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Cognitive Psychology

• Ss + performance

• Learning

−→?←−
Information Theory

• Uncertainty + Information

• Learning
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Cognitive Modelling

↓
Cognitive Psychology

• Ss + performance

• Learning
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OVERVIEW

• Definitions and calculations of entropy in a cognitive

architecture

• Applied to a model

• Use of entropy for analysis

• Use of entropy for control
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ENTROPY

Canonical entropy Hmax = lnM

(maximum)

Hartley entropy Hξ = − ln P (ξ)

(per random state)

Boltzmann entropy H = E{Hξ} = −∑
ξ P (ξ) ln P (ξ)

(Shannon)

Shannon information Ixy = Hx −Hx|y
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ENTROPY OF SUCCESS

Consider a problem solver with a goal. Let us define two states with

respect to achieving the goal:

ξ =




Success if the goal is achieved

Failure otherwise

HFS = − [P (F) ln P (F) + P (S) ln P (S)] ,

Note that P (F) = 1− P (S).
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PROBABILITY OF SUCCESS

Suppose that to achieve the goal we have a set of n alternative

decisions. If the success depends on decisions, then

P (S) =
n∑

i=1

P (S, i) =
n∑

i=1

P (S | i)P (i) ,

where is are the set of alternatives.

• How to calculate P (S | i) and P (i) (and then HFS)?

• This depends on the architecture you use (e.g. ACT–R, SOAR,

ANN, etc).
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ACT–R COGNITIVE ARCHITECTURE

In ACT–R (Anderson & Lebiere, 1998) each alternative i is

represented by a production rule in a conflict set. A rule that wins

should have the highest utility:

Ui = PiG− Ci + noise(s)

rule’s properties :

Pi – probability

Ci – cost (e.g. time)

global parameters :

G – goal value (in time units)

s – controls the noise variance

Distributions of Utilities,  G = 20,  s = 1.02

0 20

U = PG - C

P(U)

Rule 1: P = .5, C =  5
Rule 2: P = .9, C = 10
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ACT–R COGNITIVE ARCHITECTURE

In ACT–R each rule i has empirical probability calculated from the

rule’s statistics:

P (S | i) ≈ Pi =
Successesi

Successesi + Failuresi
.

If we do not take into account other mechanisms in ACT–R, then

P (i) =
eŪi/τ

∑
j eŪj/τ

.

(Boltzmann ‘soft–max’ equation). Here τ is called the noise

temperature (τ2 = 6σ2/π2 = 2s2).
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ENTROPY OF SUCCESS IN ACT–R

P (S) ≈
n∑

i=1

Pi
eŪi/τ

∑n
j=1 eŪj/τ

P (F) = 1− P (S)

HFS = − [P (F) ln P (F) + P (S) ln P (S)]
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A MODEL EXAMPLE
A modified ACT–R 4 model

(Belavkin, 2001) of the ‘dancing

mouse’ experiment (Yerkes &

Dodson, 1908,∼ 700 citations)

Choose1st: Choose2nd:

IF the goal is a choice

of first or second

IF the goal is a choice

of first or second

THEN focus on first THEN focus on second
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A MODEL EXAMPLE
A modified ACT–R 4 model

(Belavkin, 2001) of the ‘dancing

mouse’ experiment (Yerkes &

Dodson, 1908,∼ 700 citations)

Choose1st: Choose2nd:

IF the goal is a choice

of first or second

IF the goal is a choice

of first or second

THEN focus on first THEN focus on second

New-Choice-Rule:

IF the goal is a choice of first or second

AND first is a black door

THEN focus on second
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AN EXAMPLE LEARNING CURVE

Errors per day

A B 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

Days

Errors

Performance improves, but what and when is learned?
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PROBABILITY TRACES

Expected Probabilities

A B 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Days

P

Provide more information about the learning.
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DYNAMICS OF ENTROPY

Relative Entropy of Success

A B 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Days

H

Hrel =
HFS
Hmax

, where Hmax = ln 2
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ESTIMATING THE KNOWLEDGE

P (S) ≈
n∑

i=1

Pi
eŪi/τ

∑n
j=1 eŪj/τ

How about different noise settings (τ )?

Let us calculate the entropy independent of the decision making

mechanism by assuming

P (i) =
1
n

⇒ P (S) =
n∑

i=1

Pi
1
n

.

The entropy Hk (entropy of knowledge) can be used to measure the

speed of learning for different noise settings.
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NOISE FACILITATES LEARNING
Probability Learning   ( T = 1% )

A B 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Days

P Probability Learning   ( T = 20% )

A B 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Days

P

Entropy of Knowledge  ( T = 1% )

A B 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Days

H Entropy of Knowledge  ( T = 20% )

A B 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Days

H
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ADAPTIVE NOISE

Changes of noise (randomness in behaviour) can optimise the

learning of a model:

1. High noise in the beginning of problem exploration allows gaining

information more quickly.

2. After learning the important information (rules), keeping the noise

low should improve the performance.

3. Noise increase if the environment changes (the number of errors

increases).
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USING ENTROPY FOR CONTROL

The entropy was fed back to the noise variance:

τ(t) = τ0Hrel(t)

• Dynamically changes the randomness making the behaviour

more adaptive.

• May explain emotional strategy changes during problem solving

(Dörner, 2001).

• Addresses the problem of noise decay towards the end of

problem solving (Lebiere, 19??; Taatgen, 2001; Belavkin, Ritter, &

Elliman, 1999). Thus, can improve the model fit.
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Static noise model
Model  ( T = 5%, G = 50 )   vs  Data  ( set 1, 125 )

A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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R2 = .54
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Model

Model  ( T0 = 20%, G = 100 )  vs  Data  ( set 1, 125 )
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Static noise model
Model  ( T = 1%, G = 500 )  vs  Data  ( set 1, 300 )
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Model  ( T0 = 5%, G = 500 )  vs  Data  ( set 1, 300 )
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Static noise model
Model  ( T = 10%, G = 500 )  vs  Data  ( set 1, 500 )
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Model  ( T0 = 10%, G = 500 )  vs  Data  ( set 1, 500 )
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SUMMARY OF MODEL IMPROVEMENT

Comparison of models with static and dynamic noise variance to

Yerkes and Dodson data:

Static noise Dynamic noise

Data set R2 RMSE R2 RMSE

Set I–125 .54 12.2% .64 10.1%

Set I–300 .77 13.2% .86 8.8%

Set I–500 .82 12.4% .88 7.1%
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CONCLUSIONS

• It has been shown how to define and calculate the entropy in

cognitive architectures (e.g. ACT–R).

• Cognitive architectures provide enough information to estimate

the entropy.

• Entropy is a useful for analysing model performance.

• Controlling noise with entropy improved the match of our model to

Yerkes and Dodson data.
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OPTIMIST: A NEW CONFLICT RESOLUTION

• Instead of utilities uses rates of success estimated from Poisson

distribution

• Noise is dynamic and is a function of experience of each rule

• No G (goal value) parameter, but the equivalent estimated costs

are dynamic

• Reinforcements (rewards / penalties) are continuous (real–valued)

and are determined by the environment, not by the architecture

• Works as an overlay for ACT–R with existing models

http://www.cs.nott.ac.uk/˜rvb/

http://www.cs.mdx.ac.uk/˜rvb/
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