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Move over typing: here comes resourcing!

I Resourcingis the next formal step towards program safety,
following the success of typing.

I Resourcing is about theamountof resource used by a program;
typing is about thekind of resource.

I “A well-typed program won’tgo wrong” (Milner).

I “Well-resourced programsmind their own business” (O’Hearn).
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A program in need of resourcing

P(read);
if count = 0 then P(write)

else skip fi;
count+ := 1;

V(read);{
z � N

}
... reading happens here ...{

z � N
}

P(read);
count− := 1;
if count = 0 then V(write)

else skip fi;
V(read)

{
emp

}
P(write);{

z 07−→ M
}

... writing happens here ...{
z 07−→ M′

}
V(write){
emp

}
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Separation logic

I Just a bastard child of BI (Pym, O’Hearn).

I E 7→ E′ (points to) ispermissionto read/write/dispose cell at
heap addressE with contentsE′.

I Previously7→ wasownership; before that aheap predicate(and it
still is).

I emp is no permission.

I A ? B (star) isseparationof resource.

I A∧ B (and) isidentityof resource.

I A∧ (B ? true) is all A, partlyB.
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Framing, hence small axioms

{
Q

}
C

{
R
}{

P ? Q
}

C
{

P ? R
} (modifies C ∩ vars P = ∅)

blank

{
Rx

E

}
x:=E

{
R
}{

x 7→
}

[x]:=E
{

x 7→ E
}{

E′ 7→ E
}

x:=[E′]
{

E′ 7→ E∧ x = E
}

(x not free inE, E′){
emp

}
x:=new(E)

{
x 7→ E

}{
E 7→

}
disposeE

{
emp

}
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Concurrency rules

{
Q1

}
C1

{
R1

}
· · ·

{
Qn

}
Cn

{
Rn

}{
Q1 ? · · · ? Qn

}
(C1 ‖ · · · ‖ Cn)

{
R1 ? · · · ? Rn

} (non-interference-of-variables)

blank

{
(Q ? Ir) ∧ B

}
C

{
R? Ir

}{
Q

}
with r when B do C od

{
R
} (non-interference-of-variables)

blank

I Both proved sound by Brookes.

I A version of the CCR rule covers semaphores, in whichC is
eitherm := m+ 1 orm := m− 1.
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The ownership trick (O’Hearn)

Resourcer : Varsfull , b;
Invariant(full ∧ b 7→ ) ∨ (¬full ∧ emp)
blank

{
emp

}
x := new();{

x 7→
}

with r when ¬full do{
¬full ∧ emp ? x 7→

}
b := x;{
¬full ∧ emp ? x 7→ ∧ b = x

}
full := true{
full ∧ b 7→ ? emp

}
od{
emp

}

{
emp

}
with r when full do{

full ∧ b 7→ ? emp
}

y := b;{
full ∧ b 7→ ? emp ∧ y = b

}
full := false{
¬full ∧ emp ? y 7→

}
od;{
y 7→

}
disposey{
emp

}
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Part I

Passivity, sharing, accounting
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Passivity

I Passivity is a property of a program and a resource: the program
doesn’t change the contents of the resource.

I We want to specify passivity by specifying a read-only resource.

I We require that a program, given a read-only resource,cannot
change its contents.
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Splitting and sharing

I Since Dijkstra, we have known that we can safely share
read-only resources.

I Total permissionE 7→ E′, given by new, allows
read/write/dispose.

I Concurrent read permissions must be(?) separable, because of
the concurrency rule.
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Accounting

I Splitting into multiple read permissions is easy.

I To write or dispose we have to know when we haveall the read
permissions back.

I A program which doesn’t keep account leaks resource.
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Boyland’s suggestion:12 + 1
2 = 1

I Boyland (Wisconsin) developed a means of permission
accounting in disjoint concurrency, dealing with variables and
heap locations.

I He associates a numberz with each permission:z = 1 total;
0 < z < 1 read-only.

I Fractional permissions are specification-only (cf. types).

I In practice the arithmetic is very easy: fractions aresimpler to
usethan (e.g.) sets of binary trees.

I The magnitude of non-integral fractions doesn’t matter, except as
a matter of accounting.
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A fractional model

I Heaps are now partial maps from Nat to (int, fraction).
(Previously Nat to int.)

I A simpler model – just read / total permissions – fails to account
and doesn’t have the frame property.
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Proof theory

E 7−→z E′ ⇒ 0 < z≤ 1
E 7−−−−→

z+z′
E′ ∧ z > 0∧ z′ > 0 ⇐⇒ E 7−→z E′ ? E 7−−→

z′
E′

blank

{
Rx

E

}
x:=E

{
R
}{

E′ 7−→
1

}
[E′]:=E

{
E′ 7−→

1
E
}{

E′ 7−→z E
}

x:=[E′]
{

E′ 7−→z E∧ x = E
}

(x not free inE, E′){
emp

}
x:=new(E)
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Proof{
emp

}
x := new();{

x 7−→
1

}
[x] := 1;{

x 7−→
1

1
}

∴
{

x 7−−−→
0.5

1 ? x 7−−−→
0.5

1
}

{
x 7−−−→

0.5
1
}

y := [x]{
x 7−−−→

0.5
1∧ y = 1

}
{

x 7−−−→
0.5

1
}

z := [x] + 1{
x 7−−−→

0.5
1∧ z = 2

}
 ;

{
(x 7−−−→

0.5
1∧ y = 1) ? (x 7−−−→

0.5
1∧ z = 2)

}
∴

{
x 7−→

1
1∧ y = 1∧ z = 2

}
disposex{
emp ∧ y = 1∧ z = 2

}

I That isexactlyhow hard it is to use fractional permissions.
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UnProof

{
emp

}
x := new();{

x 7−→
1

}
[x] := 1;{

x 7−→
1

1
}

∴
{

x 7−−−→
0.5

1 ? x 7−−−→
0.5

1
}

{
x 7−−−→

0.5
1
}

y := [x];{
x 7−−−→

0.5
1∧ y = 1

}
disposex{

??
}

{
x 7−−−→

0.5
1
}

[x] := 2;{
??

}
z := [x] + 1{

??
}


{

??
}

[x] := y + z
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Passivity and fractions

Termination Monotonicity: if C must terminate normally inh and
h ? h′ is defined, thenC must terminate normally inh ? h′.

I We can prove termination monotonicity for all commands in our
language.

I Suppose
{

10 7−−−→
0.5

N
}

C
{

10 7−−−→
0.5

N + 1
}

, and it terminates.

I Then (frame rule)
...{

10 7−−−→
0.5

N
}

C
{

10 7−−−→
0.5

N + 1
}

{
10 7−−−→

0.5
N ? 10 7−−−→

0.5
N

}
C

{
10 7−−−→

0.5
N ? 10 7−−−→

0.5
N + 1

}
I – i.e. it won’t terminate in 107−−−→

1.0
N.

I ThereforeC isn’t in our language.

I Thuswe have passivity!
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Part II

Counting permissions
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Permission counting

I Some programs naturally weigh out permissions to their child
threads: e.g. parallel tree-copy, parallel tree-rewriting (see
proceedings).

I Some programs count permissions: e.g. pipeline multicasting,
readers-and-writers.

I Permission counting isnot specification-only.
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Readers and writers (CCR version)
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Readers and writers (CCR version){
emp

}
with read when true do

if count = 0 then P(write)
else skip fi;

count+ := 1
od;{
z � N

}
... reading happens here ...{

z � N
}

with read when true do
count− := 1;
if count = 0 then V(write)

else skip fi
od{
emp

}

{
emp

}
P(write);{

z 07−→ M
}

... writing happens here ...{
z 07−→ M′

}
V(write){
emp

}
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A counting model

I Heaps are partial maps from Nat to (int, permission).

I Permissions are−n (n read permissions), or+n (a “block” from
whichn read permissions have been “flaked”).

I 0 is total permission.

I E i7−→ E′ ? E j7−→ E′ =


undefined i ≥ 0∧ j ≥ 0
undefined (i ≥ 0∨ j ≥ 0) ∧ i + j < 0

E i+j7−−−→ E′ otherwise

I E � E′ is a notational convenience forE −17−−−→ E′.

I We have passivity (same proof as before).
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Proof theory

E n7−→ E′ ⇒ n≥ 0

E n7−→ E′ ⇐⇒ E n+17−−−−→ E′ ? E � E′

blank {
Rx

E

}
x:=E

{
R
}{

E′ 07−→
}

[x]:=E
{

E′ 07−→ E
}{

E′ � E
}

x:=[E′]
{

E′ � E∧ x = E
}

(x not free inE, E′){
emp

}
x:=new(E)

{
x 07−→ E

}{
E 07−→

}
disposeE

{
emp

}
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Resource safety proof
write : if write = 0 then emp else z 07−→ N fi
read : if count = 0 then emp else z count7−−−−−→ N fi{
emp

}
with read when true do{

if count = 0 then emp else z count7−−−−−→ N fi ? emp
}

if count = 0 then
{
emp

}
P(write)

{
z 07−→ N

}
else

{
z count7−−−−−→ N

}
skip

{
z count7−−−−−→ N

}
fi;{
z count7−−−−−→ N

}
count+ := 1{

z count−17−−−−−−−→ N
}

∴
{

z count7−−−−−→ N ? z � N
}

od{
z � N

}
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Something you may have missed ...

I Readers-and-writers has several distinct parts: reader prologue,
reader action, reader epilogue, writerP, writer action, writerV.

I

prologue; prologue; prologue;(
reader1;
epilogue

reader2 reader3

)
;

epilogue; reader4; epilogue

I P(write);writer1;
(
reader5 reader6

)
;writer2; V(write)

I No more critical sections!– nowthat’s resourcing!
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We do have some unsolved problems ...

ztree z nil Empty =̂ emp
ztree z t (Tip α) =̂ t 7−→z 0, α

ztree z t (Node λ ρ) =̂ ∃l, r · (t 7−→z 1, l, r ? ztree z l λ ? ztree z r ρ)

I ztree 0.5 t (Node (Tip 4) (Tip 4)) isn’t necessarily separated: it
could be a DAG.

I We have two models – fractions and counting. Both seem to be
necessary at present (maybe ...).
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Future work

I Variables as resources.

I Existence permissions.

I Semaphores in the heap.

I Soundness (we just need a nod ...)
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Accounting for variables

I

{
Q

}
C

{
R
}{

P ? Q
}

C
{

P ? R
} (modifies C ∩ vars P = ∅).

I

{
emp

}
P(read);{

own(count) ∧ ...
}

if count = 0 then ... // safe: I can readcount{
own(count) ∧ z count7−−−−−→ N

}
count + := 1; // safe: I can read and writecount{

own(count) ∧ z count7−−−−→ N ? z � N
}

V(read){
z � N

}
... // no longer safe to read or writecount

I Imagine:nonon-interference side-conditions;noanti-aliasing
side-condition on variable assignment;elegantproofs of
Dijkstra’s semaphore programs – nowthat’shubris!
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Is anybody there?

I A semaphore has permission to read and write its variable; a user
has permission toP andV it.

I So long as any user has that permission, the semaphore can’t
dispose itself.

I Existence permissions givenoaccess to resource contents.

I Proof theory looks easy, but no agreed model yet.
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Last one to leave, turn off the light!

I Pipeline processing fits permission counting: e.g. multicasting in
a network processor.

I Each packet-buffer has a semaphore, in neighbouring heap
location, which counts permissions.

I ‘start’ gives you a buffer and a 1 semaphore.

I ‘split’ Vs the semaphore, and releases an extra read permission.

I ‘finish’ at the end of a pipelinePs the semaphore – and if now 0,
disposes semaphore and buffer together.

I The semaphore has to be hidden; it might need a CCR; it might
need the hypothetical frame rule; it’s a semaphorein the heap!...
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Soundness

We think we only need a nod.
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Thank you!

John Tang Boyland, for pointing out that1
2 + 1

2 = 1.
blank
The East London Massive for listening to countless versions, and
picking holes in them.
blank
Steve Brookes, for taking us seriously.
blank
Josh Berdine, John Reynolds and Hongseok Yang, for ruthless and
relentless criticism.
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