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Move over typing: here comes resourcing!

Resourcings the next formal step towards program safety,
following the success of typing.

Resourcing is about tremountof resource used by a program;
typing is about thé&ind of resource.

“A well-typed program won'tgo wrond (Milner).
“Well-resourced programsiind their own busine$gO’Hearn).
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A program in need of resourcing

P(read);
if count = 0 then P(write)
else skip fi;
count+ :=1;
V(read);

... reading happens here ...

P(read);
count— :=1;
if count = 0 then V(write)
else skip fi;
V(read)

P(write);
... writing happens here ...

V(write)
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Separation logic

Just a bastard child of BI (Pym, O’Hearn).

E — E’ (points to) ispermissiorto read/write/dispose cell at
heap address with contentsE’.

Previously— wasownership before that dneap predicatéand it
still is).

emp iS NO permission.

A x B (star) isseparatiorof resource.

A A B (and) isidentity of resource.

AN (Bxtrue) is all A, partly B.

e
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{Q;C{R}

modifies C N wvars P = ()

{PxQ}C{P xR} (
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Framing, hence small axioms

{QIC{R} N o
(PaQlc(par) " C Y
{Ré} x:=E {R}
{X = *} [x]:=E {X — E}
{E’ — E} x:=[E'] {E’ —EAX= E} (x not free inE, E')

{emp} x:=new(E) {X . E}
{E = *} disposee {emp}
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Concurrency rules

{Qu} C1{Ri}---{Qn} Cn {Rn}

(non-interference-of-variables)

{Qux---xQn} (Coll -+ ]| Co){Rux---*Ru}

{(Q«1r) AB}C{Rx I/}
{Q}with r when B do C od{R}

(non-interference-of-variables)

» Both proved sound by Brookes.

» A version of the CCR rule covers semaphgiasvhichC is
eitherm:=m+2l1orm:=m- 1.
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The ownership trick (O’Hearn)

Resource : Vars full, b;

X := new();

with r when —full do
b:=x;
full := true

od

with r when full do
y:=Db;
full := false

od;

disposey
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The ownership trick (O’Hearn)

Resource : Vars full, b;
Invariant(full Ab— _) V (=full A emp)

{emp} {emp}
X := new); with r when full do
{x—}
with r when —full do y:=b;
b:=x; full := false
full := true od;
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The ownership trick (O’Hearn)

Resource : Vars full, b;

Invariant(full Ab— _) V (=full A emp)

{emp}
X := new);
)
with r when —full do
{=full N emp *x+— _}
b:=x;
{ﬁfull/\emp*XH ,/\b:X}
full := true
{full Ab— ,*emp}
od

{emp}

{emp}
with r when full do
{full Ab— ,*emp}
y:=Db;
{full Ab— _xemp Ay= b}
full := false
{=full Nemp xy — _}
od;
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The ownership trick (O’Hearn)

Resource : Vars full, b;

Invariant(full Ab— _) V (=full A emp)

{emp}
X := new);
)
with r when —full do
{=full N emp *x+— _}
b:=x;
{ﬁfull/\emp*XH ,/\b:X}
full := true
{full Ab— ,*emp}
od

{emp}

{emp}
with r when full do
{full Ab— ,*emp}
y:=Db;
{full Ab— _xemp Ay= b}
full := false
{=full Nemp xy — _}
od;
{y—}
disposey
{emp}
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Passivity

» Passivity is a property of a program and a resource: the program
doesn’t change the contents of the resource.

» We want to specify passivity by specifying a read-only resource.

» We require that a program, given a read-only resouraenot
change its contents.

e s
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» Since Dijkstra, we have known that we can safely share
read-only resources.

» Total permissiorE — E’, given by new, allows
read/write/dispose.
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Splitting and sharing

» Since Dijkstra, we have known that we can safely share
read-only resources.

» Total permissiorE — E’, given by new, allows
read/write/dispose.

» Concurrent read permissions must(s¢ separable, because of
the concurrency rule.

et S
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Accounting

» Splitting into multiple read permissions is easy.

» To write or dispose we have to know when we hallehe read
permissions back.

» A program which doesn’t keep account leaks resource.

'yg\ﬁ%T_
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Boyland's suggestiors + 5 = 1

Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

He associates a numbewith each permissiorz = 1 total;
0 < z< 1read-only.

Fractional permissions are specification-only (cf. types).

In practice the arithmetic is very easy: fractions sirapler to
usethan (e.g.) sets of binary trees.

The magnitude of non-integral fractions doesn’t matter, except as
a matter of accounting.

'gg\ﬁ%T_
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A fractional model

» Heaps are now partial maps from Nat to (int, fraction).
(Previously Nat to int.)

» A simpler model — just read / total permissions — fails to account
and doesn't have the frame property.

':‘Xi}ﬁ%;\‘—
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Proof theory

Ew»E = 0<z<1

E—EAZ>0AZ>0<+= E—ExE—F
z+7 z z

{RE} x=E {R}
{E/ 'T) B [E/]:E E/ 'T) E}
{E’ — E x:=[E'] E—EAX= E} (x not free inE, E)

{emp}  x:=new(E) {X Tk E}
{E 9 ,} disposéE {emp}
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Proof theory

EmE = 0<z<1
ElﬁE//\Z>O/\Z'>O — E?E’*E»?E’

{RE} x=E {R}
[ i [E'):=E ?E/HE}
{E’ —El  x=[E] E v EAX= E} (xnot free inE, E)
{emp}  x:=new(E) {X Tk E}
{ } disposéE {emp}
Not (yet) proved sound by Brookes. (But surely ...)

-
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Proof

{emp}
X := new);

dispose
{emp/\y: INz= 2}

-
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Proof

dispose
{emp/\y: INz= 2}
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Proof

dispose
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Proof

X := new);
e}
X = 1;

dispose
{emp/\y: INz= 2}

- i



Proof

{emp}

X := new);
e}
X = 1;

{Xr? 1}_-_{x»ﬁ> 1xX o5 1}
({X 55 1} {X o5 1}
y:=I[X

z:=[x+1
{XW 1/\y:1}

dispose
{emp/\y: INz= 2}

SR



Proof

{emp}
X := new);

7}

e 1) }

XrTl S X 1*Xlﬁ>1

{Xbﬁl} {le}
y:=[X z:=[x+1 ;
{xwl/\yzl} {xwl/\z:Z}

dispose
{emp/\y: INz= 2}
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Proof

z:=[x+1
{xwl/\z:Z}

Xr55 1/\y:1}
{(xw 1Ay =1)* (Xigp 1/\2:2)}

dispose
{emp/\y: INz= 2}

{5z 1) ) |
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Proof

Ko 1) {X'Wl}
y:=[X z:=[x+1 :
{xwl/\yzl} {xwl/\z:Z}

{(X'ﬁ’ 1INy =1)*(Xrgp 1/\2:2)};_{X»T> 1Ay:1Az:2}

dispose
{emp/\y: INz= 2}
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Proof

P 2)-{ }
XrTl X'ﬁl*le
{xros 1} {xos 1}
y:= [X] z:=[x+1 ;

{XW Ihny=1
{(X'ﬁ’ 1INy =1)*(Xrgp 1/\2:2)};_{X»T> 1Ay:1Az:2}

dispose
{emp/\y: INz= 2}

——

{xwl/\z:Z}

» That isexactlyhow hard it is to use fractional permissions.
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UnProof

{emp}
X := new);

v )

X :=1;
{X N 1};_{Xnﬁ 1xX o5 l}
{X 5 1} {X — 1}

05
y:=[X; X] := 2;
dispose z:=[x+1
X :=y+z

ey



UnProof

{emp}
X := new);

v )

X :=1;
{X N 1};_{Xnﬁ 1xX o5 l}

R I

{x o5 LAY = 1} -

dispose z:=[x+1
X :=y+z

ey



UnProof

{emp}
X := new);

v )

X :=1;
{X N 1};_{Xnﬁ 1xX o5 l}

R I
{x o5 LAY = 1} -
dispose z:=[x+1
(7

X :=y+z

ey



{emp}
X := new);

v )

X :=1;

UnProof

{X'? 1};_{Xnﬁ l*x»ﬁ l}

(x5 1)
y = [x];
{X'ﬁ’ 1Ay:1}

dispos&

(72

X :=y+z

(rs )

0.5
X :=2;
(3
z:=x+1

ey



UnProof

{emp}

X := new);

v

X :=1;

{X N 1};_{Xnﬁ 1xx o5 l}
{xse 1 x5 1}
y:=[X; X := 2

{x5g 1ry=1} 22
dispos&

e
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hx K is defined, thel€ must terminate normally ih x h'.
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Passivity and fractions

Termination Monotonicityif C must terminate normally ih and
hx K is defined, thel€ must terminate normally ih x h'.

» We can prove termination monotonicity for all commands in our
language.

Suppose[lO»ﬁ N}C{lorﬁ N -+ 1}, and it terminates.

Then (frame rule)

v

v

{1ow N}C{low N -+ 1}

{1055 N+ 1055 N}c{10 55 N+ 10r5e N+ 1

v

—i.e. itwon't terminate in 1% N.

v

ThereforeC isn’t in our language.
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Passivity and fractions

Termination Monotonicityif C must terminate normally ih and
hx K is defined, thel€ must terminate normally ih x h'.

» We can prove termination monotonicity for all commands in our
language.

> Suppose[lO»ﬁ N}C{lorﬁ N -+ 1}, and it terminates.
» Then (frame rule)

{1ow N}c{low N -+ 1}

{1055 N+ 1055 N}c{10 55 N+ 10r5e N+ 1

» —i.e. itwon't terminate in 1% N.
» ThereforeC isn't in our language.

» Thuswe have passivity
e
17 SRS
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Permission counting

» Some programs naturally weigh out permissions to their child
threads: e.g. parallel tree-copy, parallel tree-rewriting (see
proceedings).
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Permission counting

» Some programs naturally weigh out permissions to their child
threads: e.g. parallel tree-copy, parallel tree-rewriting (see
proceedings).

» Some programs count permissions: e.g. pipeline multicasting,
readers-and-writers.

» Permission counting isot specification-only.

'yg\ﬁ%T_
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Readers and writers (CCR version)

with read when true do
if count = 0 then P(write)
else skip fi;
count+ =1
od;

... reading happens here ...

with read when true do

count— := 1;
if count = 0 then V(write)
else skip fi
od
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Readers and writers (CCR version)

{emp}
with read when true do
if count = 0 then P(write)

else skip fi;
count+ =1
od;
{2 N}

... reading happens here ...

with read when true do

count— := 1;
if count = 0 then V(write)
else skip fi
od
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Readers and writers (CCR version)

{emp)
with read when true do
if count = 0 then P(write)
else skip fi;
count+ =1
od;
(2N}
... reading happens here ...
(2N}
with read when true do
count— := 1;
if count = 0 then V(write)
else skip fi
od

{emp}
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Readers and writers (CCR version)

{emp)
with read when true do
if count = 0 then P(write)
else skip fi;
count+ =1
od;
(2N}
... reading happens here ...
(2N}
with read when true do
count— := 1;
if count = 0 then V(write)
else skip fi
od

{emp}

20
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Readers and writers (CCR version)

{emp)
with read when true do
if count = 0 then P(write)
else skip fi;
count+ =1
od;
(2N}
... reading happens here ...
(2N}
with read when true do
count— := 1;
if count = 0 then V(write)
else skip fi
od

{emp}

20

{omp}
P(write);

{z 9, M}
... writing happens here ...
{z N M’}
V(write)
{emp}
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SR
21 o



A counting model

» Heaps are partial maps from Nat to (int, permission).

» Permissions are-n (n read permissions), ekn (a “block” from
which nread permissions have been “flaked”).

et S
21 S



A counting model

» Heaps are partial maps from Nat to (int, permission).

» Permissions are-n (n read permissions), ekn (a “block” from
which nread permissions have been “flaked”).

» 0 is total permission.

et S
21 S



v

v

v

A counting model

Heaps are partial maps from Nat to (int, permission).

Permissions are-n (n read permissions), arn (a “block” from
which nread permissions have been “flaked”).

0 is total permission.

_ _ undefined i > 0Aj >0
Evs EExEs B ={ undefined (i>0Vj>0)Ai+j<0
E- E  otherwise
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A counting model

Heaps are partial maps from Nat to (int, permission).

Permissions are-n (n read permissions), arn (a “block” from
which nread permissions have been “flaked”).

0 is total permission.

_ _ undefined i > 0Aj >0
Evs EExEs B ={ undefined (i>0Vj>0)Ai+j<0
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A counting model

v

Heaps are partial maps from Nat to (int, permission).

» Permissions are-n (n read permissions), ekn (a “block” from
which nread permissions have been “flaked”).

v

0 is total permission.

_ _ undefined i >0Aj>0
» Exs E'xE W B/ = { undefined (i>0Vj>0)Ai+j<0
E-L E otherwise

» E — E'is a notational convenience f&r—2% E’.

v

We have passivity (same proof as before).

'gg\ﬁ%T_
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Proof theory

ELE = n>0
ENLE = EM™MLE L E— FE

{RE} x=E {R}
E S 7} [X:=E {E' O E
{E' — E} x=[E] {E' — EAx=E} (xnotfree inE, E)

{emp} x:=new(E) {X W2, E}
{E 9, ,} disposeE {emp}

SR
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Resource safety proof

write : if write = 0 then emp else z YN fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

if count = 0 then P(write)
else skip
fi;
count+ :=1
od
(2N}

29
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Resource safety proof

write : if write = 0 then emp else z YN fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = 0 then emp else z 2", N fi x emp}

if count = 0 then P(write)
else skip
fi;
count+ :=1
od

{Z — N} - ey
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Resource safety proof

write : if write = 0 then emp else z YN fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = 0 then emp else z 2", N fi x emp}
if count = 0 then {emp} P(write)

else {z.% } skip
fi;
count+ =1
od

{Z — N} - ey
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Resource safety proof

write : if write = 0 then emp else z YN fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = 0 then emp else z ~<2“"%, N fi x emp

if count = 0 then {emp} P(write) {z;-» N

else {z.% } skip
fi;
count+ =1
od

{Z — N} - ey
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Resource safety proof

write : if write = 0 then emp else z YN fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = 0 then emp else z ~<2“"%, N fi x emp

if count = 0 then {emp} P(write) {22 N

count count

else {Zn—> } skip Z— }

count+ =1

od
{z—=Nj “pec
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Resource safety proof

write : if write = 0 then emp else z YN fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = 0 then emp else z ~<2“"%, N fi x emp
if count = 0 then {emp} P(write) {22 N
else {z.% } skip { z»count, }
{Z count N}
count+ :=1

od
{z—=Nj “pec
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Resource safety proof

write : if write = 0 then emp else z YN fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = 0 then emp else z ~<2“"%, N fi x emp
if count = 0 then {emp} P(write) {22 N
else {z.% } skip { z»count, }
{Z count N}
count+:=1
{Z count—1 N}
od
{z—Nj -~

29



Resource safety proof

write : if write = 0 then emp else z YN fi
read : if count = 0 then emp else z -2, N fi

{emp}
with read when true do

{if count = 0 then emp else z ~<2“"%, N fi x emp
if count = 0 then {emp} P(write) {22 N
else {z.% } skip { z»count, }

{Z count N}

count+ =1
{Z count—1 N} {Z count N *x Z s N}
od

{Z — N} - ey
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» Readers-and-writers has several distinct parts: reader prologue,
reader action, reader epilogue, writ&rwriter action, writerV.
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Something you may have missed ...

» Readers-and-writers has several distinct parts: reader prologue,
reader action, reader epilogue, writ&rwriter action, writerV.

prologue; prologue; prologue;
> (Teqderl; T@ad@rg) ;
epilogue
epilogue; readery; epilogue

readers
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Something you may have missed ...

» Readers-and-writers has several distinct parts: reader prologue,
reader action, reader epilogue, writ&rwriter action, writerV.

prologue; prologue; prologue;

(Teqderl; readem) ;
epilogue

epilogue; readery; epilogue

readers

> P(write); writery; (readers H readerg) ; writery; V(write)

NN
b oA Y
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v

Something you may have missed ...

Readers-and-writers has several distinct parts: reader prologue,
reader action, reader epilogue, writ&rwriter action, writerV.

prologue; prologue; prologue;
(Teaderl; )
] readers | ;
epilogue
epilogue; readery; epilogue

readers

P(write); writery; (readers H readerg) ; writery; V(write)

No more critical sections+ nowthat’s resourcing!

SN
b oA Y
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We do have some unsolved problems ...
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We do have some unsolved problems ...

ztree Z nil Empty = emp
ztree Zt(Tipa) =t 0,a
ztree Zt(Node A p) = 3l,r - (t— L1, r xztree Z | A % ztree Z 1 p)
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We do have some unsolved problems ...

ztree Z nil Empty = emp
ztree Zt(Tipa) =t 0,
ztree Zt(Node A p) = 3l,r - (t— L1, r xztree Z | A % ztree Z 1 p)

» ztree 0.5t (Node (Tip 4) (Tip 4)) isn’'t necessarily separated: it
could be a DAG.

- i
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We do have some unsolved problems ...

ztree Z nil Empty = emp
ztree Zt(Tipa) =t 0,
ztree Zt(Node A p) = 3l,r - (t— L1, r xztree Z | A % ztree Z 1 p)

» ztree 0.5t (Node (Tip 4) (Tip 4)) isn’'t necessarily separated: it
could be a DAG.

» We have two models — fractions and counting. Both seem to be
necessary at present (maybe ...).

'_ygg’:&%_:_
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Future work
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Future work

» Variables as resources.
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Future work

» Variables as resources.
» Existence permissions.
» Semaphores in the heap.
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Future work

Variables as resources.

Existence permissions.
Semaphores in the heap.
Soundness (we just need anod ...)

26
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Accounting for variables

{QJC{R}

" [PxQIC{P*R} (

modifies C N vars P = (),

S Y
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Accounting for variables

{QJC{R}

difies C N P=10).
{P*Q}C{P*R} moz es vars
{emp}
P(read);
{own(count) A ...}
if count = O then ... // safe: | can readount

{Own(count) A z-ount, N}

count + := 1; // safe: | can read and writ@unt
{own(count) Az N xz— N}

V(read)
{z—N}

.. /I 'no longer safe to read or writeunt

e
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Accounting for variables

{Q}C{R}
{P *Q}C{P*R}
{emp}
P(read);
{own(count) A ...}
if count = 0 then ... // safe: | can readount

{Own(count) A z-ount, N}

count + := 1; // safe: | can read and writ@unt
{own(count) Az N xz— N}

V(read)
{z— N}

.. /I 'no longer safe to read or writeunt

(modifies C Nwars P =0).

» Imagine:no non-interference side-condition®) anti-aliasing
side-condition on variable assignmealeganiproofs of »
Dijkstra’s semaphore programs — ndiat’s hubris! e
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Is anybody there?

» A semaphore has permission to read and write its variable; a user
has permission t& andV it.
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Is anybody there?

» A semaphore has permission to read and write its variable; a user
has permission t& andV it.

» So long as any user has that permission, the semaphore can't
dispose itself.
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Is anybody there?

» A semaphore has permission to read and write its variable; a user
has permission t& andV it.

» So long as any user has that permission, the semaphore can't
dispose itself.

» EXxistence permissions given access to resource contents.
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Is anybody there?

A semaphore has permission to read and write its variable; a usel
has permission t& andV it.

So long as any user has that permission, the semaphore can't
dispose itself.

Existence permissions give access to resource contents.
Proof theory looks easy, but no agreed model yet.

R NN
‘:V _\\
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Last one to leave, turn off the light!
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Last one to leave, turn off the light!

» Pipeline processing fits permission counting: e.g. multicasting in
a network processor.
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Last one to leave, turn off the light!

» Pipeline processing fits permission counting: e.g. multicasting in
a network processor.

» Each packet-buffer has a semaphore, in neighbouring heap
location, which counts permissions.
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Last one to leave, turn off the light!

» Pipeline processing fits permission counting: e.g. multicasting in
a network processor.

» Each packet-buffer has a semaphore, in neighbouring heap
location, which counts permissions.

» ‘start’ gives you a buffer and a 1 semaphore.
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Last one to leave, turn off the light!

Pipeline processing fits permission counting: e.g. multicasting in
a network processor.

Each packet-buffer has a semaphore, in neighbouring heap
location, which counts permissions.

‘start’ gives you a buffer and a 1 semaphore.
‘split’ Vs the semaphore, and releases an extra read permission.
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Last one to leave, turn off the light!

Pipeline processing fits permission counting: e.g. multicasting in
a network processor.

Each packet-buffer has a semaphore, in neighbouring heap
location, which counts permissions.

‘start’ gives you a buffer and a 1 semaphore.
‘split’ Vs the semaphore, and releases an extra read permission.

‘finish’ at the end of a pipelin®s the semaphore — and if now 0,
disposes semaphore and buffer together.
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Last one to leave, turn off the light!

Pipeline processing fits permission counting: e.g. multicasting in
a network processor.

Each packet-buffer has a semaphore, in neighbouring heap
location, which counts permissions.

‘start’ gives you a buffer and a 1 semaphore.
‘split’ Vs the semaphore, and releases an extra read permission.

‘finish’ at the end of a pipelin®s the semaphore — and if now 0,
disposes semaphore and buffer together.

The semaphore has to be hidden; it might need a CCR; it might
need the hypothetical frame rule; it's a semaphoridée heap!.

e
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Soundness

We think we only need a nod.
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Thank you!

John Tang Boyland, for pointing out that+ 1 = 1.

The East London Massive for listening to countless versions, and
picking holes in them.

Steve Brookes, for taking us seriously.

Josh Berdine, John Reynolds and Hongseok Yang, for ruthless and
relentless criticism.
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