Permissions and concurrency: a breakthrough and a
Grand Challenge

Richard Bornat (Middlesex, UK)

22nd Oct 2004

e

Typing

» one of the things that formalism has given us;

SN
b oA Y

Typing

» one of the things that formalism has given us;
» arelatively recent success (only took C in the early 90s);

N
U

SUE R

Typing

» one of the things that formalism has given us;
» arelatively recent success (only took C in the early 90s);
» never a Grand Challenge;

v

v

v

v

Typing

one of the things that formalism has given us;

a relatively recent success (only took C in the early 90s);
never a Grand Challenge;

who could live without it? (well ok, low life).

-

v

v

v

v

v

Typing

one of the things that formalism has given us;

a relatively recent success (only took C in the early 90s);
never a Grand Challenge;

who could live without it? (well ok, low life).

(why do the low life do without types? what can we do for
them?)

-

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

e

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

COBOL had structural descriptions, not seen as types.

e

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

COBOL had structural descriptions, not seen as types.

We've tried typeless languages — e.g. BCPL — and run-time typed
languages — e.g. Lisp.

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

COBOL had structural descriptions, not seen as types.

We've tried typeless languages — e.g. BCPL — and run-time typed
languages — e.g. Lisp.

Types became popular as protection against wild use of pointers
(instead of just a pointer, a pointer to Arstructure) and procedure
addresses (argument and result types).

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

COBOL had structural descriptions, not seen as types.

We've tried typeless languages — e.g. BCPL — and run-time typed
languages — e.g. Lisp.

Types became popular as protection against wild use of pointers

(instead of just a pointer, a pointer to Arstructure) and procedure
addresses (argument and result types).

Typing is about static, value/state independent properties of names.

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

COBOL had structural descriptions, not seen as types.

We've tried typeless languages — e.g. BCPL — and run-time typed
languages — e.g. Lisp.

Types became popular as protection against wild use of pointers
(instead of just a pointer, a pointer to Arstructure) and procedure
addresses (argument and result types).

Typing is about static, value/state independent properties of names.

The world doesn’t yet believe in type inference, and the inventor of
C++ has never been put on trial.

R ORI
BB

Types are not enough

Types are not enough

Types do not protect us from:

» dereferencing null pointers;

SR

Types are not enough

Types do not protect us from:

» dereferencing null pointers;
» double free;

- i

Types are not enough

Types do not protect us from:

» dereferencing null pointers;
» double free;
» rogue librarians (what doe®ystem.out.print(s) do?);

e

Types are not enough

Types do not protect us from:

» dereferencing null pointers;

» double free;

» rogue librarians (what doe®ystem.out.print(s) do?);
» the ‘variant record error’;

e

Types are not enough

Types do not protect us from:

» dereferencing null pointers;
» double free;

v

rogue librarians (what do€®ystem.out.print(s) do?);

v

the ‘variant record error’;

e

Types are not enough

Types do not protect us from:

» dereferencing null pointers;

» double free;

» rogue librarians (what doe®ystem.out.print(s) do?);
» the ‘variant record error’;

> .

“Well-typed programs do not go wrong”: we don't apply a function to
the wrong type of value. But the wrong value of the type ...

Types are not enough

Types do not protect us from:

» dereferencing null pointers;

» double free;

» rogue librarians (what doe®ystem.out.print(s) do?);
» the ‘variant record error’;

> .

“Well-typed programs do not go wrong”: we don't apply a function to
the wrong type of value. But the wrong value of the type ...

hd([]), anybody?

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don't
own at the time of asking). You can do what you like with the pointer.

-

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don't
own at the time of asking). You can do what you like with the pointer.

(ISO C says you mustn’t do anything naughty, but nobody can tell if
you do.)

e

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don't
own at the time of asking). You can do what you like with the pointer.

(ISO C says you mustn’t do anything naughty, but nobody can tell if
you do.)

free /dispose , given a pointer to a buffer you do own, takes the
buffer away.

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don't
own at the time of asking). You can do what you like with the pointer.

(ISO C says you mustn’t do anything naughty, but nobody can tell if
you do.)

free /dispose , given a pointer to a buffer you do own, takes the
buffer away.

You are left with a pointer (maybe several copies of a pointer) which
you are not allowed to use

e s

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don't
own at the time of asking). You can do what you like with the pointer.

(ISO C says you mustn’t do anything naughty, but nobody can tell if
you do.)

free /dispose , given a pointer to a buffer you do own, takes the
buffer away.

You are left with a pointer (maybe several copies of a pointer) which
you are not allowed to use

Vivid analogy:An unfrocked priest is capable of celebrating
marriage but forbidden to do so”

(Marek Sergot, talk on logic of permission and belief; see Blaily
Telegraph 21/vi/93).

e

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don't
own at the time of asking). You can do what you like with the pointer.

(ISO C says you mustn’t do anything naughty, but nobody can tell if
you do.)
free /dispose , given a pointer to a buffer you do own, takes the
buffer away.
You are left with a pointer (maybe several copies of a pointer) which
you are not allowed to use
Vivid analogy:An unfrocked priest is capable of celebrating
marriage but forbidden to do so”
(Marek Sergot, talk on logic of permission and belief; see Blaily
Telegraph 21/vi/93).
(BTW, “Ownership types” and/or nulling disposed pointers don’t
touch this problem.)

qﬁ':ﬁ%z—

The hardest kind of programming?

Concurrency — multi-threading, multi-processing — is notoriously
difficult.

et N

The hardest kind of programming?

Concurrency — multi-threading, multi-processing — is notoriously
difficult.

40 years agoDijkstra invented semaphores, mutual exclusion, critical
sections Cooperating Sequential Process&965).

e

The hardest kind of programming?

Concurrency — multi-threading, multi-processing — is notoriously
difficult.

40 years agoDijkstra invented semaphores, mutual exclusion, critical
sections Cooperating Sequential Process&965).

— also fairness, deadlock, starvation, the Banker’s algorithm, bounded
and unbounded buffer, ...

e

The hardest kind of programming?

Concurrency — multi-threading, multi-processing — is notoriously
difficult.

40 years agoDijkstra invented semaphores, mutual exclusion, critical
sections Cooperating Sequential Process&965).

— also fairness, deadlock, starvation, the Banker’s algorithm, bounded
and unbounded buffer, ...

“We have stipulated that processes should be connéxiedly by
this we mean that apart from the (rare) moments of explicit
intercommunicationthe individual processes themselves are to be
regarded as completelpdependenof each othet.

e

Separation logic

Separation logic

» Just a bastard child of Bl (Pym, O’Hearn).

T

Separation logic

» Just a bastard child of Bl (Pym, O’Hearn).

» E — E’ (points to) ispermissiorto read/write/dispose cell at
heap address with contentsE’.

-

Separation logic

» Just a bastard child of Bl (Pym, O’Hearn).

» E — E’ (points to) ispermissiorto read/write/dispose cell at
heap address with contentsE’.

» — can also be read asvnershipand/or aheap predicate

SN
b oA Y

v

v

v

\4

Separation logic

Just a bastard child of Bl (Pym, O’Hearn).

E — E’ (points to) ispermissiorto read/write/dispose cell at
heap address with contentsE’.

— can also be read asvnershipand/or aheap predicate
emp iS No permission.

-

v

v

v

\4

v

Separation logic

Just a bastard child of Bl (Pym, O’Hearn).

E — E’ (points to) ispermissiorto read/write/dispose cell at
heap address with contentsE’.

— can also be read asvnershipand/or aheap predicate
emp iS No permission.
A x B (star) isseparatiorof resource.

-

v

v

v

\4

v

v

Separation logic

Just a bastard child of Bl (Pym, O’Hearn).

E — E’ (points to) ispermissiorto read/write/dispose cell at
heap address with contentsE’.

— can also be read asvnershipand/or aheap predicate
emp iS No permission.

A x B (star) isseparatiorof resource.

A A B (and) isidentity of resource.

-

v

v

v

\4

v

v

v

Separation logic

Just a bastard child of Bl (Pym, O’Hearn).

E — E’ (points to) ispermissiorto read/write/dispose cell at
heap address with contentsE’.

— can also be read asvnershipand/or aheap predicate
emp iS No permission.

A x B (star) isseparatiorof resource.

A A B (and) isidentity of resource.

AN (Bxtrue) is all A, partly B.

e

Framing, hence small axioms

Framing, hence small axioms

(Qer
{PxQ}C{PxR}

modifies C N vars P = ()

Framing, hence small axioms

(QcR
{PxQ}C{PxR}

{Re} x=E {R}
Do} = {x—E}
{E' — E} x=[F] {E' — E Ax = E} (xnot free inE, E')
{emp} x=newE) {x— E}
{E— _} disposeE {emp}

modifies C M wvars P = ()

PR

Concurrency rules

e

Concurrency rules

{Ql} Cy {Rl} e {Qn} Cn {Rn}
{Qua--#Qn} (Coff -+ I Ca){Rux - R}

(non-interference-of-variables)

Concurrency rules

{Ql} Cy {Rl} e {Qn} Cn {Rn}
{Qua--#Qn} (Coff -+ I Ca){Rux - R}

{(Q%1;) AB}C{RxI;}
{Q}with r when B do C od{R}

(non-interference-of-variables)

Concurrency rules

{Ql} Cy {Rl} e {Qn} Cn {Rn}
{Qua--#Qn} (Coff -+ I Ca){Rux - R}

{(Q*1;) AB}C{R* I}
{Q}with r when B do C od{R}

(non-interference-of-variables)

» Both proved sound by Brookes.

PR

Concurrency rules

{Ql} C1 {Rl} U {Qn} Cn {Rn}

(non-interference-of-variables)

{Qur--xQnp (Cofl -+ | Co){Rix -+ Ra}

{(Q*1;) AB}C{R* I}
{Q}with r when B do C od{R}

» Both proved sound by Brookes.

» A version of the CCR rule covers semaphgiasvhichC is
eitherm:=m+lorm:=m- 1.

e

The ownership trick (O’'Hearn 2002)

resource-bundle : Vars full, b; full := false;

x = new();
with r when —full do
b:=x
full := true

od

10

with r when full do
y:=Db;
full := false

od;

disposey

SR

The ownership trick (O’'Hearn 2002)

resource-bundle : Vars full, b; full := false;

{emp}

x := new()
with r when —full do
b:=x
full :== true

od
{emp}

10

{emp}
with r when full do

y:=b;
full := false
od;

disposey
{emp}

T

The ownership trick (O’'Hearn 2002)

resource-bundle : Vars full, b; full := false;
Invariant(full Abw— _) V (—full A emp)

{emp}

x = new();
with r when —full do
b:=x
full :== true

od
{emp}

10

{emp}
with r when full do

y:=b;
full := false
od;

disposey
{emp}

T

The ownership trick (O’'Hearn 2002)

resource-bundle : Vars full, b; full := false;
Invariant(full Abw— _) V (—full A emp)

{emp}

X := new();

{x—_}

with r when —full do
b:=x
full :== true

od
{emp}

10

{emp}
with r when full do

y:=b;
full := false
od;

disposey
{emp}

T

The ownership trick (O’'Hearn 2002)

resource-bundle : Vars full, b; full := false;
Invariant(full Abw— _) V (—full A emp)

{emp}

X := new();

{x—_}

with r when —full do
{=full Nemp * X — _}
b:=x

full :== true

od
{emp}

10

{emp}
with r when full do

y:=b;
full := false
od;

disposey
{emp}

T

The ownership trick (O’'Hearn 2002)

resource-bundle : Vars full, b; full := false;
Invariant(full Abw— _) V (—full A emp)

{emp}
X := new();
[)
with r when —full do
{=full Nemp * X — _}
b:=x
{=full N\emp *X— _Ab=x}
full :== true

od
{emp}

10

{emp}
with r when full do

y:=b;
full := false
od;

disposey
{emp}

The ownership trick (O’'Hearn 2002)

resource-bundle : Vars full, b; full := false;
Invariant(full Abw— _) V (—full A emp)

{emp}
X := new();
[)
with r when —full do
{=full Nemp * X+ _}
b:=x;
{=full N\emp *X— _Ab=x}
full :== true
{full N\b+— _xemp}
od

{emp}

10

{emp}
with r when full do

y:=b;
full := false
od;

disposey
{emp}

e

The ownership trick (O’'Hearn 2002)

resource-bundle : Vars full, b; full := false;
Invariant(full Abw— _) V (—full A emp)

{emp}
X := new();
[)
with r when —full do
{=full Nemp * X+ _}
b:=x;
{=full N\emp *X— _Ab=x}
full :== true
{full N\b+— _xemp}
od

{emp}

10

{emp}

with r when full do
{full A\b+— _xemp}
y:=b;

full := false
od;

disposey
{emp}

e

The ownership trick (O’'Hearn 2002)

resource-bundle : Vars full, b; full := false;
Invariant(full Abw— _) V (—full A emp)

{emp}
X := new();
[)
with r when —full do
{=full Nemp * X+ _}
b:=x;
{=full N\emp *X— _Ab=x}
full :== true
{full N\b+— _xemp}
od

{emp}

10

{emp}
with r when full do
{full A\b— _xemp}
y:=b;
{full A\b— _xemp Ay = b}
full := false

od;

disposey
{emp}

The ownership trick (O’'Hearn 2002)

resource-bundle : Vars full, b; full := false;
Invariant(full Abw— _) V (—full A emp)

{emp}
X := new();
[)
with r when —full do
{=full Nemp * X+ _}
b:=x;
{=full N\emp *X— _Ab=x}
full :== true
{full N\b+— _xemp}
od

{emp}

10

{emp}
with r when full do
{full A\b+— _xemp}
y:=Db;
{full A\b— _xemp Ay = b}
full := false
{=full N\emp xy — _}
od;

disposey
{emp}

The ownership trick (O’'Hearn 2002)

resource-bundle : Vars full, b; full := false;
Invariant(full Abw— _) V (—full A emp)

{emp}
X := new();
[)
with r when —full do
{=full Nemp * X+ _}
b:=x;
{=full N\emp *X— _Ab=x}
full :== true
{full N\b+— _xemp}
od

{emp}

10

{emp}
with r when full do

{full A\b+— _xemp}
y:=Db;
{full A\b— _xemp Ay = b}
full := false
{=full N\emp xy — _}
od;
{y—}
disposey

{emp)

Passivity

11

Passivity

» Passivity is a property of a program and a resource: the program
doesn’t change the contents of the resource.

et S
11 S

Passivity

» Passivity is a property of a program and a resource: the program
doesn’t change the contents of the resource.

» We want to specify passivity by specifying a read-only resource.

'gg\ﬁ%T_
11 o

Passivity

» Passivity is a property of a program and a resource: the program
doesn’t change the contents of the resource.

» We want to specify passivity by specifying a read-only resource.

» We require that a program, given a read-only resouraenot
change its contents.

e s

11

Splitting and sharing

12

Splitting and sharing

» Since Dijkstra, we have known that we can safely share
read-only resources.

e

12

Splitting and sharing

» Since Dijkstra, we have known that we can safely share
read-only resources.

» Total permissiorE — E’, given by new, allows
read/write/dispose.

'_ygg’:&%_:_
19 T

Splitting and sharing

» Since Dijkstra, we have known that we can safely share
read-only resources.

» Total permissiorE — E’, given by new, allows
read/write/dispose.

» Concurrent read permissions must(e¢ separable, because of
the concurrency rule.

'yg\ﬁ%T_
12 o

Accounting

(e N
BB

13

Accounting

» Splitting into multiple read permissions is easy.

- i

13

Accounting

» Splitting into multiple read permissions is easy.

» To write or dispose we have to know when we hallehe read
permissions back.

'yg':&%?_

Accounting

» Splitting into multiple read permissions is easy.

» To write or dispose we have to know when we hallehe read
permissions back.

» A program which doesn’t keep account leaks resource.

e s

13

Boyland’s suggestiors + 3 = 1

14

Boyland's suggestiorg + 5 = 1

» Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

14 T

Boyland's suggestiorg + 5 = 1

» Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

» He associates a numhewith each permissiorz = 1 total,

0 < z< 1read-only.

et S
14 S

Boyland's suggestiorg + 5 = 1

» Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

» He associates a numhewith each permissiorz = 1 total,
0 < z< 1read-only.

» Fractional permissions are specification-only (cf. types).

o, R%T_
14 o

Boyland's suggestiorg + 5 = 1

Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

He associates a numbewith each permissiorz = 1 total;
0 < z< 1read-only.

Fractional permissions are specification-only (cf. types).

In practice the arithmetic is very easy: fractions gsirapler to
usethan (e.g.) sets of binary trees.

o, R%T_
14 o

Boyland's suggestiorg + 5 = 1

Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

He associates a numbewith each permissiorz = 1 total;
0 < z< 1read-only.

Fractional permissions are specification-only (cf. types).

In practice the arithmetic is very easy: fractions gsirapler to
usethan (e.g.) sets of binary trees.

The magnitude of non-integral fractions doesn’t matter, except as
a matter of accounting.

o, R%T_
14 o

A fractional model (Calcagno, O’Hearn)

15

A fractional model (Calcagno, O’Hearn)

» Heaps are partial maps from Nat to (int, fraction). (Previously
Nat to int.)

T

15

A fractional model (Calcagno, O’Hearn)

» Heaps are partial maps from Nat to (int, fraction). (Previously
Nat to int.)

» A simpler model — just read / total permissions — fails to account
and doesn't have the frame property.

15 T

Proof theory

e

Proof theory

EmE = 0<z<1
E——FEAZ>0AZ >0 EI?E’*ETE’

z+7

T

16

Proof theory

EmE = 0<z<1
Er—>E’/\Z>O/\Z'>O = E|—>E’*Et—>E’

z+7

{Rep x=E {R}
E

{E' v } [E]:= {E' — E}

{E'— E} x=[F] {E' = EAx = E} (xnot free inE, E)
{emp} x=newE) {x— E}

{Erp -} disposeéE {emp}

e

16

Proof theory

EmE = 0<z<1
Er—>E’/\Z>O/\Z'>O = E|—>E’*E+—>E’

z+7
{Rep x=E {R}
{E' } [E]:=E {E' — E}
{E'— E} x=[F] {E' = EAx = E} (xnot free inE, E)
{emp} x=newE) {x~ E}
{Erp -} disposeéE {emp}

» Not (yet) proved sound by Brookes. (But surely ...)

T

16

Proof

dispose
{emp Ay=1Az2=2}

17

e

Proof

dispose
{emp ANy=1Az=2}

17

Proof

dispose
{emp ANy=1Az=2}

17

Proof

{xp 1} {Xgg Lx X5 1}

(y = [x]

dispose
{emp Ay=1ANz=2}

z=[x+1

17

PR

Proof

{emp}

X := new);

{xrp -}

X =1

{xp 1} {Xgg Lx X5 1}

{xr5z 1} {x 1}
y—[]

[]+1
dispose
{emp Ay=1ANz=2}

17

PR

Proof

{emp}

X := new);

{xrp -}

X =1

{xp 1} {Xgg Lx X5 1}

X5 1} {x 1}
y—[]
{xgp 1ny=1}

[]+1
dispose
{emp Ay=1ANz=2}

17

PR

Proof

{emp}

X := new);

X -}

X =1

{xp 1} {Xgg Lx X5 1}

x5z 1} {X 1}
y—[] []+1 ;
X5z 1Ay =1} {x»—>1/\z_2}

dispose
{emp Ay=1ANz=2}

17

Proof

{emp}

X := new);

X -}

X =1

{xp 1} {Xgg Lx X5 1}

x5z 1} {X 1}

y—[] []+1 ;

X5z 1Ay =1} {x»—>1/\z_2}
{Xgg LAYy =1)x X5z LAZ=2)}

dispose<
{emp Ay=1ANz=2}

17

Proof

{emp}

X := new);

{xrp -}

X =1

{xp 1} {Xgg Lx X5 1}

{x55 1} {X 1}

Y—H []+1 ;

X5z 1Ay =1} {x»—>1/\z_2}

{(X5e 1Ay Dx(Xgg LAz=2)} {xrp IANy=1A2=2}
dispose<

{emp ANy=1Az=2}

e

17

Proof

{emp}
X := new);
X -}
X =1
{xp 1} {Xgg Lx X5 1}
x5z 1} {X 1}
y = [X [X +1 ;

X5z 1Ay =1} {x»—>1/\z_2}

{(X5e 1Ay Dx(Xgg LAz=2)} {xrp IANy=1A2=2}
dispose

{emp Ay=1ANz=2}

» That isexactlyhow hard it is to use fractional permissions.

PR

17

UnProof

{emp}

X :=new);

{x—7 -}

X =1

{xrp 1} {xgg Lx X5 1}
{xr55 1} {x5z 1}
y —H i —2
disposex z:=[x+1

X :=y+z

18

e

UnProof

{emp}

X :=new);

{x -}

X =1

{xrp 1} {xgg Lx X5 1}
{xr55 1} x5z 1}
y:= [X; X —2
X Lny=1}
disposex z=x+1

X :=y+z

18

UnProof

{emp}

X :=new);

{x -}

X =1

{xrp 1} {xgg Lx X5 1}
{xr55 1} {X 1}
y:= [X; X = 2
X Lny=1}
disposex z=x+1
7%

X :=y+z

18

UnProof

{emp}

X :=new);

{x -}

X =1

{xrp 1} {xgg Lx X5 1}
{xr55 1} {X 1}
y:= [X; X = 2
{Xigg LAY =1} | {27
disposex z=x+1
7%

X:=y+z

18

.ﬁtm&_.

UnProof

{emp}

X :=new);

{x -}

X =1

{xrp 1} {xgg Lx X5 1}
{xr55 1} {X 1}
y:= [X; X = 2
{X?—> 1ny=1} {'?’?'}
disposex =[x+1
{22 {""}

7%

X:=y+z

18

Passivity and fractions

Termination Monotonicityif C must terminate normally ih and
hx K is defined, thel€ must terminate normally ih x h'.

SR

19

Passivity and fractions
Termination Monotonicityif C must terminate normally ih and
hx K is defined, thel€ must terminate normally ih x h'.

» We can prove termination monotonicity for all commands in our
language.

19 T

Passivity and fractions

Termination Monotonicityif C must terminate normally ih and
hx K is defined, thel€ must terminate normally ih x h'.

» We can prove termination monotonicity for all commands in our
language.

> Suppose 105z N}C{10+5z> N + 1}, and it terminates.

SN
b oA Y

19

Passivity and fractions

Termination Monotonicityif C must terminate normally ih and
hx K is defined, thel€ must terminate normally ih x h'.

» We can prove termination monotonicity for all commands in our
language.

> Suppose 105z N}C{10+5z> N + 1}, and it terminates.
» Then (frame rule)

{1052 N}C{lO == N+ 1}
{1052 N*lOF—> N}C{10|——> Nx 105z N+ 1}

et N

19

Passivity and fractions

Termination Monotonicityif C must terminate normally ih and
hx K is defined, thel€ must terminate normally ih x h'.

» We can prove termination monotonicity for all commands in our
language.

> Suppose 105z N}C{10+5z> N + 1}, and it terminates.
» Then (frame rule)

{10 N}C{lO == N+ 1}
{1052 N*lO% N}C{10|——> Nx 105z N+ 1}
» —l.e. itwon’'t terminate in 1% N.

SR

19

Passivity and fractions

Termination Monotonicityif C must terminate normally ih and
hx K is defined, thel€ must terminate normally ih x h'.

» We can prove termination monotonicity for all commands in our
language.

Supposg 10 5> N}C{10 5z N + 1}, and it terminates.

Then (frame rule)

v

v

{10 N}C{lO == N+ 1}
{1052 N*lO% N}C{10|——> Nx 105z N+ 1}
—i.e. itwon't terminate in 1% N.

v

v

ThereforeC isn’t in our language.

- i

19

Passivity and fractions

Termination Monotonicityif C must terminate normally ih and
hx K is defined, thel€ must terminate normally ih x h'.

» We can prove termination monotonicity for all commands in our
language.

Supposg 10 5> N}C{10 5z N + 1}, and it terminates.

Then (frame rule)

v

v

{10 N}C{lO == N+ 1}
{1052 N*lO% N}C{10|——> Nx 105z N+ 1}
—i.e. itwon't terminate in 1% N.

v

v

ThereforeC isn’t in our language.

v

Thuswe have passivity

19

Permission counting

20

Permission counting

» Some programs naturally weigh out permissions to their child
threads: e.g. parallel tree-copy, parallel tree-rewriting (see
proceedings).

et S
20 S

Permission counting

» Some programs naturally weigh out permissions to their child
threads: e.qg. parallel tree-copy, parallel tree-rewriting (see
proceedings).

» Some programs count permissions: e.g. pipeline multicasting,
readers-and-writers.

'yg\ﬁ%T_
20 o

Permission counting

» Some programs naturally weigh out permissions to their child
threads: e.qg. parallel tree-copy, parallel tree-rewriting (see
proceedings).

» Some programs count permissions: e.g. pipeline multicasting,
readers-and-writers.

» Permission counting isot specification-only.

'gg\ﬁ%T_
20 o

Readers and Writers (Courtois et.al. 1972)

P(read);
if count = 0 then P(write)
else skip fi;
count+ :=1;
V(read);

... reading happens here ...

P(read);
count— := 1;
if count = 0 then V(write)
else skip fi;
V(read)

21

P(write);
... writing happens here ...

V(write)

Readers and writers (CCR version)

29

Readers and writers (CCR version)

with read when true do
if count = 0 then P(write)
else skip fi;
count+:=1
od;

... reading happens here ...

with read when count > 0do
count—:=1;
if count = 0 then V(write)
else skip fi
od

29

P(write);
... writing happens here ...

V(write)

e

Readers and writers (CCR version)

{emp}
with read when true do
if count = 0 then P(write)

else skip fi;
count+:=1
od;
{z— N}

... reading happens here ...

with read when count > 0do
count—:=1;
if count = 0 then V(write)
else skip fi
od

29

P(write);
... writing happens here ...

V(write)

e

Readers and writers (CCR version)

{emp)
with read when true do
if count = 0 then P(write)
else skip fi;
count+:=1
od;
{z— N}
... reading happens here ...
{z— N}
with read when count > 0do
count—:=1;
if count = 0 then V(write)
else skip fi
od

{emp}

29

P(write);
... writing happens here ...

V(write)

e

Readers and writers (CCR version)

{emp)
with read when true do
if count = 0 then P(write)
else skip fi;
count+:=1
od;
{z— N}
... reading happens here ...
{z— N}
with read when count > 0do
count—:=1;
if count = 0 then V(write)
else skip fi
od

{emp}

29

{emp}
P(write);
{z+% M}
... writing happens here ...

V(write)

Readers and writers (CCR version)

{emp}
with read when true do
if count = 0 then P(write)
else skip fi;
count+:=1
od;
{z— N}
... reading happens here ...
{z— N}
with read when count > 0 do
count—:=1;
if count = 0 then V(write)
else skip fi
od

{emp}

29

{emp}
P(write);
{z+% M}
... writing happens here ...
{z:% M}
V(write)
{emp}

A counting model (Calcagno, Parkinson)

29

A counting model (Calcagno, Parkinson)

» Heaps are partial maps from Nat to (int, permission).

29

A counting model (Calcagno, Parkinson)

» Heaps are partial maps from Nat to (int, permission).

» Permissions are-n (n read permissions), en (a “block” from
which nread permissions have been “flaked”).

SN
b oA Y

29

A counting model (Calcagno, Parkinson)

» Heaps are partial maps from Nat to (int, permission).

» Permissions are-n (n read permissions), en (a “block” from
which nread permissions have been “flaked”).

» 0 is total permission.

ey

v

v

v

A counting model (Calcagno, Parkinson)

Heaps are partial maps from Nat to (int, permission).

Permissions are-n (n read permissions), ern (a “block” from
which nread permissions have been “flaked”).

0 is total permission.

_ _ undefined i > 0Aj >0
Ers EExEs B ={ undefined (i>0Vj>0)Ai+j<0
E~ E otherwise

'_ygg’:&%_:_

v

v

v

A counting model (Calcagno, Parkinson)

Heaps are partial maps from Nat to (int, permission).

Permissions are-n (n read permissions), ern (a “block” from
which nread permissions have been “flaked”).

0 is total permission.

_ _ undefined i > 0Aj >0
Ers EExEs B ={ undefined (i>0Vj>0)Ai+j<0
E~ E otherwise

E ~— Eis a notational convenience f&rn—2% E'.

'yg':&%?_

A counting model (Calcagno, Parkinson)

v

Heaps are partial maps from Nat to (int, permission).

» Permissions are-n (n read permissions), en (a “block” from
which nread permissions have been “flaked”).

v

0 is total permission.

_ _ undefined i > 0Aj >0
» E+-s E'xE W B/ = { undefined (i>0Vj>0)Ai+j<0
E~ E otherwise

» E — Eis a notational convenience f&rn—2% E'.

v

We have passivity (same proof as before).

':‘Xi}ﬁ%;\‘—

Proof theory

24

Proof theory

ELE = n>0
ELE«—EMLE«E—FE

e

24

Proof theory

ESE = n>0
EMNE = EXML E+E s E

{Re} x=E {R}
(B9} [:=E {E' % E}
{E' — E} x=[E] {E — E Ax = E} (xnot free inE, E')

{emp} x=newE) {x>E}
{(E-S) disposeE {emp}

24

Resource safety proof

write : if write = 0 then emp else z W2 N fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

if count = 0 then P(write)
else skip
fi;
count+:=1
od
{z— N}

T

25

Resource safety proof

write : if write = 0 then emp else z W2 N fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = 0 then emp else z 2%, N fi x emp}

if count = 0 then P(write)
else skip
fi;
count+:=1
od
{z— N}

e

25

Resource safety proof

write : if write = 0 then emp else z W2 N fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = 0 then emp else z 2%, N fi x emp}
if count = 0 then {emp} P(write)

else {z+°2" N} skip
fi;

count+:=1

od
{Z — N}

25

Resource safety proof

write : if write = 0 then emp else z W2 N fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = O then emp else z -2, N fi emp}

if count = 0 then {emp} P(write) {z-> N}
else {z+°2" N} skip

fi;

count+:=1

od
{Z — N}

25

Resource safety proof

write : if write = 0 then emp else z W2 N fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = O then emp else z -2, N fi emp}

if count = 0 then {emp} P(write) {z-> N}
else {Z msz N} Skip {Z count N}

fi;

count+:=1

od
{z— N}

25

e N

Resource safety proof

write : if write = 0 then emp else z W2 N fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = O then emp else z -2, N fi emp}
if count = 0 then {emp} P(write) {z-> N}
else {Z mzmt N} Sklp {Z (’oum‘ N}

fi;
{Z count N}
count+:=1
od
{z— N}

25

PR

Resource safety proof

write : if write = 0 then emp else z W2 N fi
read : if count = 0 then emp else z -2, N fi

{emp}

with read when true do
{if count = O then emp else z -2, N fi emp}
if count = 0 then {emp} P(write) {z+% N}

else {z+%" N} skip {z+52“"5 N}

fi;
{z Feount, N}
count+:=1
{Z count—1 N}

od

{z— N}

25

PR

Resource safety proof

write : if write = 0 then emp else z W2 N fi
read : if count = 0 then emp else z -2, N fi

{emp}

with read when true do
{if count = O then emp else z -2, N fi emp}
if count = 0 then {emp} P(write) {z+% N}

else {z+%" N} skip {z+52“"5 N}

fi;
{z Feount, N}
count+:=1
{zeoumi=L, N} - {z -4t N ox z — N}

od

{z— N}

25

PR

Do we need two models?

26

Do we need two models?

Tu=LamvT|AppTT|Varv

26

Do we need two models?

Tu=LamvT|AppTT|Varv

AST x (Lamv 3) z= 3b.(x+% 0,v,bx AST b 3 z

. x5 1 f,ax ASTf ¢z«
ASTX(App(ba)Z—EIf,a.(ASTaaZ)

AST x (Varv) z=x+% 2,v

- i

26

Do we need two models?

Tu=LamvT|AppTT|Varv

AST x (Lamv 3) z= 3b.(x+% 0,v,bx AST b 3 z

. x5 1 f,ax ASTf ¢z«
ASTX(App(ba)Z—EIf,a.<ASTaaZ)

AST x (Varv) z=x+% 2,v
(Lam V B)[T/V] =

Lam V' (B[r/v]) v#V
LamV (3 V=yv

(App ¢ a)[T/V] = App (¢[T/V]) (a[T/V])

(VarV)[r /M = {\T/a”" Z&

56 T

Parallel tree rewriting

subst Xy v=

if [x] = Othen // Lam
if [X+ 1] # v then [X+ 2] := subst [Xx+ 2] y Velse skipfi;
X

elsf [x] = 1 then // App —do it in parallel
(IX+ 1] == subst [x+ 1] y V|| [x+ 2] := subst [x+ 2]y V));
X

elsf [Xx+ 1] = v then // Var, samev
disposex; disposéx + 1); new(2, copy Y)

else // Var, differentv
X

fi

e oY

27

Parallel tree rewriting

subst Xy v=

if [x] = Othen // Lam
if [X+ 1] # v then [X+ 2] := subst [Xx+ 2] y Velse skipfi;
X

elsf [x] = 1 then // App —do it in parallel
(IX+ 1] == subst [x+ 1] y V|| [x+ 2] := subst [x+ 2]y V));
X

elsf [Xx+ 1] = v then // Var, samev
disposex; disposéx + 1); new(2, copy Y)

else // Var, differentv
X

fi

— proof easy with fractions, ridiculous with counting permissions;
readers and writers swings the other way.

e

27

Parallel tree rewriting

subst Xy v=

if [x] = Othen // Lam
if [X+ 1] # v then [X+ 2] := subst [Xx+ 2] y Velse skipfi;
X

elsf [x] = 1 then // App —do it in parallel
(IX+ 1] == subst [x+ 1] y V|| [x+ 2] := subst [x+ 2]y V));
X

elsf [Xx+ 1] = v then // Var, samev
disposex; disposéx + 1); new(2, copy Y)

else // Var, differentv
X

fi

— proof easy with fractions, ridiculous with counting permissions;
readers and writers swings the other way.

We need more than one model!

27

Passivity and concurrency

» If I havex = _, | can be sure that you can't write to it.

T

29

Passivity and concurrency

» If I havex = _, | can be sure that you can't write to it.

» If 1 give youx 52> - in the static case, | can be sure you can't
write to it.

R, SN
b oA Y

29

Passivity and concurrency

» If I havex = _, | can be sure that you can't write to it.

» If 1 give youx 52> - in the static case, | can be sure you can't
write to it.

» In the concurrent/modular case, you might have the other half, or
get it temporarily from elsewhere.

et S
29 S

Passivity and concurrency

If I have x 52> -, | can be sure that you can’t write to it.

If I give you x -5 - in the static case, | can be sure you can’t
write to it.

In the concurrent/modular case, you might have the other half, or
get it temporarily from elsewhere.

Moral: keep your hand on your ha’penny; don't give them
everything you've got.

'yg\ﬁ%T_
59 o

v

Passivity and concurrency

If | have x o - | can be sure that you can’t write to it.

If I give you x -5 - in the static case, | can be sure you can’t
write to it.

In the concurrent/modular case, you might have the other half, or
get it temporarily from elsewhere.

Moral: keep your hand on your ha’penny; don't give them
everything you've got.

(Same applies to counting permissions.)

'gg\ﬁ%T_
29 o

We don’t understand recursive definitions any more

20

We don’t understand recursive definitions any more

tree nil Empty = emp
treet (Tipa) =t+— 0,
tree t (Node A p) = 3l,r- (t— L 1,1 xtree | Axtreer p)

e

20

We don’t understand recursive definitions any more

tree nil Empty = emp
treet (Tipa) =t+— 0,
tree t (Node A p) = 3l,r- (t— L 1,1 xtree | Axtreer p)

ztree Znil Empty = emp
ztree Zt(Tipa) =t 0,

ztree Z t (Node A p) = 3l,r - (t'? Llr *ztreezl)*ztreezrp>

T

20

We don’t understand recursive definitions any more

tree nil Empty = emp
treet (Tipa) =t+— 0,
tree t (Node A p) = 3l,r- (t— L 1,1 xtree | Axtreer p)

ztree Znil Empty = emp
ztree Zt(Tipa) =t 0,
ztree Z t (Node A p) = 3l,r - (t'? Llr *ztreezl)*ztreezrp>

X5z 1,11 %1 5 0, 3 satisfiesitree 0.5 x (Node (Tip 3) (Tip 3))
(and we can write to it)!!

20

We don’t understand recursive definitions any more

tree nil Empty = emp
treet (Tipa) =t+— 0,
tree t (Node A p) = 3l,r- (t— L 1,1 xtree | Axtreer p)

ztree Znil Empty = emp

ztree 2t (Tipa) =t 0,
ztree Z t (Node A p) = 3l,r - (t = L1, 1 xztree Z | A % ztree Z r,o)
X5z L1 x| o 0,.3 satisfiesitree 0.5 X (Node (Tip 3) (Tip 3))
(and we can write to it)!!

We haveztree (z+Z) t 7 <= ztree zt7 x ztree Z t 7, but
sometimes only vacuously.

e
59 T

We don’t understand recursive definitions any more

tree nil Empty = emp
treet (Tipa) =t+— 0,
tree t (Node A p) = 3l,r- (t— L 1,1 xtree | Axtreer p)

ztree Znil Empty = emp
ztree 2t (Tipa) =t 0,

ztree Z t (Node A p) = 3l,r - (t'? Llr *ztreezl)*ztreezrp>

X5z 1,11 %1 5 0, 3 satisfiesitree 0.5 x (Node (Tip 3) (Tip 3))
(and we can write to it)!!

We haveztree (z+ Z) t 7 <= ztree zt7 x ztree Z t 7, but
sometimes only vacuously.

We can write programs which work withiree 0.5, but crash with
ztree 0.499.

'_ygg’:&%_:_
59 T

The unbounded buffer

begin integer numberOfQueuingPortions,
bufferManipulation;
numberOfQueuingPortions := 0;
bufferManipulation := 1;
parbegin
producer: begin
againl: produce next portion;
add portion to buffer ;
V(numberOfQueuingPortions);
goto againl
end,
consumer: begin
again2: P(numberOfQueuingPortions);
take portion from buffer
process portion taken;
goto again2
end
parend
end

Proposed and withdrawn in 1965; proved safe, Habermann 19720

20

A proof with variables-as-resource

back b f front
p l / l /
tc
/]

L et o= [& fe |

n=3

21

A proof with variables-as-resource

// Producer.

back, tp, b% F

back — _,_ A back=Db

back.0 := producé);
tp == new();
back.1 := tp;
V(n);
back = tp

back, tp, b1 +
2
back — _,_ A back=Db

back

ip

/I Semaphora

{n,f1, b1 F listseg nf b}
2 2

P:decn;f :=f.2

V:incn;b:=b.2

/I Consumer.
{front, te,f1 - front =f}
2

tc := front;
P(n);

front := front.2;
consumeéc.0;
disposéc

{front, te,f1 - front =f}
2

front

N 20 N e

e

n=3

21

e

A proof with variables-as-resource

// Producer.

back, tp, b% F

back — _,_ A back=Db

back.0 := producé);
tp == new();
back.1 := tp;
V(n);
back = tp

back, tp, b1 +
2
back — _,_ A back=Db

back

ip

/I Semaphora

{n,f1, b1 F listseg nf b}
2 2

P :decn;f :=f.2

V:incn;b:=b.2

/I Consumer.
{front, te,f1 - front =f}
2

tc := front;
P(n);

front := front.2;
consumeéc.0;
disposéc

{front, te,f1 - front =f}
2

front, tc

N 20 N e

l/

n=3

21

e

A proof with variables-as-resource

// Producer.

back, tp, b% F

back — _,_ A back=Db

back.0 := producé);
tp == new();
back.1 := tp;
V(n);
back = tp

back, tp, b1 +
2
back — _,_ A back=Db

back

ip

/I Semaphora

{n,f1, b1 F listseg nf b}
2 2

P:decn;f :=f.2

V:incn;b:=b.2

/I Consumer.
{front, te,f1 - front =f}
2

tc := front;
P(n);

front := front.2;
consumeéc.0;
disposéc

{front, te,f1 - front =f}
2

front, tc

e

e T [k 7]

n=2

21

e

A proof with variables-as-resource

// Producer.

back, tp, b% F

back — _,_ A back=Db

back.0 := producé);
tp == new();
back.1 := tp;
V(n);
back = tp

back, tp, b1 +
2
back — _,_ A back=Db

back

L

/I Semaphora

{n,f1, b1 F listseg nf b}
2 2

P:decn;f :=f.2

V:incn;b:=b.2

/I Consumer.
{front, te,f1 - front =f}
2

tc := front;
P(n);

front := front.2;
consumeéc.0;
disposéc

{front, te,f1 - front =f}
2

n=2

21

e

A proof with variables-as-resource

/I Producer.
back, tp, b1
back »—>2,, _ A back= b}
back.0 := producé);

/I Semaphora

{n,f1, b1 F listseg nf b}
2 2

tp := new(); P :decn;f :=f.2
back.1 := tp;
v(n); V:incnyb:=hb.2
back :=
back, tp, b1 +
2
back — _,_ A\ back=Db
back b f
L | et [t [K
n=2

21

/I Consumer.
{front, te,f1 - front =f}
2

tc := front;
P(n);

front := front.2;
consumeéc.0;
disposec

{front, te,f1 - front =f}
2

front tc

e

A proof with variables-as-resource

/I Producer.

back, tp, b1 +
2
back — _,_ A back=Db
back.0 := produce);

tp := new();
back.1 := tp;
V(n);
back :=
back, tp,b1 +
{ back »—>2,, _ A back= b}
tp back

v

/I Semaphora

{n,f1, b1 F listseg nf b}
2 2

P:decn;f :=f.2

V:incn;b:=b.2

'

[e [M e [e |

n=2

21

/I Consumer.
{front, te,f1 - front =f}
2

tc := front;
P(n);

front := front.2;
consumeéc.0;
disposéc

{front, te,f1 - front =f}
2

front tc

e

A proof with variables-as-resource

/I Producer.
back, tp, b1
back >—>2,, _ A back= b}
back.0 := producé);

tp == new();
back.1 := tp;
V(n);

back :=

back, tp, b1
2
back — _,_ A back=Db

{

tp back b

/I Semaphora

{n,f1, b1 F listseg nf b}
2 2

P:decn;f :=f.2

V:incn;b:=b.2

'

[o= (M ez [et |

n=3

21

/I Consumer.
{front, te,f1 - front
2

tc := front;
P(n);

front := front.2,
consumeéc.0;
disposéc

{front, te,f1 - front
2

front tc

f}

f}

A proof with variables-as-resource

/I Producer.
back, tp, b1 +
back »—>2,, _ A back= b}
back.0 := producé);

tp == new();
back.1 := tp;
V(n);
back := tp
back, tp, b1 +
{ back »—>2,, _ A back= b}
tp, back b

/I Semaphora

{n,f1, b1 F listseg nf b}
2 2

P:decn;f :=f.2

V:incn;b:=b.2

'

[o= (M ez [et |

n=3

21

/I Consumer.
{front, te,f1 - front =f}
2

tc := front;
P(n);

front := front.2;
consumeéc.0;
disposéc

{front, te,f1 - front =f}
2

front tc

e

/] Producer.

back, tp, b1

back »—>2,, _Aback=Dhb

back.0 := producé);
tp == new();
back.1 := tp;
V(n);
back = tp

back, tp, b1 F
{ back »—>2,, _Aback=hb

}

}

We can prove it!

/I Semaphora

{n,f1,b1 F listseg nf b}
2 2

P :decn;f :=f.2

V:incn;b:=b.2

292

/I Consumer.
{front, tc, f% E front =f}

tc := front;
P(n);

front := front.2;
consumeéc.0;
disposéc

{front, tc,f1 - front =f}
2

e

/] Producer.

back, tp, b1

back >—>2,, _ A back= b}

back.0 := producé);
tp == new();
back.1 := tp;
V(n);
back = tp

back, tp, b F
{ back >—>2,, _ A back= b}

We can prove it!

/I Semaphora

{n,f1, b1 I listseg n f b}
2 2

P :decn;f :=f.2

V:incn;b:=b.2

/I Consumer.
{front, tc,f1 - front =f}
2

tc := front;
P(n);

front := front.2,
consumeéc.0;
disposéc

{front, tc,f1 - front =f}
2

Assertionus - P says “owning variabless, P holds”. P can only
mention variables ins You can’t write to fractionally-owned

variables.

292

We can prove it!

/] Producer. /I Semaphora /I Consumer.
back, tp, b F
(I(ILa(:k‘pH %,, A back— b} {n, f%, b% F listseg nf b} || {front, te, f% E front =f}
back.0 := producé); tc := front;
tp := new(); P :decn;f :=f.2 P(n);
back.1l := tp; front := front.2;
V(n); V:incn;b:=hb.2 consumeéc.0;
back := tp disposéc
back, tp, b F
{ aza(;ka %,, A back— b} {front, tc, f% E front =f}

Assertionus - P says “owning variabless, P holds”. P can only
mention variables ins You can’t write to fractionally-owned
variables.

P can describe separation of the heagek — _, _ describes
ownership of a two-word recor@uck — _, _* front — _, _describes
ownership of two cons-cellseparately

e oY

292

We have more ideas than we can deal with

213

We have more ideas than we can deal with

» existence (no read, no write) permissions: e.g. P+V+read/write
for semaphores;

T

213

We have more ideas than we can deal with

» existence (no read, no write) permissions: e.g. P+V+read/write
for semaphores;

» mobile channels: e.g. read one end, write the other in occam;

213

We have more ideas than we can deal with

» existence (no read, no write) permissions: e.g. P+V+read/write
for semaphores;

» mobile channels: e.g. read one end, write the other in occam;

» semaphores in the heap (for shared buffers which reclaim
themselves);

e

23

We have more ideas than we can deal with

existence (no read, no write) permissions: e.g. P+V+read/write
for semaphores;

mobile channels: e.g. read one end, write the other in occam;

semaphores in the heap (for shared buffers which reclaim
themselves);

mobile code, maybe (if David May will tell us how it works);

e

213

We have more ideas than we can deal with

existence (no read, no write) permissions: e.g. P+V+read/write
for semaphores;

mobile channels: e.g. read one end, write the other in occam;

semaphores in the heap (for shared buffers which reclaim
themselves);

mobile code, maybe (if David May will tell us how it works);

e

213

The Grand Challenge

24

The Grand Challenge

Resourcing problems are everywhere. The problem is to make a
resourcing solution:

24

The Grand Challenge

Resourcing problems are everywhere. The problem is to make a
resourcing solution:

» as lightweight as typing;

-
24 SRS

The Grand Challenge

Resourcing problems are everywhere. The problem is to make a
resourcing solution:

» as lightweight as typing;
» built into language designs;

'_ygg’:&%_:_
a4 SRS

The Grand Challenge

Resourcing problems are everywhere. The problem is to make a
resourcing solution:

» as lightweight as typing;
» built into language designs;
» built into compilers.

'yg':&%?_
2 SRS

The Grand Challenge

Resourcing problems are everywhere. The problem is to make a
resourcing solution:

» as lightweight as typing;
» built into language designs;
» built into compilers.

If we build it, they will come (as they came for types).

'yg\ﬁ%T_
2 SRS

