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OVERVIEW

Optimism + Optimisation = Optimist

• Motivation for this work

• Some established conflict resolution methods

• Method description

– Recursive estimation of expected cost

– Conflict resolution

• Demo application (search space)

• Method performance and properties
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COGNITIVE MODELLING

Unified Theories of Cognition

(Newell, 1990)

⇓
SOAR ACT–R · · · Neural Nets

⇓
Cognitive Models + Data
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ACT–R COGNITIVE ARCHITECTURE

(Anderson & Lebiere, 1998)

Symbolic level: Facts, goals

(declarative knowledge), rules

(procedural knowledge), goal–

stack, perception–action buffers

Sub–Symbolic level:

Activations, association

strengths, utilities, probabili-

ties, time decay, etc

Distributions of Utilities,  G = 20,  s = 1.02
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CONFLICT RESOLUTION

Usually there are many ways to go from the initial (current) state to the

goal state:

−→

• Traditional conflict resolution strategies: refraction, recency, specificity, priority, etc.

• In effect conflict resolution strategy implements particular search method

• In ACT–R conflict resolution is also a model of choice behaviour and

decision–making
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CONFLICT RESOLUTION IN ACT–R

In ACT–R (Anderson & Lebiere, 1998) each alternative i is

represented by a production rule in a conflict set. A rule that wins

should have the highest utility:

Ui = PiG − Ci + noise(s)

rule’s properties :

Pi — probability

Ci — cost (e.g. time)

global parameters :

G — goal value (in time units)

s — controls the noise variance

Distributions of Utilities,  G = 20,  s = 1.02

0 20

U = PG - C

P(U)

Rule 1: P = .5, C =  5
Rule 2: P = .9, C = 10
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COST & PROBABILITY

Let C be a random cost of achieving the goal, and let P (C) be the

probability to achieve the goal at cost C . The expected value of the

random cost is

E{C} =
∑
C

CP (C)
(

E{t} =
∫ ∞

0

t P (t) dt

)

The conflict could be resolved by choosing rule i:

i = arg minE{Ci} .

Unfortunately, we do not know the distributions P (t).
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LEO TOLSTOY vs A CHIMP

• It took Leo Tolstoy 7 years

to write “War & Peace”.

• A chimp can probably type

it in ∼ 1010 years.

• How long one should wait

before giving up?

E{C} ≤ G < ∞
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GOAL STATE AS A POISSON PROCESS

P (n | λ) = (λt)n

n!
e−λt (1)

where λ is the mean count rate

(1/E{C}), and n = 0, 1, 2, ... is

the number of successes.
If the goal is possible, then

E{C} < ∞ (or λ > 0).

q(t) — prob. of failure (n = 0)

p(t) — prob. of success (n > 0)

p1(t) — prob. of 1st success (n = 1)
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ESTIMATION OF THE EXPECTED COST

The rate λ is unknown, but we know t amount of time (efforts) spent

and n number of successes. To estimate λ (and, hence,

E{C} = 1/λ) we need posterior distribution

P (λ | n) =
P (n | λ)P (λ)

P (n)

If we assume that all values of λ are equally probable, then

P (λ | n) = tP (n | λ) .

Indeed, it is possible to show that above is true for Pε(λ) = εe−ελ

when ε → 0.
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POSTERIOR ESTIMATION

• Maximum likelihood:

d

dλ
P (λ | n) = 0 ⇒ λ =

n

t
⇒ E{C} =

t

n

• Maximum of posterior estimate:

d

dλ
tP (n | λ) = 0 ⇒ λ =

n

t
⇒ E{C} =

t

n

• Posterior mean estimate:

E{λ} =

∫ ∞

0

λP (λ | n)dλ =
n + 1

t
⇒ E{C} =

t

n + 1
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RECURSIVE ESTIMATION

Let us restart the computer (give

up) after ∆t and see if it reaches

the goal state (binomial trial).

Starting with some ∆t0 = Cmin

(e.g. ≈ 50ms) let us set each

next ∆t to last estimated cost

∆tk+1 = C̄k =
tk

nk + 1

lim
k→∞

C̄k = E{C}
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THE CONFLICT

· · ·
For each option x let us record t(x) — efforts, n(x) — n. of

successes, k(x) — n. of times x has been used. To resolve the

conflict we introduce a random prediction Cξ :

E{Cξ(x)} = C̄k(x)(x) e.g. Cξ = rand ∈ [0, 2C̄]

The random estimated cost is defined as

C̃(x) =
k(x)C̄(x) + Cξ(x)

k(x) + 1

Conflict resolution: x = arg min C̃(x).



Roman V Belavkin, Middlesex University, June 9, 2003 13

BEHAVIOUR OF THE ALGORITHM

I) II) III) IV)

I) II) III) IV)
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IMPORTANT PROPERTIES

• The method possess all the properties of the current ACT–R mechanism plus

dynamic goal value (i.e. C̄) and noise variance (i.e. random prediction).

• Noise is rule–specific and its effect is a function of experience.

• The use of Poisson distribution is supported by some studies on animal choice

behaviour and learning (Myerson & Miezin, 1980; Mark & Gallistel, 1994).

• The plasticity effect is present in biological neurons (Sejnowski, 1977a, 1977b).

• Breadth and depth of the search are adaptive and controlled automatically.

• The algorithm behaviour is in some way similar to ‘simulated annealing’

(Kirkpatrick, Gelatt, & Vecchi, 1983) or ‘taboo’ search (Glover, 1977). However, its

performance compared to these methods is yet to be established.
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QUESTIONS & FUTURE WORK

• How to implement different kinds and degrees of reinforcement

(reward, penalty)?

• How can the method be extended to incorporate multi–objective

optimisation (not only time)?

• How does the algorithm compare to other search techniques?
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QUESTIONS?
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