECTED UTILITY

• For each decision, two outcomes: Success ∨ Failure

• Let Us = U(Success) and Uf = U(Failure). Then

E{U} = P sUs + P fUf

= P sUs + (1− P s)Uf

= P s(Us − Uf ) + Uf

• If G = Us − Uf and Uf = −C , then E{U} = PG− C

• ACT–R uses the expected utility and therefore is prone to all the

paradoxes.



Roman Belavkin, Middlesex University, July 16, 2005 5

THE RATIONAL DONKEY PARADOX

?

↙ ↘
Haystack A Haystack B

• max EU theory fails when there is no unique max.

• ACT–R uses noise (:egs) which ensures this does not happen

• How large should be noise variance?

• There are other paradoxes related to max EU .
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DYNAMIC EXPECTED GAIN NOISE

• Dynamic noise variance has been discussed recently (e.g.

Taatgen, 2001; Belavkin, 2001)

• Entropy–based method to control :egs was proposed in

Belavkin and Ritter (2003)

Relative Entropy of Success

A B 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Days

H
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GAMMA NOISE (OPTIMIST)

• The probability distributions of utilities can be used directly to

control the variance (Monte–Carlo).

• The time component of the cost can be estimated using Poisson

distribution p = 1− e−1/θ (Belavkin, 2003)

Ui = PiG− Gamma(θi) , where θ = Efforts
Successes

• The OPTIMIST overlay (Belavkin & Ritter, 2004) for ACT–R is

available at

http://www.cs.mdx.ac.uk/staffpages/rvb/
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THE ALLAIS PARADOX (GAINS)

Due to Allais (1953). Also studied by Tversky and Kahneman (1974)

in many interpretations. Consider two lotteries A and B

❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✯

$0

$300

2
3

1
3

A ❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✯

$0

$100

0

1

B

1
3
· $300 +

2
3
· $0 = $100 1 · $100 + 0 · $0 = $100

About 80% of subjects express preference A ≺ B
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THE ALLAIS PARADOX (LOSSES)

When the gains are changed to losses, the preferences reverse

❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✯

-$300

$0

1
3

2
3

C ❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✯

-$100

$0

1

0

D

2
3
· 0− 1

3
· $300 = −$100 0 · $− 1 · $100 = −$100

About 80% of subjects express preference C 
 D
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FRAMING OF DECISIONS

• Tversky and Kahneman (1974) suggested decision framing theory

of using a function π(P ) of the probability.

• In ACT–R, one suggests to use G as the ‘framing’ global

parameter

Lottery A and B 1
3 ·G− $0 ≺ 1 ·G− $0

Lottery C and D 2
3 ·G− $0 
 1 ·G− $100

• However, the above formulae are incorrect as C should also be

relative to goal value G. The correct formula is C = G− Us

• Note also that not 100% of subjects preferred as above.
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RANDOM UTILITY

For each decision i, the outcome is sampled from its distribution

P (Outcome | i) conditional to rule i. The utility of this outcome is

called random utility RUi

Decision i = arg max
i

RUi , where RUi ← P (Outcome | i)

Here P (· | i) is probability distribution of successes and failures for a

given rule, and RUi is the utility of each outcome.

Sampling can be implemented using the inverse PDF method

Outcome = F−1(P ) , where P ∈ (0, 1)
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RANDOM UTILITY vs max EU

• Tested on agents with Bayesian learning of Markov Decision

models (i.e. transitional probability tables P k
ij ).

• The random utility agents are as good as the max EU agent,

and often outperformed them 2:1 (Belavkin, 2005)

Poor pattern

min max

0%

50%

100%

Rewards frequency

Rewards

Max EU
Rand U
Rand Act
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INVERSE PDF (A and B)

PDF Lottery A

$0 $300

0

1

U

F(U) PDF Lottery B

$0 $100

0

1

U

F(U)

Utility = F−1(P )

RUA < RUB 2 out of 3 times, which

supports experimental evidence

A ≺ B

Utility A and B

0 1/3 2/3 1

$0

$100

$200

$300

Probability

Utility



Roman Belavkin, Middlesex University, July 16, 2005 14

INVERSE PDF (C and D)

PDF Lottery C

-$300 $0

0

1

U

F(U) PDF Lottery D

-$100 $0

0

1

U

F(U)

Utility = F−1(P )

RUC > RUD 2 out of 3 times. Again,

corresponds to experimental results

C 
 D

Utility C and D

0 1/3 2/3 1

-$300

-$300

-$100

$0

Probability

Utility
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RANDOM UTILITY IN ACT–R

Each rule i has a history of successes and failures P (Outcome | i).

For a set of conflicting rules, the following scheme is used to generate

random utilities RUi

P (Outcome | i) → Success ∨ Failure

RUi = Us
i ∨ Uf

i

= G + Uf
i ∨ Uf

i

= G− Ci ∨ −Ci

where Ci is the cost. We can also use Gamma noise

RUi = G− Gamma(θi) ∨ −Gamma(θi)
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PROPERTIES OF RANDOM UTILITY

• The expected value of random utility

E{RUi} = Pi(G− Ci)− (1− Pi)Ci

= PiG− Ci

• Allows to model the Allais paradox

• The use of Gamma noise implements the features of the

OPTIMIST conflict resolution: Rule specific and dynamic noise

variance σ2 = θ2.
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MODEL RESULTS (THE ALLAIS PARADOX)

Allais paradox

A B C D

0%

100%

Lotteries

Preference
 ACT-R
 ACT-R Rand U 
 Data 
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THE ELLSBERG PARADOX

Due to Ellsberg (1961). Consider two lotteries A and B, and

probabilities of outcomes for A are given

❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✯

$0

$100

1
2

1
2

A ❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✯

$0

$100

(0, 1)

(1, 0)

B

EU(A) = $50 EU(B) = $50

A 
 B
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UNCERTAINTY OF INFORMATION

PUs + (1− P )Uf

Although the expected utilities are the same, the procedures involved

in choosing are clearly different

1
2
· $100 +

1
2
· $0 �=




1
100 · $100 + 99

100 · $0
...

99
100 · $100 + 1

100 · $0
Using random utility would involve drawing two samples in lottery B

(one for P and one for U ) while only one sample is needed for A.

Thus, lottery A may be perceived as closer to the goal and less risky.



Roman Belavkin, Middlesex University, July 16, 2005 20

CONCLUSIONS

• The Expected utility theory is probably not a good model of the

decision–making in the brain.

• Cognitive architectures and ACT–R need to consider the

paradoxes arising from the max EU principle.

• The random utility method has been suggested as a

cost–effective solution to the problem.

• The role of uncertainty in decision–making is not well understood

(e.g. Ellsberg, 1961).

• Sub–symbolic mechanism may not be the best way to model

tasks, where probabilities are given as instructions.
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