
Permissions and concurrency: a breakthrough and a
Grand Challenge

Richard Bornat (Middlesex, UK)

22nd Oct 2004

1

Typing

I one of the things that formalism has given us;

I a relatively recent success (only took C in the early 90s);

I never a Grand Challenge;

I who could live without it? (well ok, low life).

I (why do the low life do without types? what can we do for
them?)

2

Typing

I one of the things that formalism has given us;

I a relatively recent success (only took C in the early 90s);

I never a Grand Challenge;

I who could live without it? (well ok, low life).

I (why do the low life do without types? what can we do for
them?)

2

Typing

I one of the things that formalism has given us;

I a relatively recent success (only took C in the early 90s);

I never a Grand Challenge;

I who could live without it? (well ok, low life).

I (why do the low life do without types? what can we do for
them?)

2

Typing

I one of the things that formalism has given us;

I a relatively recent success (only took C in the early 90s);

I never a Grand Challenge;

I who could live without it? (well ok, low life).

I (why do the low life do without types? what can we do for
them?)

2

Typing

I one of the things that formalism has given us;

I a relatively recent success (only took C in the early 90s);

I never a Grand Challenge;

I who could live without it? (well ok, low life).

I (why do the low life do without types? what can we do for
them?)

2

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

COBOL had structural descriptions, not seen as types.

We’ve tried typeless languages – e.g. BCPL – and run-time typed
languages – e.g. Lisp.

Types became popular as protection against wild use of pointers
(instead of just a pointer, a pointer to anX structure) and procedure
addresses (argument and result types).

Typing is about static, value/state independent properties of names.

The world doesn’t yet believe in type inference, and the inventor of
C++ has never been put on trial.

3

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

COBOL had structural descriptions, not seen as types.

We’ve tried typeless languages – e.g. BCPL – and run-time typed
languages – e.g. Lisp.

Types became popular as protection against wild use of pointers
(instead of just a pointer, a pointer to anX structure) and procedure
addresses (argument and result types).

Typing is about static, value/state independent properties of names.

The world doesn’t yet believe in type inference, and the inventor of
C++ has never been put on trial.

3

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

COBOL had structural descriptions, not seen as types.

We’ve tried typeless languages – e.g. BCPL – and run-time typed
languages – e.g. Lisp.

Types became popular as protection against wild use of pointers
(instead of just a pointer, a pointer to anX structure) and procedure
addresses (argument and result types).

Typing is about static, value/state independent properties of names.

The world doesn’t yet believe in type inference, and the inventor of
C++ has never been put on trial.

3

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

COBOL had structural descriptions, not seen as types.

We’ve tried typeless languages – e.g. BCPL – and run-time typed
languages – e.g. Lisp.

Types became popular as protection against wild use of pointers
(instead of just a pointer, a pointer to anX structure) and procedure
addresses (argument and result types).

Typing is about static, value/state independent properties of names.

The world doesn’t yet believe in type inference, and the inventor of
C++ has never been put on trial.

3

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

COBOL had structural descriptions, not seen as types.

We’ve tried typeless languages – e.g. BCPL – and run-time typed
languages – e.g. Lisp.

Types became popular as protection against wild use of pointers
(instead of just a pointer, a pointer to anX structure) and procedure
addresses (argument and result types).

Typing is about static, value/state independent properties of names.

The world doesn’t yet believe in type inference, and the inventor of
C++ has never been put on trial.

3

A Rough History

Types began with Russell, but we got them from FORTRAN, as hints
to a compiler.

COBOL had structural descriptions, not seen as types.

We’ve tried typeless languages – e.g. BCPL – and run-time typed
languages – e.g. Lisp.

Types became popular as protection against wild use of pointers
(instead of just a pointer, a pointer to anX structure) and procedure
addresses (argument and result types).

Typing is about static, value/state independent properties of names.

The world doesn’t yet believe in type inference, and the inventor of
C++ has never been put on trial.

3

Types are not enough

Types do not protect us from:

I dereferencing null pointers;

I double free;

I rogue librarians (what doesSystem.out.print(s) do?);

I the ‘variant record error’;

I ...

“Well-typed programs do not go wrong”: we don’t apply a function to
the wrong type of value. But the wrong value of the type ...

hd([]), anybody?

4

Types are not enough

Types do not protect us from:

I dereferencing null pointers;

I double free;

I rogue librarians (what doesSystem.out.print(s) do?);

I the ‘variant record error’;

I ...

“Well-typed programs do not go wrong”: we don’t apply a function to
the wrong type of value. But the wrong value of the type ...

hd([]), anybody?

4

Types are not enough

Types do not protect us from:

I dereferencing null pointers;

I double free;

I rogue librarians (what doesSystem.out.print(s) do?);

I the ‘variant record error’;

I ...

“Well-typed programs do not go wrong”: we don’t apply a function to
the wrong type of value. But the wrong value of the type ...

hd([]), anybody?

4

Types are not enough

Types do not protect us from:

I dereferencing null pointers;

I double free;

I rogue librarians (what doesSystem.out.print(s) do?);

I the ‘variant record error’;

I ...

“Well-typed programs do not go wrong”: we don’t apply a function to
the wrong type of value. But the wrong value of the type ...

hd([]), anybody?

4

Types are not enough

Types do not protect us from:

I dereferencing null pointers;

I double free;

I rogue librarians (what doesSystem.out.print(s) do?);

I the ‘variant record error’;

I ...

“Well-typed programs do not go wrong”: we don’t apply a function to
the wrong type of value. But the wrong value of the type ...

hd([]), anybody?

4

Types are not enough

Types do not protect us from:

I dereferencing null pointers;

I double free;

I rogue librarians (what doesSystem.out.print(s) do?);

I the ‘variant record error’;

I ...

“Well-typed programs do not go wrong”: we don’t apply a function to
the wrong type of value. But the wrong value of the type ...

hd([]), anybody?

4

Types are not enough

Types do not protect us from:

I dereferencing null pointers;

I double free;

I rogue librarians (what doesSystem.out.print(s) do?);

I the ‘variant record error’;

I ...

“Well-typed programs do not go wrong”: we don’t apply a function to
the wrong type of value. But the wrong value of the type ...

hd([]), anybody?

4

Types are not enough

Types do not protect us from:

I dereferencing null pointers;

I double free;

I rogue librarians (what doesSystem.out.print(s) do?);

I the ‘variant record error’;

I ...

“Well-typed programs do not go wrong”: we don’t apply a function to
the wrong type of value. But the wrong value of the type ...

hd([]), anybody?

4

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don’t
own at the time of asking). You can do what you like with the pointer.

(ISO C says you mustn’t do anything naughty, but nobody can tell if
you do.)

free /dispose , given a pointer to a buffer you do own, takes the
buffer away.

You are left with a pointer (maybe several copies of a pointer) which
youare not allowed to use.

Vivid analogy:“An unfrocked priest is capable of celebrating
marriage but forbidden to do so”
(Marek Sergot, talk on logic of permission and belief; see alsoDaily
Telegraph, 21/vi/93).

(BTW, “Ownership types” and/or nulling disposed pointers don’t
touch this problem.)

5

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don’t
own at the time of asking). You can do what you like with the pointer.

(ISO C says you mustn’t do anything naughty, but nobody can tell if
you do.)

free /dispose , given a pointer to a buffer you do own, takes the
buffer away.

You are left with a pointer (maybe several copies of a pointer) which
youare not allowed to use.

Vivid analogy:“An unfrocked priest is capable of celebrating
marriage but forbidden to do so”
(Marek Sergot, talk on logic of permission and belief; see alsoDaily
Telegraph, 21/vi/93).

(BTW, “Ownership types” and/or nulling disposed pointers don’t
touch this problem.)

5

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don’t
own at the time of asking). You can do what you like with the pointer.

(ISO C says you mustn’t do anything naughty, but nobody can tell if
you do.)

free /dispose , given a pointer to a buffer you do own, takes the
buffer away.

You are left with a pointer (maybe several copies of a pointer) which
youare not allowed to use.

Vivid analogy:“An unfrocked priest is capable of celebrating
marriage but forbidden to do so”
(Marek Sergot, talk on logic of permission and belief; see alsoDaily
Telegraph, 21/vi/93).

(BTW, “Ownership types” and/or nulling disposed pointers don’t
touch this problem.)

5

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don’t
own at the time of asking). You can do what you like with the pointer.

(ISO C says you mustn’t do anything naughty, but nobody can tell if
you do.)

free /dispose , given a pointer to a buffer you do own, takes the
buffer away.

You are left with a pointer (maybe several copies of a pointer) which
youare not allowed to use.

Vivid analogy:“An unfrocked priest is capable of celebrating
marriage but forbidden to do so”
(Marek Sergot, talk on logic of permission and belief; see alsoDaily
Telegraph, 21/vi/93).

(BTW, “Ownership types” and/or nulling disposed pointers don’t
touch this problem.)

5

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don’t
own at the time of asking). You can do what you like with the pointer.

(ISO C says you mustn’t do anything naughty, but nobody can tell if
you do.)

free /dispose , given a pointer to a buffer you do own, takes the
buffer away.

You are left with a pointer (maybe several copies of a pointer) which
youare not allowed to use.

Vivid analogy:“An unfrocked priest is capable of celebrating
marriage but forbidden to do so”
(Marek Sergot, talk on logic of permission and belief; see alsoDaily
Telegraph, 21/vi/93).

(BTW, “Ownership types” and/or nulling disposed pointers don’t
touch this problem.)

5

A classic resource problem

malloc /new gives you a pointer to a new-ish buffer (one you don’t
own at the time of asking). You can do what you like with the pointer.

(ISO C says you mustn’t do anything naughty, but nobody can tell if
you do.)

free /dispose , given a pointer to a buffer you do own, takes the
buffer away.

You are left with a pointer (maybe several copies of a pointer) which
youare not allowed to use.

Vivid analogy:“An unfrocked priest is capable of celebrating
marriage but forbidden to do so”
(Marek Sergot, talk on logic of permission and belief; see alsoDaily
Telegraph, 21/vi/93).

(BTW, “Ownership types” and/or nulling disposed pointers don’t
touch this problem.)

5

The hardest kind of programming?

Concurrency – multi-threading, multi-processing – is notoriously
difficult.

40 years ago, Dijkstra invented semaphores, mutual exclusion, critical
sections (Cooperating Sequential Processes, 1965).

– also fairness, deadlock, starvation, the Banker’s algorithm, bounded
and unbounded buffer, ...

“We have stipulated that processes should be connectedloosely; by
this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to be
regarded as completelyindependentof each other.”

6

The hardest kind of programming?

Concurrency – multi-threading, multi-processing – is notoriously
difficult.

40 years ago, Dijkstra invented semaphores, mutual exclusion, critical
sections (Cooperating Sequential Processes, 1965).

– also fairness, deadlock, starvation, the Banker’s algorithm, bounded
and unbounded buffer, ...

“We have stipulated that processes should be connectedloosely; by
this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to be
regarded as completelyindependentof each other.”

6

The hardest kind of programming?

Concurrency – multi-threading, multi-processing – is notoriously
difficult.

40 years ago, Dijkstra invented semaphores, mutual exclusion, critical
sections (Cooperating Sequential Processes, 1965).

– also fairness, deadlock, starvation, the Banker’s algorithm, bounded
and unbounded buffer, ...

“We have stipulated that processes should be connectedloosely; by
this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to be
regarded as completelyindependentof each other.”

6

The hardest kind of programming?

Concurrency – multi-threading, multi-processing – is notoriously
difficult.

40 years ago, Dijkstra invented semaphores, mutual exclusion, critical
sections (Cooperating Sequential Processes, 1965).

– also fairness, deadlock, starvation, the Banker’s algorithm, bounded
and unbounded buffer, ...

“We have stipulated that processes should be connectedloosely; by
this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to be
regarded as completelyindependentof each other.”

6

Separation logic

I Just a bastard child of BI (Pym, O’Hearn).

I E 7→ E′ (points to) ispermissionto read/write/dispose cell at
heap addressE with contentsE′.

I 7→ can also be read asownershipand/or aheap predicate.

I emp is no permission.

I A ? B (star) isseparationof resource.

I A∧ B (and) isidentityof resource.

I A∧ (B ? true) is all A, partlyB.

7

Separation logic

I Just a bastard child of BI (Pym, O’Hearn).

I E 7→ E′ (points to) ispermissionto read/write/dispose cell at
heap addressE with contentsE′.

I 7→ can also be read asownershipand/or aheap predicate.

I emp is no permission.

I A ? B (star) isseparationof resource.

I A∧ B (and) isidentityof resource.

I A∧ (B ? true) is all A, partlyB.

7

Separation logic

I Just a bastard child of BI (Pym, O’Hearn).

I E 7→ E′ (points to) ispermissionto read/write/dispose cell at
heap addressE with contentsE′.

I 7→ can also be read asownershipand/or aheap predicate.

I emp is no permission.

I A ? B (star) isseparationof resource.

I A∧ B (and) isidentityof resource.

I A∧ (B ? true) is all A, partlyB.

7

Separation logic

I Just a bastard child of BI (Pym, O’Hearn).

I E 7→ E′ (points to) ispermissionto read/write/dispose cell at
heap addressE with contentsE′.

I 7→ can also be read asownershipand/or aheap predicate.

I emp is no permission.

I A ? B (star) isseparationof resource.

I A∧ B (and) isidentityof resource.

I A∧ (B ? true) is all A, partlyB.

7

Separation logic

I Just a bastard child of BI (Pym, O’Hearn).

I E 7→ E′ (points to) ispermissionto read/write/dispose cell at
heap addressE with contentsE′.

I 7→ can also be read asownershipand/or aheap predicate.

I emp is no permission.

I A ? B (star) isseparationof resource.

I A∧ B (and) isidentityof resource.

I A∧ (B ? true) is all A, partlyB.

7

Separation logic

I Just a bastard child of BI (Pym, O’Hearn).

I E 7→ E′ (points to) ispermissionto read/write/dispose cell at
heap addressE with contentsE′.

I 7→ can also be read asownershipand/or aheap predicate.

I emp is no permission.

I A ? B (star) isseparationof resource.

I A∧ B (and) isidentityof resource.

I A∧ (B ? true) is all A, partlyB.

7

Separation logic

I Just a bastard child of BI (Pym, O’Hearn).

I E 7→ E′ (points to) ispermissionto read/write/dispose cell at
heap addressE with contentsE′.

I 7→ can also be read asownershipand/or aheap predicate.

I emp is no permission.

I A ? B (star) isseparationof resource.

I A∧ B (and) isidentityof resource.

I A∧ (B ? true) is all A, partlyB.

7

Separation logic

I Just a bastard child of BI (Pym, O’Hearn).

I E 7→ E′ (points to) ispermissionto read/write/dispose cell at
heap addressE with contentsE′.

I 7→ can also be read asownershipand/or aheap predicate.

I emp is no permission.

I A ? B (star) isseparationof resource.

I A∧ B (and) isidentityof resource.

I A∧ (B ? true) is all A, partlyB.

7

Framing, hence small axioms

{Q}C{R}
{P ? Q}C{P ? R}

(modifies C ∩ vars P = ∅)

blank

{Rx
E} x:=E {R}

{x 7→ } [x]:=E {x 7→ E}
{E′ 7→ E} x:=[E′] {E′ 7→ E∧ x = E} (x not free inE, E′)
{emp} x:=new(E) {x 7→ E}
{E 7→ } disposeE {emp}

8

Framing, hence small axioms

{Q}C{R}
{P ? Q}C{P ? R}

(modifies C ∩ vars P = ∅)

blank

{Rx
E} x:=E {R}

{x 7→ } [x]:=E {x 7→ E}
{E′ 7→ E} x:=[E′] {E′ 7→ E∧ x = E} (x not free inE, E′)
{emp} x:=new(E) {x 7→ E}
{E 7→ } disposeE {emp}

8

Framing, hence small axioms

{Q}C{R}
{P ? Q}C{P ? R}

(modifies C ∩ vars P = ∅)

blank
{Rx

E} x:=E {R}
{x 7→ } [x]:=E {x 7→ E}

{E′ 7→ E} x:=[E′] {E′ 7→ E∧ x = E} (x not free inE, E′)
{emp} x:=new(E) {x 7→ E}
{E 7→ } disposeE {emp}

8

Concurrency rules

{Q1}C1 {R1} · · · {Qn}Cn {Rn}
{Q1 ? · · · ? Qn} (C1 ‖ · · · ‖ Cn){R1 ? · · · ? Rn}

(non-interference-of-variables)

blank

{(Q ? Ir) ∧ B}C{R? Ir}
{Q}with r when B do C od{R}

blank

I Both proved sound by Brookes.

I A version of the CCR rule covers semaphores, in whichC is
eitherm := m+ 1 orm := m− 1.

9

Concurrency rules

{Q1}C1 {R1} · · · {Qn}Cn {Rn}
{Q1 ? · · · ? Qn} (C1 ‖ · · · ‖ Cn){R1 ? · · · ? Rn}

(non-interference-of-variables)

blank

{(Q ? Ir) ∧ B}C{R? Ir}
{Q}with r when B do C od{R}

blank

I Both proved sound by Brookes.

I A version of the CCR rule covers semaphores, in whichC is
eitherm := m+ 1 orm := m− 1.

9

Concurrency rules

{Q1}C1 {R1} · · · {Qn}Cn {Rn}
{Q1 ? · · · ? Qn} (C1 ‖ · · · ‖ Cn){R1 ? · · · ? Rn}

(non-interference-of-variables)

blank
{(Q ? Ir) ∧ B}C{R? Ir}

{Q}with r when B do C od{R}
blank

I Both proved sound by Brookes.

I A version of the CCR rule covers semaphores, in whichC is
eitherm := m+ 1 orm := m− 1.

9

Concurrency rules

{Q1}C1 {R1} · · · {Qn}Cn {Rn}
{Q1 ? · · · ? Qn} (C1 ‖ · · · ‖ Cn){R1 ? · · · ? Rn}

(non-interference-of-variables)

blank
{(Q ? Ir) ∧ B}C{R? Ir}

{Q}with r when B do C od{R}
blank

I Both proved sound by Brookes.

I A version of the CCR rule covers semaphores, in whichC is
eitherm := m+ 1 orm := m− 1.

9

Concurrency rules

{Q1}C1 {R1} · · · {Qn}Cn {Rn}
{Q1 ? · · · ? Qn} (C1 ‖ · · · ‖ Cn){R1 ? · · · ? Rn}

(non-interference-of-variables)

blank
{(Q ? Ir) ∧ B}C{R? Ir}

{Q}with r when B do C od{R}
blank

I Both proved sound by Brookes.

I A version of the CCR rule covers semaphores, in whichC is
eitherm := m+ 1 orm := m− 1.

9

The ownership trick (O’Hearn 2002)

resource-bundler : Varsfull , b; full := false;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)
blank

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


10

The ownership trick (O’Hearn 2002)

resource-bundler : Varsfull , b; full := false;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)
blank

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


10

The ownership trick (O’Hearn 2002)

resource-bundler : Varsfull , b; full := false;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)
blank

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


10

The ownership trick (O’Hearn 2002)

resource-bundler : Varsfull , b; full := false;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)
blank

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


10

The ownership trick (O’Hearn 2002)

resource-bundler : Varsfull , b; full := false;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)
blank

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


10

The ownership trick (O’Hearn 2002)

resource-bundler : Varsfull , b; full := false;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)
blank

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


10

The ownership trick (O’Hearn 2002)

resource-bundler : Varsfull , b; full := false;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)
blank

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


10

The ownership trick (O’Hearn 2002)

resource-bundler : Varsfull , b; full := false;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)
blank

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


10

The ownership trick (O’Hearn 2002)

resource-bundler : Varsfull , b; full := false;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)
blank

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


10

The ownership trick (O’Hearn 2002)

resource-bundler : Varsfull , b; full := false;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)
blank

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


10

The ownership trick (O’Hearn 2002)

resource-bundler : Varsfull , b; full := false;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)
blank

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


10

Passivity

I Passivity is a property of a program and a resource: the program
doesn’t change the contents of the resource.

I We want to specify passivity by specifying a read-only resource.

I We require that a program, given a read-only resource,cannot
change its contents.

11

Passivity

I Passivity is a property of a program and a resource: the program
doesn’t change the contents of the resource.

I We want to specify passivity by specifying a read-only resource.

I We require that a program, given a read-only resource,cannot
change its contents.

11

Passivity

I Passivity is a property of a program and a resource: the program
doesn’t change the contents of the resource.

I We want to specify passivity by specifying a read-only resource.

I We require that a program, given a read-only resource,cannot
change its contents.

11

Passivity

I Passivity is a property of a program and a resource: the program
doesn’t change the contents of the resource.

I We want to specify passivity by specifying a read-only resource.

I We require that a program, given a read-only resource,cannot
change its contents.

11

Splitting and sharing

I Since Dijkstra, we have known that we can safely share
read-only resources.

I Total permissionE 7→ E′, given by new, allows
read/write/dispose.

I Concurrent read permissions must be(?) separable, because of
the concurrency rule.

12

Splitting and sharing

I Since Dijkstra, we have known that we can safely share
read-only resources.

I Total permissionE 7→ E′, given by new, allows
read/write/dispose.

I Concurrent read permissions must be(?) separable, because of
the concurrency rule.

12

Splitting and sharing

I Since Dijkstra, we have known that we can safely share
read-only resources.

I Total permissionE 7→ E′, given by new, allows
read/write/dispose.

I Concurrent read permissions must be(?) separable, because of
the concurrency rule.

12

Splitting and sharing

I Since Dijkstra, we have known that we can safely share
read-only resources.

I Total permissionE 7→ E′, given by new, allows
read/write/dispose.

I Concurrent read permissions must be(?) separable, because of
the concurrency rule.

12

Accounting

I Splitting into multiple read permissions is easy.

I To write or dispose we have to know when we haveall the read
permissions back.

I A program which doesn’t keep account leaks resource.

13

Accounting

I Splitting into multiple read permissions is easy.

I To write or dispose we have to know when we haveall the read
permissions back.

I A program which doesn’t keep account leaks resource.

13

Accounting

I Splitting into multiple read permissions is easy.

I To write or dispose we have to know when we haveall the read
permissions back.

I A program which doesn’t keep account leaks resource.

13

Accounting

I Splitting into multiple read permissions is easy.

I To write or dispose we have to know when we haveall the read
permissions back.

I A program which doesn’t keep account leaks resource.

13

Boyland’s suggestion:12 + 1
2 = 1

I Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

I He associates a numberz with each permission:z = 1 total;
0 < z < 1 read-only.

I Fractional permissions are specification-only (cf. types).

I In practice the arithmetic is very easy: fractions aresimpler to
usethan (e.g.) sets of binary trees.

I The magnitude of non-integral fractions doesn’t matter, except as
a matter of accounting.

14

Boyland’s suggestion:12 + 1
2 = 1

I Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

I He associates a numberz with each permission:z = 1 total;
0 < z < 1 read-only.

I Fractional permissions are specification-only (cf. types).

I In practice the arithmetic is very easy: fractions aresimpler to
usethan (e.g.) sets of binary trees.

I The magnitude of non-integral fractions doesn’t matter, except as
a matter of accounting.

14

Boyland’s suggestion:12 + 1
2 = 1

I Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

I He associates a numberz with each permission:z = 1 total;
0 < z < 1 read-only.

I Fractional permissions are specification-only (cf. types).

I In practice the arithmetic is very easy: fractions aresimpler to
usethan (e.g.) sets of binary trees.

I The magnitude of non-integral fractions doesn’t matter, except as
a matter of accounting.

14

Boyland’s suggestion:12 + 1
2 = 1

I Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

I He associates a numberz with each permission:z = 1 total;
0 < z < 1 read-only.

I Fractional permissions are specification-only (cf. types).

I In practice the arithmetic is very easy: fractions aresimpler to
usethan (e.g.) sets of binary trees.

I The magnitude of non-integral fractions doesn’t matter, except as
a matter of accounting.

14

Boyland’s suggestion:12 + 1
2 = 1

I Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

I He associates a numberz with each permission:z = 1 total;
0 < z < 1 read-only.

I Fractional permissions are specification-only (cf. types).

I In practice the arithmetic is very easy: fractions aresimpler to
usethan (e.g.) sets of binary trees.

I The magnitude of non-integral fractions doesn’t matter, except as
a matter of accounting.

14

Boyland’s suggestion:12 + 1
2 = 1

I Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

I He associates a numberz with each permission:z = 1 total;
0 < z < 1 read-only.

I Fractional permissions are specification-only (cf. types).

I In practice the arithmetic is very easy: fractions aresimpler to
usethan (e.g.) sets of binary trees.

I The magnitude of non-integral fractions doesn’t matter, except as
a matter of accounting.

14

A fractional model (Calcagno, O’Hearn)

I Heaps are partial maps from Nat to (int, fraction). (Previously
Nat to int.)

I A simpler model – just read / total permissions – fails to account
and doesn’t have the frame property.

15

A fractional model (Calcagno, O’Hearn)

I Heaps are partial maps from Nat to (int, fraction). (Previously
Nat to int.)

I A simpler model – just read / total permissions – fails to account
and doesn’t have the frame property.

15

A fractional model (Calcagno, O’Hearn)

I Heaps are partial maps from Nat to (int, fraction). (Previously
Nat to int.)

I A simpler model – just read / total permissions – fails to account
and doesn’t have the frame property.

15

Proof theory

E 7−→z E′ ⇒ 0 < z≤ 1
E 7−−−−→

z+z′
E′ ∧ z > 0∧ z′ > 0 ⇐⇒ E 7−→z E′ ? E 7−−→

z′
E′

blank

{Rx
E} x:=E {R}

{E′ 7−→
1

} [E′]:=E {E′ 7−→
1

E}
{E′ 7−→z E} x:=[E′] {E′ 7−→z E∧ x = E} (x not free inE, E′)

{emp} x:=new(E) {x 7−→
1

E}
{E 7−→

1
} disposeE {emp}

I Not (yet) proved sound by Brookes. (But surely ...)

16

Proof theory

E 7−→z E′ ⇒ 0 < z≤ 1
E 7−−−−→

z+z′
E′ ∧ z > 0∧ z′ > 0 ⇐⇒ E 7−→z E′ ? E 7−−→

z′
E′

blank

{Rx
E} x:=E {R}

{E′ 7−→
1

} [E′]:=E {E′ 7−→
1

E}
{E′ 7−→z E} x:=[E′] {E′ 7−→z E∧ x = E} (x not free inE, E′)

{emp} x:=new(E) {x 7−→
1

E}
{E 7−→

1
} disposeE {emp}

I Not (yet) proved sound by Brookes. (But surely ...)

16

Proof theory

E 7−→z E′ ⇒ 0 < z≤ 1
E 7−−−−→

z+z′
E′ ∧ z > 0∧ z′ > 0 ⇐⇒ E 7−→z E′ ? E 7−−→

z′
E′

blank
{Rx

E} x:=E {R}
{E′ 7−→

1
} [E′]:=E {E′ 7−→

1
E}

{E′ 7−→z E} x:=[E′] {E′ 7−→z E∧ x = E} (x not free inE, E′)

{emp} x:=new(E) {x 7−→
1

E}
{E 7−→

1
} disposeE {emp}

I Not (yet) proved sound by Brookes. (But surely ...)

16

Proof theory

E 7−→z E′ ⇒ 0 < z≤ 1
E 7−−−−→

z+z′
E′ ∧ z > 0∧ z′ > 0 ⇐⇒ E 7−→z E′ ? E 7−−→

z′
E′

blank
{Rx

E} x:=E {R}
{E′ 7−→

1
} [E′]:=E {E′ 7−→

1
E}

{E′ 7−→z E} x:=[E′] {E′ 7−→z E∧ x = E} (x not free inE, E′)

{emp} x:=new(E) {x 7−→
1

E}
{E 7−→

1
} disposeE {emp}

I Not (yet) proved sound by Brookes. (But surely ...)

16

Proof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→0.5

1}
y := [x]
{x 7−−−→

0.5
1∧ y = 1}

{x 7−−−→
0.5

1}
z := [x] + 1
{x 7−−−→

0.5
1∧ z = 2}

 ;

{(x 7−−−→
0.5

1∧ y = 1) ? (x 7−−−→
0.5

1∧ z = 2)}∴{x 7−→
1

1∧ y = 1∧ z = 2}
disposex
{emp ∧ y = 1∧ z = 2}

I That isexactlyhow hard it is to use fractional permissions.

17

Proof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→0.5

1}
y := [x]
{x 7−−−→

0.5
1∧ y = 1}

{x 7−−−→
0.5

1}
z := [x] + 1
{x 7−−−→

0.5
1∧ z = 2}

 ;

{(x 7−−−→
0.5

1∧ y = 1) ? (x 7−−−→
0.5

1∧ z = 2)}∴{x 7−→
1

1∧ y = 1∧ z = 2}
disposex
{emp ∧ y = 1∧ z = 2}

I That isexactlyhow hard it is to use fractional permissions.

17

Proof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→0.5

1}
y := [x]
{x 7−−−→

0.5
1∧ y = 1}

{x 7−−−→
0.5

1}
z := [x] + 1
{x 7−−−→

0.5
1∧ z = 2}

 ;

{(x 7−−−→
0.5

1∧ y = 1) ? (x 7−−−→
0.5

1∧ z = 2)}∴{x 7−→
1

1∧ y = 1∧ z = 2}
disposex
{emp ∧ y = 1∧ z = 2}

I That isexactlyhow hard it is to use fractional permissions.

17

Proof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→0.5

1}
y := [x]
{x 7−−−→

0.5
1∧ y = 1}

{x 7−−−→
0.5

1}
z := [x] + 1
{x 7−−−→

0.5
1∧ z = 2}

 ;

{(x 7−−−→
0.5

1∧ y = 1) ? (x 7−−−→
0.5

1∧ z = 2)}∴{x 7−→
1

1∧ y = 1∧ z = 2}
disposex
{emp ∧ y = 1∧ z = 2}

I That isexactlyhow hard it is to use fractional permissions.

17

Proof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→0.5

1}
y := [x]
{x 7−−−→

0.5
1∧ y = 1}

{x 7−−−→
0.5

1}
z := [x] + 1
{x 7−−−→

0.5
1∧ z = 2}

 ;

{(x 7−−−→
0.5

1∧ y = 1) ? (x 7−−−→
0.5

1∧ z = 2)}∴{x 7−→
1

1∧ y = 1∧ z = 2}
disposex
{emp ∧ y = 1∧ z = 2}

I That isexactlyhow hard it is to use fractional permissions.

17

Proof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→0.5

1}
y := [x]
{x 7−−−→

0.5
1∧ y = 1}

{x 7−−−→
0.5

1}
z := [x] + 1
{x 7−−−→

0.5
1∧ z = 2}

 ;

{(x 7−−−→
0.5

1∧ y = 1) ? (x 7−−−→
0.5

1∧ z = 2)}∴{x 7−→
1

1∧ y = 1∧ z = 2}
disposex
{emp ∧ y = 1∧ z = 2}

I That isexactlyhow hard it is to use fractional permissions.

17

Proof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→0.5

1}
y := [x]
{x 7−−−→

0.5
1∧ y = 1}

{x 7−−−→
0.5

1}
z := [x] + 1
{x 7−−−→

0.5
1∧ z = 2}

 ;

{(x 7−−−→
0.5

1∧ y = 1) ? (x 7−−−→
0.5

1∧ z = 2)}∴{x 7−→
1

1∧ y = 1∧ z = 2}
disposex
{emp ∧ y = 1∧ z = 2}

I That isexactlyhow hard it is to use fractional permissions.

17

Proof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→0.5

1}
y := [x]
{x 7−−−→

0.5
1∧ y = 1}

{x 7−−−→
0.5

1}
z := [x] + 1
{x 7−−−→

0.5
1∧ z = 2}

 ;

{(x 7−−−→
0.5

1∧ y = 1) ? (x 7−−−→
0.5

1∧ z = 2)}∴{x 7−→
1

1∧ y = 1∧ z = 2}
disposex
{emp ∧ y = 1∧ z = 2}

I That isexactlyhow hard it is to use fractional permissions.

17

Proof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→0.5

1}
y := [x]
{x 7−−−→

0.5
1∧ y = 1}

{x 7−−−→
0.5

1}
z := [x] + 1
{x 7−−−→

0.5
1∧ z = 2}

 ;

{(x 7−−−→
0.5

1∧ y = 1) ? (x 7−−−→
0.5

1∧ z = 2)}∴{x 7−→
1

1∧ y = 1∧ z = 2}
disposex
{emp ∧ y = 1∧ z = 2}

I That isexactlyhow hard it is to use fractional permissions.

17

Proof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→0.5

1}
y := [x]
{x 7−−−→

0.5
1∧ y = 1}

{x 7−−−→
0.5

1}
z := [x] + 1
{x 7−−−→

0.5
1∧ z = 2}

 ;

{(x 7−−−→
0.5

1∧ y = 1) ? (x 7−−−→
0.5

1∧ z = 2)}∴{x 7−→
1

1∧ y = 1∧ z = 2}
disposex
{emp ∧ y = 1∧ z = 2}

I That isexactlyhow hard it is to use fractional permissions.

17

UnProof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
y := [x];
{x 7−−−→

0.5
1∧ y = 1}

disposex
{??}

{x 7−−−→
0.5

1}
[x] := 2;
{??}
z := [x] + 1
{??}


{??}
[x] := y + z

18

UnProof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
y := [x];
{x 7−−−→

0.5
1∧ y = 1}

disposex
{??}

{x 7−−−→
0.5

1}
[x] := 2;
{??}
z := [x] + 1
{??}


{??}
[x] := y + z

18

UnProof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
y := [x];
{x 7−−−→

0.5
1∧ y = 1}

disposex
{??}

{x 7−−−→
0.5

1}
[x] := 2;
{??}
z := [x] + 1
{??}


{??}
[x] := y + z

18

UnProof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
y := [x];
{x 7−−−→

0.5
1∧ y = 1}

disposex
{??}

{x 7−−−→
0.5

1}
[x] := 2;
{??}
z := [x] + 1
{??}


{??}
[x] := y + z

18

UnProof

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
y := [x];
{x 7−−−→

0.5
1∧ y = 1}

disposex
{??}

{x 7−−−→
0.5

1}
[x] := 2;
{??}
z := [x] + 1
{??}


{??}
[x] := y + z

18

Passivity and fractions

Termination Monotonicity: if C must terminate normally inh and
h ? h′ is defined, thenC must terminate normally inh ? h′.

I We can prove termination monotonicity for all commands in our
language.

I Suppose{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}, and it terminates.

I Then (frame rule)
...

{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}
{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N}C{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N + 1}

I – i.e. it won’t terminate in 107−−−→
1.0

N.

I ThereforeC isn’t in our language.

I Thuswe have passivity!

19

Passivity and fractions

Termination Monotonicity: if C must terminate normally inh and
h ? h′ is defined, thenC must terminate normally inh ? h′.

I We can prove termination monotonicity for all commands in our
language.

I Suppose{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}, and it terminates.

I Then (frame rule)
...

{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}
{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N}C{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N + 1}

I – i.e. it won’t terminate in 107−−−→
1.0

N.

I ThereforeC isn’t in our language.

I Thuswe have passivity!

19

Passivity and fractions

Termination Monotonicity: if C must terminate normally inh and
h ? h′ is defined, thenC must terminate normally inh ? h′.

I We can prove termination monotonicity for all commands in our
language.

I Suppose{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}, and it terminates.

I Then (frame rule)
...

{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}
{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N}C{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N + 1}

I – i.e. it won’t terminate in 107−−−→
1.0

N.

I ThereforeC isn’t in our language.

I Thuswe have passivity!

19

Passivity and fractions

Termination Monotonicity: if C must terminate normally inh and
h ? h′ is defined, thenC must terminate normally inh ? h′.

I We can prove termination monotonicity for all commands in our
language.

I Suppose{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}, and it terminates.

I Then (frame rule)
...

{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}
{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N}C{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N + 1}

I – i.e. it won’t terminate in 107−−−→
1.0

N.

I ThereforeC isn’t in our language.

I Thuswe have passivity!

19

Passivity and fractions

Termination Monotonicity: if C must terminate normally inh and
h ? h′ is defined, thenC must terminate normally inh ? h′.

I We can prove termination monotonicity for all commands in our
language.

I Suppose{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}, and it terminates.

I Then (frame rule)
...

{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}
{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N}C{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N + 1}

I – i.e. it won’t terminate in 107−−−→
1.0

N.

I ThereforeC isn’t in our language.

I Thuswe have passivity!

19

Passivity and fractions

Termination Monotonicity: if C must terminate normally inh and
h ? h′ is defined, thenC must terminate normally inh ? h′.

I We can prove termination monotonicity for all commands in our
language.

I Suppose{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}, and it terminates.

I Then (frame rule)
...

{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}
{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N}C{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N + 1}

I – i.e. it won’t terminate in 107−−−→
1.0

N.

I ThereforeC isn’t in our language.

I Thuswe have passivity!

19

Passivity and fractions

Termination Monotonicity: if C must terminate normally inh and
h ? h′ is defined, thenC must terminate normally inh ? h′.

I We can prove termination monotonicity for all commands in our
language.

I Suppose{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}, and it terminates.

I Then (frame rule)
...

{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}
{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N}C{10 7−−−→

0.5
N ? 10 7−−−→

0.5
N + 1}

I – i.e. it won’t terminate in 107−−−→
1.0

N.

I ThereforeC isn’t in our language.

I Thuswe have passivity!

19

Permission counting

I Some programs naturally weigh out permissions to their child
threads: e.g. parallel tree-copy, parallel tree-rewriting (see
proceedings).

I Some programs count permissions: e.g. pipeline multicasting,
readers-and-writers.

I Permission counting isnot specification-only.

20

Permission counting

I Some programs naturally weigh out permissions to their child
threads: e.g. parallel tree-copy, parallel tree-rewriting (see
proceedings).

I Some programs count permissions: e.g. pipeline multicasting,
readers-and-writers.

I Permission counting isnot specification-only.

20

Permission counting

I Some programs naturally weigh out permissions to their child
threads: e.g. parallel tree-copy, parallel tree-rewriting (see
proceedings).

I Some programs count permissions: e.g. pipeline multicasting,
readers-and-writers.

I Permission counting isnot specification-only.

20

Permission counting

I Some programs naturally weigh out permissions to their child
threads: e.g. parallel tree-copy, parallel tree-rewriting (see
proceedings).

I Some programs count permissions: e.g. pipeline multicasting,
readers-and-writers.

I Permission counting isnot specification-only.

20

Readers and Writers (Courtois et.al. 1972)

P(read);
if count = 0 then P(write)

else skip fi;
count+ := 1;

V(read);
{z � N}

... reading happens here ...
{z � N}
P(read);

count− := 1;
if count = 0 then V(write)

else skip fi;
V(read)

{emp}
P(write);
{z 07−→ M}

... writing happens here ...

{z 07−→ M′}
V(write)
{emp}

21

Readers and writers (CCR version)

22

Readers and writers (CCR version)

{emp}
with read when true do

if count = 0 then P(write)
else skip fi;

count+:= 1
od;
{z � N}

... reading happens here ...
{z � N}
with read when count > 0 do

count− := 1;
if count = 0 then V(write)

else skip fi
od
{emp}

{emp}
P(write);
{z 07−→ M}

... writing happens here ...

{z 07−→ M′}
V(write)
{emp}

22

Readers and writers (CCR version)

{emp}
with read when true do

if count = 0 then P(write)
else skip fi;

count+:= 1
od;
{z � N}

... reading happens here ...
{z � N}
with read when count > 0 do

count− := 1;
if count = 0 then V(write)

else skip fi
od
{emp}

{emp}
P(write);
{z 07−→ M}

... writing happens here ...

{z 07−→ M′}
V(write)
{emp}

22

Readers and writers (CCR version)

{emp}
with read when true do

if count = 0 then P(write)
else skip fi;

count+:= 1
od;
{z � N}

... reading happens here ...
{z � N}
with read when count > 0 do

count− := 1;
if count = 0 then V(write)

else skip fi
od
{emp}

{emp}
P(write);
{z 07−→ M}

... writing happens here ...

{z 07−→ M′}
V(write)
{emp}

22

Readers and writers (CCR version)

{emp}
with read when true do

if count = 0 then P(write)
else skip fi;

count+:= 1
od;
{z � N}

... reading happens here ...
{z � N}
with read when count > 0 do

count− := 1;
if count = 0 then V(write)

else skip fi
od
{emp}

{emp}
P(write);
{z 07−→ M}

... writing happens here ...

{z 07−→ M′}
V(write)
{emp}

22

Readers and writers (CCR version)

{emp}
with read when true do

if count = 0 then P(write)
else skip fi;

count+:= 1
od;
{z � N}

... reading happens here ...
{z � N}
with read when count > 0 do

count− := 1;
if count = 0 then V(write)

else skip fi
od
{emp}

{emp}
P(write);
{z 07−→ M}

... writing happens here ...

{z 07−→ M′}
V(write)
{emp}

22

A counting model (Calcagno, Parkinson)

I Heaps are partial maps from Nat to (int, permission).

I Permissions are−n (n read permissions), or+n (a “block” from
whichn read permissions have been “flaked”).

I 0 is total permission.

I E i7−→ E′ ? E j7−→ E′ =


undefined i ≥ 0∧ j ≥ 0
undefined (i ≥ 0∨ j ≥ 0) ∧ i + j < 0

E i+j7−−−→ E′ otherwise

I E � E′ is a notational convenience forE −17−−−→ E′.

I We have passivity (same proof as before).

23

A counting model (Calcagno, Parkinson)

I Heaps are partial maps from Nat to (int, permission).

I Permissions are−n (n read permissions), or+n (a “block” from
whichn read permissions have been “flaked”).

I 0 is total permission.

I E i7−→ E′ ? E j7−→ E′ =


undefined i ≥ 0∧ j ≥ 0
undefined (i ≥ 0∨ j ≥ 0) ∧ i + j < 0

E i+j7−−−→ E′ otherwise

I E � E′ is a notational convenience forE −17−−−→ E′.

I We have passivity (same proof as before).

23

A counting model (Calcagno, Parkinson)

I Heaps are partial maps from Nat to (int, permission).

I Permissions are−n (n read permissions), or+n (a “block” from
whichn read permissions have been “flaked”).

I 0 is total permission.

I E i7−→ E′ ? E j7−→ E′ =


undefined i ≥ 0∧ j ≥ 0
undefined (i ≥ 0∨ j ≥ 0) ∧ i + j < 0

E i+j7−−−→ E′ otherwise

I E � E′ is a notational convenience forE −17−−−→ E′.

I We have passivity (same proof as before).

23

A counting model (Calcagno, Parkinson)

I Heaps are partial maps from Nat to (int, permission).

I Permissions are−n (n read permissions), or+n (a “block” from
whichn read permissions have been “flaked”).

I 0 is total permission.

I E i7−→ E′ ? E j7−→ E′ =


undefined i ≥ 0∧ j ≥ 0
undefined (i ≥ 0∨ j ≥ 0) ∧ i + j < 0

E i+j7−−−→ E′ otherwise

I E � E′ is a notational convenience forE −17−−−→ E′.

I We have passivity (same proof as before).

23

A counting model (Calcagno, Parkinson)

I Heaps are partial maps from Nat to (int, permission).

I Permissions are−n (n read permissions), or+n (a “block” from
whichn read permissions have been “flaked”).

I 0 is total permission.

I E i7−→ E′ ? E j7−→ E′ =


undefined i ≥ 0∧ j ≥ 0
undefined (i ≥ 0∨ j ≥ 0) ∧ i + j < 0

E i+j7−−−→ E′ otherwise

I E � E′ is a notational convenience forE −17−−−→ E′.

I We have passivity (same proof as before).

23

A counting model (Calcagno, Parkinson)

I Heaps are partial maps from Nat to (int, permission).

I Permissions are−n (n read permissions), or+n (a “block” from
whichn read permissions have been “flaked”).

I 0 is total permission.

I E i7−→ E′ ? E j7−→ E′ =


undefined i ≥ 0∧ j ≥ 0
undefined (i ≥ 0∨ j ≥ 0) ∧ i + j < 0

E i+j7−−−→ E′ otherwise

I E � E′ is a notational convenience forE −17−−−→ E′.

I We have passivity (same proof as before).

23

A counting model (Calcagno, Parkinson)

I Heaps are partial maps from Nat to (int, permission).

I Permissions are−n (n read permissions), or+n (a “block” from
whichn read permissions have been “flaked”).

I 0 is total permission.

I E i7−→ E′ ? E j7−→ E′ =


undefined i ≥ 0∧ j ≥ 0
undefined (i ≥ 0∨ j ≥ 0) ∧ i + j < 0

E i+j7−−−→ E′ otherwise

I E � E′ is a notational convenience forE −17−−−→ E′.

I We have passivity (same proof as before).

23

Proof theory

E n7−→ E′ ⇒ n≥ 0

E n7−→ E′ ⇐⇒ E n+17−−−−→ E′ ? E � E′

blank
{Rx

E} x:=E {R}
{E′ 07−→ } [x]:=E {E′ 07−→ E}
{E′ � E} x:=[E′] {E′ � E∧ x = E} (x not free inE, E′)

{emp} x:=new(E) {x 07−→ E}
{E 07−→ } disposeE {emp}

24

Proof theory

E n7−→ E′ ⇒ n≥ 0

E n7−→ E′ ⇐⇒ E n+17−−−−→ E′ ? E � E′

blank

{Rx
E} x:=E {R}

{E′ 07−→ } [x]:=E {E′ 07−→ E}
{E′ � E} x:=[E′] {E′ � E∧ x = E} (x not free inE, E′)

{emp} x:=new(E) {x 07−→ E}
{E 07−→ } disposeE {emp}

24

Proof theory

E n7−→ E′ ⇒ n≥ 0

E n7−→ E′ ⇐⇒ E n+17−−−−→ E′ ? E � E′

blank
{Rx

E} x:=E {R}
{E′ 07−→ } [x]:=E {E′ 07−→ E}
{E′ � E} x:=[E′] {E′ � E∧ x = E} (x not free inE, E′)

{emp} x:=new(E) {x 07−→ E}
{E 07−→ } disposeE {emp}

24

Resource safety proof

write : if write = 0 then emp else z 07−→ N fi
read : if count = 0 then emp else z count7−−−−−→ N fi

{emp}
with read when true do
{if count = 0 then emp else z count7−−−−−→ N fi ? emp}
if count = 0 then {emp} P(write) {z 07−→ N}

else {z count7−−−−−→ N} skip {z count7−−−−−→ N}
fi;
{z count7−−−−−→ N}
count+:= 1

{z count−17−−−−−−−→ N}∴{z count7−−−−−→ N ? z � N}
od
{z � N}

25

Resource safety proof

write : if write = 0 then emp else z 07−→ N fi
read : if count = 0 then emp else z count7−−−−−→ N fi

{emp}
with read when true do
{if count = 0 then emp else z count7−−−−−→ N fi ? emp}
if count = 0 then {emp} P(write) {z 07−→ N}

else {z count7−−−−−→ N} skip {z count7−−−−−→ N}
fi;
{z count7−−−−−→ N}
count+:= 1

{z count−17−−−−−−−→ N}∴{z count7−−−−−→ N ? z � N}
od
{z � N}

25

Resource safety proof

write : if write = 0 then emp else z 07−→ N fi
read : if count = 0 then emp else z count7−−−−−→ N fi

{emp}
with read when true do
{if count = 0 then emp else z count7−−−−−→ N fi ? emp}
if count = 0 then {emp} P(write) {z 07−→ N}

else {z count7−−−−−→ N} skip {z count7−−−−−→ N}
fi;
{z count7−−−−−→ N}
count+:= 1

{z count−17−−−−−−−→ N}∴{z count7−−−−−→ N ? z � N}
od
{z � N}

25

Resource safety proof

write : if write = 0 then emp else z 07−→ N fi
read : if count = 0 then emp else z count7−−−−−→ N fi

{emp}
with read when true do
{if count = 0 then emp else z count7−−−−−→ N fi ? emp}
if count = 0 then {emp} P(write) {z 07−→ N}

else {z count7−−−−−→ N} skip {z count7−−−−−→ N}
fi;
{z count7−−−−−→ N}
count+:= 1

{z count−17−−−−−−−→ N}∴{z count7−−−−−→ N ? z � N}
od
{z � N}

25

Resource safety proof

write : if write = 0 then emp else z 07−→ N fi
read : if count = 0 then emp else z count7−−−−−→ N fi

{emp}
with read when true do
{if count = 0 then emp else z count7−−−−−→ N fi ? emp}
if count = 0 then {emp} P(write) {z 07−→ N}

else {z count7−−−−−→ N} skip {z count7−−−−−→ N}
fi;
{z count7−−−−−→ N}
count+:= 1

{z count−17−−−−−−−→ N}∴{z count7−−−−−→ N ? z � N}
od
{z � N}

25

Resource safety proof

write : if write = 0 then emp else z 07−→ N fi
read : if count = 0 then emp else z count7−−−−−→ N fi

{emp}
with read when true do
{if count = 0 then emp else z count7−−−−−→ N fi ? emp}
if count = 0 then {emp} P(write) {z 07−→ N}

else {z count7−−−−−→ N} skip {z count7−−−−−→ N}
fi;
{z count7−−−−−→ N}
count+:= 1

{z count−17−−−−−−−→ N}∴{z count7−−−−−→ N ? z � N}
od
{z � N}

25

Resource safety proof

write : if write = 0 then emp else z 07−→ N fi
read : if count = 0 then emp else z count7−−−−−→ N fi

{emp}
with read when true do
{if count = 0 then emp else z count7−−−−−→ N fi ? emp}
if count = 0 then {emp} P(write) {z 07−→ N}

else {z count7−−−−−→ N} skip {z count7−−−−−→ N}
fi;
{z count7−−−−−→ N}
count+:= 1

{z count−17−−−−−−−→ N}∴{z count7−−−−−→ N ? z � N}
od
{z � N}

25

Resource safety proof

write : if write = 0 then emp else z 07−→ N fi
read : if count = 0 then emp else z count7−−−−−→ N fi

{emp}
with read when true do
{if count = 0 then emp else z count7−−−−−→ N fi ? emp}
if count = 0 then {emp} P(write) {z 07−→ N}

else {z count7−−−−−→ N} skip {z count7−−−−−→ N}
fi;
{z count7−−−−−→ N}
count+:= 1

{z count−17−−−−−−−→ N} ∴ {z count7−−−−−→ N ? z � N}
od
{z � N}

25

Do we need two models?

T ::= Lam v T | App T T | Var v

AST x (Lam v β) z =̂ ∃b.(x z7−→ 0, v, b ? AST b β z

AST x (App φ α) z =̂ ∃f , a.

(
x z7−→ 1, f , a ? AST f φ z ?
AST a α z

)
AST x (Var v) z =̂ x z7−→ 2, v

(Lam v′ β)[τ/v] =

{
Lam v′ (β[τ/v]) v 6= v′

Lam v′ β v′ = v

(App φ α)[τ/v] = App (φ[τ/v]) (α[τ/v])

(Var v′)[τ/v] =

{
Var v′ v 6= v′

τ v = v′

26

Do we need two models?

T ::= Lam v T | App T T | Var v

AST x (Lam v β) z =̂ ∃b.(x z7−→ 0, v, b ? AST b β z

AST x (App φ α) z =̂ ∃f , a.

(
x z7−→ 1, f , a ? AST f φ z ?
AST a α z

)
AST x (Var v) z =̂ x z7−→ 2, v

(Lam v′ β)[τ/v] =

{
Lam v′ (β[τ/v]) v 6= v′

Lam v′ β v′ = v

(App φ α)[τ/v] = App (φ[τ/v]) (α[τ/v])

(Var v′)[τ/v] =

{
Var v′ v 6= v′

τ v = v′

26

Do we need two models?

T ::= Lam v T | App T T | Var v

AST x (Lam v β) z =̂ ∃b.(x z7−→ 0, v, b ? AST b β z

AST x (App φ α) z =̂ ∃f , a.

(
x z7−→ 1, f , a ? AST f φ z ?
AST a α z

)
AST x (Var v) z =̂ x z7−→ 2, v

(Lam v′ β)[τ/v] =

{
Lam v′ (β[τ/v]) v 6= v′

Lam v′ β v′ = v

(App φ α)[τ/v] = App (φ[τ/v]) (α[τ/v])

(Var v′)[τ/v] =

{
Var v′ v 6= v′

τ v = v′

26

Do we need two models?

T ::= Lam v T | App T T | Var v

AST x (Lam v β) z =̂ ∃b.(x z7−→ 0, v, b ? AST b β z

AST x (App φ α) z =̂ ∃f , a.

(
x z7−→ 1, f , a ? AST f φ z ?
AST a α z

)
AST x (Var v) z =̂ x z7−→ 2, v

(Lam v′ β)[τ/v] =

{
Lam v′ (β[τ/v]) v 6= v′

Lam v′ β v′ = v

(App φ α)[τ/v] = App (φ[τ/v]) (α[τ/v])

(Var v′)[τ/v] =

{
Var v′ v 6= v′

τ v = v′

26

Parallel tree rewriting

subst x y v=
if [x] = 0 then // Lam

if [x + 1] 6= v then [x + 2] := subst [x + 2] y v else skipfi;
x

elsf [x] = 1 then // App – do it in parallel(
[x + 1] := subst [x + 1] y v [x + 2] := subst [x + 2] y v)

)
;

x
elsf [x + 1] = v then // Var, samev

disposex; dispose(x + 1); new(2, copy y)
else // Var, differentv

x
fi

– proof easy with fractions, ridiculous with counting permissions;
readers and writers swings the other way.

We need more than one model!

27

Parallel tree rewriting

subst x y v=
if [x] = 0 then // Lam

if [x + 1] 6= v then [x + 2] := subst [x + 2] y v else skipfi;
x

elsf [x] = 1 then // App – do it in parallel(
[x + 1] := subst [x + 1] y v [x + 2] := subst [x + 2] y v)

)
;

x
elsf [x + 1] = v then // Var, samev

disposex; dispose(x + 1); new(2, copy y)
else // Var, differentv

x
fi

– proof easy with fractions, ridiculous with counting permissions;
readers and writers swings the other way.

We need more than one model!

27

Parallel tree rewriting

subst x y v=
if [x] = 0 then // Lam

if [x + 1] 6= v then [x + 2] := subst [x + 2] y v else skipfi;
x

elsf [x] = 1 then // App – do it in parallel(
[x + 1] := subst [x + 1] y v [x + 2] := subst [x + 2] y v)

)
;

x
elsf [x + 1] = v then // Var, samev

disposex; dispose(x + 1); new(2, copy y)
else // Var, differentv

x
fi

– proof easy with fractions, ridiculous with counting permissions;
readers and writers swings the other way.

We need more than one model!

27

Passivity and concurrency

I If I havex 7−−−→
0.5

, I can be sure that you can’t write to it.

I If I give you x 7−−−→
0.5

in the static case, I can be sure you can’t
write to it.

I In the concurrent/modular case, you might have the other half, or
get it temporarily from elsewhere.

I Moral: keep your hand on your ha’penny; don’t give them
everything you’ve got.

I (Same applies to counting permissions.)

28

Passivity and concurrency

I If I havex 7−−−→
0.5

, I can be sure that you can’t write to it.

I If I give you x 7−−−→
0.5

in the static case, I can be sure you can’t
write to it.

I In the concurrent/modular case, you might have the other half, or
get it temporarily from elsewhere.

I Moral: keep your hand on your ha’penny; don’t give them
everything you’ve got.

I (Same applies to counting permissions.)

28

Passivity and concurrency

I If I havex 7−−−→
0.5

, I can be sure that you can’t write to it.

I If I give you x 7−−−→
0.5

in the static case, I can be sure you can’t
write to it.

I In the concurrent/modular case, you might have the other half, or
get it temporarily from elsewhere.

I Moral: keep your hand on your ha’penny; don’t give them
everything you’ve got.

I (Same applies to counting permissions.)

28

Passivity and concurrency

I If I havex 7−−−→
0.5

, I can be sure that you can’t write to it.

I If I give you x 7−−−→
0.5

in the static case, I can be sure you can’t
write to it.

I In the concurrent/modular case, you might have the other half, or
get it temporarily from elsewhere.

I Moral: keep your hand on your ha’penny; don’t give them
everything you’ve got.

I (Same applies to counting permissions.)

28

Passivity and concurrency

I If I havex 7−−−→
0.5

, I can be sure that you can’t write to it.

I If I give you x 7−−−→
0.5

in the static case, I can be sure you can’t
write to it.

I In the concurrent/modular case, you might have the other half, or
get it temporarily from elsewhere.

I Moral: keep your hand on your ha’penny; don’t give them
everything you’ve got.

I (Same applies to counting permissions.)

28

We don’t understand recursive definitions any more

tree nil Empty =̂ emp
tree t (Tip α) =̂ t 7→ 0, α

tree t (Node λ ρ) =̂ ∃l, r ·
(
t 7→ 1, l, r ? tree l λ ? tree r ρ

)
ztree z nil Empty =̂ emp
ztree z t (Tip α) =̂ t 7−→z 0, α

ztree z t (Node λ ρ) =̂ ∃l, r ·
(

t 7−→z 1, l, r ? ztree z l λ ? ztree z r ρ
)

x 7−−−→
0.5

1, l, l ? l 7−−−→
1.0

0, 3 satisfiesztree 0.5 x (Node (Tip 3) (Tip 3))
(and we can write to it)!!

We haveztree (z+ z′) t τ ⇐⇒ ztree z t τ ? ztree z′ t τ , but
sometimes only vacuously.

We can write programs which work withztree 0.5, but crash with
ztree 0.499.

29

We don’t understand recursive definitions any more

tree nil Empty =̂ emp
tree t (Tip α) =̂ t 7→ 0, α

tree t (Node λ ρ) =̂ ∃l, r ·
(
t 7→ 1, l, r ? tree l λ ? tree r ρ

)

ztree z nil Empty =̂ emp
ztree z t (Tip α) =̂ t 7−→z 0, α

ztree z t (Node λ ρ) =̂ ∃l, r ·
(

t 7−→z 1, l, r ? ztree z l λ ? ztree z r ρ
)

x 7−−−→
0.5

1, l, l ? l 7−−−→
1.0

0, 3 satisfiesztree 0.5 x (Node (Tip 3) (Tip 3))
(and we can write to it)!!

We haveztree (z+ z′) t τ ⇐⇒ ztree z t τ ? ztree z′ t τ , but
sometimes only vacuously.

We can write programs which work withztree 0.5, but crash with
ztree 0.499.

29

We don’t understand recursive definitions any more

tree nil Empty =̂ emp
tree t (Tip α) =̂ t 7→ 0, α

tree t (Node λ ρ) =̂ ∃l, r ·
(
t 7→ 1, l, r ? tree l λ ? tree r ρ

)
ztree z nil Empty =̂ emp
ztree z t (Tip α) =̂ t 7−→z 0, α

ztree z t (Node λ ρ) =̂ ∃l, r ·
(

t 7−→z 1, l, r ? ztree z l λ ? ztree z r ρ
)

x 7−−−→
0.5

1, l, l ? l 7−−−→
1.0

0, 3 satisfiesztree 0.5 x (Node (Tip 3) (Tip 3))
(and we can write to it)!!

We haveztree (z+ z′) t τ ⇐⇒ ztree z t τ ? ztree z′ t τ , but
sometimes only vacuously.

We can write programs which work withztree 0.5, but crash with
ztree 0.499.

29

We don’t understand recursive definitions any more

tree nil Empty =̂ emp
tree t (Tip α) =̂ t 7→ 0, α

tree t (Node λ ρ) =̂ ∃l, r ·
(
t 7→ 1, l, r ? tree l λ ? tree r ρ

)
ztree z nil Empty =̂ emp
ztree z t (Tip α) =̂ t 7−→z 0, α

ztree z t (Node λ ρ) =̂ ∃l, r ·
(

t 7−→z 1, l, r ? ztree z l λ ? ztree z r ρ
)

x 7−−−→
0.5

1, l, l ? l 7−−−→
1.0

0, 3 satisfiesztree 0.5 x (Node (Tip 3) (Tip 3))
(and we can write to it)!!

We haveztree (z+ z′) t τ ⇐⇒ ztree z t τ ? ztree z′ t τ , but
sometimes only vacuously.

We can write programs which work withztree 0.5, but crash with
ztree 0.499.

29

We don’t understand recursive definitions any more

tree nil Empty =̂ emp
tree t (Tip α) =̂ t 7→ 0, α

tree t (Node λ ρ) =̂ ∃l, r ·
(
t 7→ 1, l, r ? tree l λ ? tree r ρ

)
ztree z nil Empty =̂ emp
ztree z t (Tip α) =̂ t 7−→z 0, α

ztree z t (Node λ ρ) =̂ ∃l, r ·
(

t 7−→z 1, l, r ? ztree z l λ ? ztree z r ρ
)

x 7−−−→
0.5

1, l, l ? l 7−−−→
1.0

0, 3 satisfiesztree 0.5 x (Node (Tip 3) (Tip 3))
(and we can write to it)!!

We haveztree (z+ z′) t τ ⇐⇒ ztree z t τ ? ztree z′ t τ , but
sometimes only vacuously.

We can write programs which work withztree 0.5, but crash with
ztree 0.499.

29

We don’t understand recursive definitions any more

tree nil Empty =̂ emp
tree t (Tip α) =̂ t 7→ 0, α

tree t (Node λ ρ) =̂ ∃l, r ·
(
t 7→ 1, l, r ? tree l λ ? tree r ρ

)
ztree z nil Empty =̂ emp
ztree z t (Tip α) =̂ t 7−→z 0, α

ztree z t (Node λ ρ) =̂ ∃l, r ·
(

t 7−→z 1, l, r ? ztree z l λ ? ztree z r ρ
)

x 7−−−→
0.5

1, l, l ? l 7−−−→
1.0

0, 3 satisfiesztree 0.5 x (Node (Tip 3) (Tip 3))
(and we can write to it)!!

We haveztree (z+ z′) t τ ⇐⇒ ztree z t τ ? ztree z′ t τ , but
sometimes only vacuously.

We can write programs which work withztree 0.5, but crash with
ztree 0.499.

29

The unbounded buffer

begin integer numberOfQueuingPortions,
bufferManipulation;

numberOfQueuingPortions := 0;
bufferManipulation := 1;
parbegin
producer: begin

again1: produce next portion;
add portion to buffer ;
V(numberOfQueuingPortions);
goto again1

end;
consumer: begin

again2: P(numberOfQueuingPortions);
take portion from buffer ;
process portion taken;
goto again2

end
parend

end

Proposed and withdrawn in 1965; proved safe, Habermann 1972.
30

A proof with variables-as-resource

back b f front

n=3

tc
tp

JKL

31

A proof with variables-as-resource

// Producer. // Semaphoren // Consumer.{
back , tp, b1

2
`

back 7→ , ∧ back= b

}
{n, f 1

2
, b1

2
` listseg n f b} {front , tc, f 1

2
` front = f}

back .0 := produce(); tc := front ;
tp := new(); P : decn; f := f .2 P(n);
back .1 := tp; front := front .2;
V(n); V : incn; b := b.2 consumetc.0;
back := tp disposetc{

back , tp, b1
2
`

back 7→ , ∧ back= b

}
{front , tc, f 1

2
` front = f}


back b f front

n=3

tc
tp

JKL

31

A proof with variables-as-resource

// Producer. // Semaphoren // Consumer.{
back , tp, b1

2
`

back 7→ , ∧ back= b

}
{n, f 1

2
, b1

2
` listseg n f b} {front , tc, f 1

2
` front = f}

back .0 := produce(); tc := front ;
tp := new(); P : decn; f := f .2 P(n);
back .1 := tp; front := front .2;
V(n); V : incn; b := b.2 consumetc.0;
back := tp disposetc{

back , tp, b1
2
`

back 7→ , ∧ back= b

}
{front , tc, f 1

2
` front = f}


back b f front, tc

n=3

tp

JKL

31

A proof with variables-as-resource

// Producer. // Semaphoren // Consumer.{
back , tp, b1

2
`

back 7→ , ∧ back= b

}
{n, f 1

2
, b1

2
` listseg n f b} {front , tc, f 1

2
` front = f}

back .0 := produce(); tc := front ;
tp := new(); P : decn; f := f .2 P(n);
back .1 := tp; front := front .2;
V(n); V : incn; b := b.2 consumetc.0;
back := tp disposetc{

back , tp, b1
2
`

back 7→ , ∧ back= b

}
{front , tc, f 1

2
` front = f}


back b front, tc

n=2

f

tp

JKL

31

A proof with variables-as-resource

// Producer. // Semaphoren // Consumer.{
back , tp, b1

2
`

back 7→ , ∧ back= b

}
{n, f 1

2
, b1

2
` listseg n f b} {front , tc, f 1

2
` front = f}

back .0 := produce(); tc := front ;
tp := new(); P : decn; f := f .2 P(n);
back .1 := tp; front := front .2;
V(n); V : incn; b := b.2 consumetc.0;
back := tp disposetc{

back , tp, b1
2
`

back 7→ , ∧ back= b

}
{front , tc, f 1

2
` front = f}


back b tc

n=2

f front

tp

JKL

31

A proof with variables-as-resource

// Producer. // Semaphoren // Consumer.{
back , tp, b1

2
`

back 7→ , ∧ back= b

}
{n, f 1

2
, b1

2
` listseg n f b} {front , tc, f 1

2
` front = f}

back .0 := produce(); tc := front ;
tp := new(); P : decn; f := f .2 P(n);
back .1 := tp; front := front .2;
V(n); V : incn; b := b.2 consumetc.0;
back := tp disposetc{

back , tp, b1
2
`

back 7→ , ∧ back= b

}
{front , tc, f 1

2
` front = f}


back b

n=2

f front tc

tp

KL

31

A proof with variables-as-resource

// Producer. // Semaphoren // Consumer.{
back , tp, b1

2
`

back 7→ , ∧ back= b

}
{n, f 1

2
, b1

2
` listseg n f b} {front , tc, f 1

2
` front = f}

back .0 := produce(); tc := front ;
tp := new(); P : decn; f := f .2 P(n);
back .1 := tp; front := front .2;
V(n); V : incn; b := b.2 consumetc.0;
back := tp disposetc{

back , tp, b1
2
`

back 7→ , ∧ back= b

}
{front , tc, f 1

2
` front = f}


back b

n=2

f fronttp tc

KLM

31

A proof with variables-as-resource

// Producer. // Semaphoren // Consumer.{
back , tp, b1

2
`

back 7→ , ∧ back= b

}
{n, f 1

2
, b1

2
` listseg n f b} {front , tc, f 1

2
` front = f}

back .0 := produce(); tc := front ;
tp := new(); P : decn; f := f .2 P(n);
back .1 := tp; front := front .2;
V(n); V : incn; b := b.2 consumetc.0;
back := tp disposetc{

back , tp, b1
2
`

back 7→ , ∧ back= b

}
{front , tc, f 1

2
` front = f}


back b

n=3

f fronttp tc

KLM

31

A proof with variables-as-resource

// Producer. // Semaphoren // Consumer.{
back , tp, b1

2
`

back 7→ , ∧ back= b

}
{n, f 1

2
, b1

2
` listseg n f b} {front , tc, f 1

2
` front = f}

back .0 := produce(); tc := front ;
tp := new(); P : decn; f := f .2 P(n);
back .1 := tp; front := front .2;
V(n); V : incn; b := b.2 consumetc.0;
back := tp disposetc{

back , tp, b1
2
`

back 7→ , ∧ back= b

}
{front , tc, f 1

2
` front = f}


tp, back b

n=3

f front tc

KLM

31

We can prove it!



// Producer. // Semaphoren // Consumer.{
back , tp, b1

2
`

back 7→ , ∧ back= b

}
{n, f 1

2
, b1

2
` listseg n f b} {front , tc, f 1

2
` front = f}

back .0 := produce(); tc := front ;
tp := new(); P : decn; f := f .2 P(n);
back .1 := tp; front := front .2;
V(n); V : incn; b := b.2 consumetc.0;
back := tp disposetc{

back , tp, b1
2
`

back 7→ , ∧ back= b

}
{front , tc, f 1

2
` front = f}



Assertionvs ` P says “owning variablesvs, P holds”. P can only
mention variables invs. You can’t write to fractionally-owned
variables.

P can describe separation of the heap:back 7→ , describes
ownership of a two-word record;back 7→ , ? front 7→ , describes
ownership of two cons-cellsseparately.

32

We can prove it!



// Producer. // Semaphoren // Consumer.{
back , tp, b1

2
`

back 7→ , ∧ back= b

}
{n, f 1

2
, b1

2
` listseg n f b} {front , tc, f 1

2
` front = f}

back .0 := produce(); tc := front ;
tp := new(); P : decn; f := f .2 P(n);
back .1 := tp; front := front .2;
V(n); V : incn; b := b.2 consumetc.0;
back := tp disposetc{

back , tp, b1
2
`

back 7→ , ∧ back= b

}
{front , tc, f 1

2
` front = f}


Assertionvs ` P says “owning variablesvs, P holds”. P can only
mention variables invs. You can’t write to fractionally-owned
variables.

P can describe separation of the heap:back 7→ , describes
ownership of a two-word record;back 7→ , ? front 7→ , describes
ownership of two cons-cellsseparately.

32

We can prove it!



// Producer. // Semaphoren // Consumer.{
back , tp, b1

2
`

back 7→ , ∧ back= b

}
{n, f 1

2
, b1

2
` listseg n f b} {front , tc, f 1

2
` front = f}

back .0 := produce(); tc := front ;
tp := new(); P : decn; f := f .2 P(n);
back .1 := tp; front := front .2;
V(n); V : incn; b := b.2 consumetc.0;
back := tp disposetc{

back , tp, b1
2
`

back 7→ , ∧ back= b

}
{front , tc, f 1

2
` front = f}


Assertionvs ` P says “owning variablesvs, P holds”. P can only
mention variables invs. You can’t write to fractionally-owned
variables.

P can describe separation of the heap:back 7→ , describes
ownership of a two-word record;back 7→ , ? front 7→ , describes
ownership of two cons-cellsseparately.

32

We have more ideas than we can deal with

I existence (no read, no write) permissions: e.g. P+V+read/write
for semaphores;

I mobile channels: e.g. read one end, write the other in occam;

I semaphores in the heap (for shared buffers which reclaim
themselves);

I mobile code, maybe (if David May will tell us how it works);

I ...

33

We have more ideas than we can deal with

I existence (no read, no write) permissions: e.g. P+V+read/write
for semaphores;

I mobile channels: e.g. read one end, write the other in occam;

I semaphores in the heap (for shared buffers which reclaim
themselves);

I mobile code, maybe (if David May will tell us how it works);

I ...

33

We have more ideas than we can deal with

I existence (no read, no write) permissions: e.g. P+V+read/write
for semaphores;

I mobile channels: e.g. read one end, write the other in occam;

I semaphores in the heap (for shared buffers which reclaim
themselves);

I mobile code, maybe (if David May will tell us how it works);

I ...

33

We have more ideas than we can deal with

I existence (no read, no write) permissions: e.g. P+V+read/write
for semaphores;

I mobile channels: e.g. read one end, write the other in occam;

I semaphores in the heap (for shared buffers which reclaim
themselves);

I mobile code, maybe (if David May will tell us how it works);

I ...

33

We have more ideas than we can deal with

I existence (no read, no write) permissions: e.g. P+V+read/write
for semaphores;

I mobile channels: e.g. read one end, write the other in occam;

I semaphores in the heap (for shared buffers which reclaim
themselves);

I mobile code, maybe (if David May will tell us how it works);

I ...

33

We have more ideas than we can deal with

I existence (no read, no write) permissions: e.g. P+V+read/write
for semaphores;

I mobile channels: e.g. read one end, write the other in occam;

I semaphores in the heap (for shared buffers which reclaim
themselves);

I mobile code, maybe (if David May will tell us how it works);

I ...

33

The Grand Challenge

Resourcing problems are everywhere. The problem is to make a
resourcing solution:

I as lightweight as typing;

I built into language designs;

I built into compilers.

If we build it, they will come (as they came for types).

34

The Grand Challenge

Resourcing problems are everywhere. The problem is to make a
resourcing solution:

I as lightweight as typing;

I built into language designs;

I built into compilers.

If we build it, they will come (as they came for types).

34

The Grand Challenge

Resourcing problems are everywhere. The problem is to make a
resourcing solution:

I as lightweight as typing;

I built into language designs;

I built into compilers.

If we build it, they will come (as they came for types).

34

The Grand Challenge

Resourcing problems are everywhere. The problem is to make a
resourcing solution:

I as lightweight as typing;

I built into language designs;

I built into compilers.

If we build it, they will come (as they came for types).

34

The Grand Challenge

Resourcing problems are everywhere. The problem is to make a
resourcing solution:

I as lightweight as typing;

I built into language designs;

I built into compilers.

If we build it, they will come (as they came for types).

34

The Grand Challenge

Resourcing problems are everywhere. The problem is to make a
resourcing solution:

I as lightweight as typing;

I built into language designs;

I built into compilers.

If we build it, they will come (as they came for types).

34

