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Abstract. Some recent improvements in the design of Jape, a proof cal-
culator, are described. Jape’s internal data structure is a sequent tree,
but it now supports an accurate box-and-line treatment of natural de-
duction. Changes to its internal workings, to its tactic language and to
user interaction are described.

1 Background

In 1998 the proof calculator Jape[3, 8, 9, 1] was assessed by an educa-
tional researcher, as part of a project on visualisation[2]. It had been in
existence for about eight years, and under constant development. Nev-
ertheless, the effect of evaluation was salutary – as evaluations so often
are – and led to several significant changes in the external and internal
machinery of Jape.
First, it became clear that novices, unlike experts, don’t benefit from
the freedom to defer choices. The sort of ‘exploration’ offered to those
learning formal proof is quite difficult enough when restricted to choices
about which rule to apply and when. Jape’s use of unknowns to defer
the specialisation of a logical step (usually an unknown argument in a
substitution) is a piece of meta-machinery which derails a novice’s fragile
understanding. Couple this with an awkward use of text substitution as a
device to smuggle additional arguments past Jape’s point-and-click prim-
itivism, and few undergraduates could get beyond simple propositional
examples. In one heartrending videotaped session a student wailed that
she didn’t know why ‘it always does this’ when she used a ∀ elimination
rule (figure 1).1

So much meta-logical internal machinery is showing that it is no wonder
she despaired. An entire section of the manual distributed to first years
was described procedures for eliminating unknowns once they had ap-
peared, and a subsection was dedicated to strategies for avoiding them
in the first place. In this case the manual suggested that you should use
multiple text selections and unification to replace c1 by c, or text-select
c to provide it as a second argument in the rule step. In my course on
GUI design I taught students that help text is an admission of defeat.
Manuals are an even worse dereliction of duty, and I finally learnt to
take my own medicine. To solve the problem I had to implement mul-
tiple antecedent selection in the GUI module, interpret it in Jape’s tactic

1 Figures 1 and 2 have been generated from a modern version of Jape. They suggest
what was seen in 1998, but the reality was far worse.



8: ∀x.(P(x)→R(x)) ∀-I 2-7

7: P(c)→R(c) →-I 3-6

6: 

. . .

R(c)

5: P(_c1)→Q(_c1) ∀-E 1.1,4

4: 

. . .

_c1 inscope

3: P(c) assumption

2: var c assumption

1: ∀x.(P(x)→Q(x)), ∀x.(Q(x)→R(x)) premises

Fig. 1. An incomplete ∀ elimination step

language, and modify the logic so that certain steps became unnecessary
(which last I wanted to do anyway, for other reasons). The benefit was
that proof search strategies became more explicable in terms of the logic,
and explanations had less to do with the difficulties of instructing Jape
to do the right thing.

Second, those videotaped students showed that my advice to novices to
read all Jape’s error messages as “bang!!” wasn’t working. They tried
to understand what Jape said to them, and were understandably de-
moralised when they couldn’t. Some error messages are generated by
simple slops: many of us, for example, sometimes ask for an elimination
step when we wanted an introduction step; the mistake is encouraged
by the partical identification of introduction steps as ‘backward’ and
elimination steps as ‘forward’. In one session a pair of novices were con-
fronted with an error dialogue box which looked something like figure
2. The dialog box used language which they had barely encountered to
describe internal Jape objects that they couldn’t see on the screen. It
was designed to suit the needs of an expert logic encoder working in the
sequent calculus, or able to envisage the internal workings of Jape be-
hind a box-and-line proof display. To solve this problem I had to write
lots of special tactics that tease apart possible causes of error and con-
struct individual error messages appropriate to each different situation.
In particular it was necessary to reorganise the menus, so that error mes-
sages which talked about backward and forward steps related to visible
elements of the interface. And it meant more changes to the logic, par-
ticularly to the treatment of negation and contradiction, to remove some
unnecessary causes of error.

These two changes – eliminating incomplete steps, improving error re-
porting – addressed the needs of novices learning a particular logic. They
took a considerable amount of particularly focussed effort. Unfortunately,
other logic encodings couldn’t immediately benefit without similar ex-
penditure of effort (Jape’s tactic language doesn’t allows much code re-
use!).

The third significant problem affected every user, because it was about
the correct display of box-and-line proofs. Simply, Jape didn’t display



Fig. 2. An inappropriate error message

true box-and-line proofs, because you couldn’t always call on earlier in-
scope lines in later deductions. There were certain rules of thumb which
an encoding expert could use to reduce the problem, like making elimin-
ation steps before introduction steps, but they didn’t always work and in
any case imposed a significant and unnecessary planning load. My Jape
publicity claimed that you could choose what to do and where to do
it, but it didn’t say that innocent choices could have unjustifiable con-
sequences. The problem needed fixing: it was already a problem for me
as an expert user, and it would bite the novices once the other obstacles
had been cleaned away. The complexities of the fix are described below.
The final problem was gestural. Jape made no visible distinction between
‘hypothesis’ and ‘conclusion’ formula selections, although to command
Jape it’s necessary to observe and exploit the distinction. Jape now dis-
plays these diffferent selections differently, and this facilitates true for-
ward steps (see below) which allow a line of the proof to be used either
as hypothesis or as conclusion.

2 Rendering Tree Proofs in Box-and-Line Style

Jape’s basic box-and-line proof rendering mechanisms are dealt with else-
where [6, 8], and I give merely a summary. Sequent tree proofs make large
displays, partly because the same left formulae are repeated over and
over again in the tree and partly because of branching of the tree. For
example, figure 3 is a tree proof in a natural-deduction style sequent cal-
culus (introduction and elimination rules plus an identity rule Γ, A ` A,
here called hyp). The same proof can be shown far more compactly as
figure 5. Jape’s rendering algorithm converts the tree into the compact
box-and-line display in four stages.

2.1 Stage 1: Linearise

Jape renders each tree node as a sequence of boxes and lines. The linear
rendering of figure 3 is shown in figure 4. If a node has more left formulae
in its consequent than its parent has (the root and the node above it in
figure 3, for example) then it is rendered as a box starting with the extra
left formulae labelled as assumptions or premises. Otherwise it generates
a sequence of the renderings of its subtrees, followed by a line containing



P→Q, Q→R " P→R
→-I

P→Q, Q→R, P " R
→-E

P→Q, Q→R, P " Q
→-E

P→Q, Q→R, P " P
hyp

P→Q, Q→R, P " P→Q
hyp

P→Q, Q→R, P " Q→R
hyp

Fig. 3. A wide tree proof

8: P→R →-I 2-7

7: R →-E 5,6

6: Q→R hyp 1.2

5: Q →-E 3,4

4: P→Q hyp 1.1

3: P hyp 2

2: P assumption

1: P→Q, Q→R premises

Fig. 4. A linearised proof

5: P→R →-I 2-4

4: R →-E 3,1.2

3: Q →-E 2,1.1

2: P assumption

1: P→Q, Q→R premises

Fig. 5. A compact box proof

4: P→R →-I 2-3

3: 

. . .

R

2: P assumption

1: P→Q, Q→R premises

Fig. 6. First step of the proof



the consequent formula labelled with the name of the rule that generated
the node. Tips generate a single unlabelled line.
Thus the root of figure 3 generates a box starting on line 1 of figure
fig:boxproofwithhyp, followed by the rendering of its subtree (lines 2-7),
followed on line 8 by the root formula labelled with →-I. The root’s sub-
tree is also rendered as a box: line 2 followed by its left subtree (lines 3-5),
its right subtree (line 6) and line 7 labelled with →-E. Each consequent
line refers to the subtrees either as i-j, the first and last line numbers of a
subtree box, or j, the last line number of a sequence of lines. Rules which
match a left formula (in this logic the only such rule is hyp) refer to an
occurrence in the premises or assumptions. All these effects can be seen
in the example, and it’s easy to reconstruct the tree from its linearised
form.

2.2 Stage 2: Hide Identity Lines

Lines 3, 4 and 6 of figure 3 are no more than indirections. Jape nor-
mally elides these lines, replacing references to them by references to the
premise or assumption to which they refer. This converts figure 4 into
figure 5. Most identity steps are carried out behind the scenes anyway,
and they aren’t really part of the natural deduction narrative, so the
elision makes a lot of sense from the prover’s point of view. After this
stage it’s only a little more difficult to reconstruct the tree from the
linearised elided form.

2.3 Stage 3: Hide Cut Steps to Allow Forward Reasoning

Figure 6 shows how a user might make the first step in a proof. The
tree produced is just the last three lines of figure 3. If the next step is
backward, producing the lower five lines of figure 3, then the display is
as shown in figure 7. But most novices would prefer to make a forward
step, producing figure 8. The forward step is indicated by selecting a
hypothesis formula – in this case P → Q – and invoking an appropriate
rule.

5: P→R →-I 2-4

4: R →-E 3,1.2

3: 

. . .

Q

2: P assumption

1: P→Q, Q→R premises

Fig. 7. A backward step from figure 6

5: P→R →-I 2-4

4: 

. . .

R

3: Q →-E 2,1.1

2: P assumption

1: P→Q, Q→R premises

Fig. 8. A forward step from figure 6

Forward steps generate a new formula which can be called upon by de-
ductions below it – that is, a new hypothesis formula. That’s only pos-
sible if the new formula is a left formula. In a natural deduction style



logic, the only way to introduce a new left formula is to use the cut
rule (Γ ` A; Γ, A ` B) ⇒ Γ ` B. Behind the scenes, figure 8 uses the
tree of figure 9; the stage 2 rendering of that tree is shown in figure 10.
To produce figure 8, Jape conflates the first antecedent of the cut with
the assumption line, the conclusion of the second antecedent with the
conclusion of the cut, elides the box, and adjusts the labelling of lines.

P→Q, Q→R " P→R
→-I

P→Q, Q→R, P " R
cut

P→Q, Q→R, P " Q
→-E

P→Q, Q→R, P " P
hyp

P→Q, Q→R, P " P→Q
hyp

P→Q, Q→R, P, Q " R

Fig. 9. A tree with a forward step

7: P→R →-I 2-6

6: R cut 3,4-5

5: 

. . .

R

4: Q assumption

3: Q →-E 2,1.1

2: P assumption

1: P→Q, Q→R premises

Fig. 10. A linearised cut step

2.4 Stage 4: Deal with Transitive Operations

In dealing with chains of reasoning such as A = B, B = C, ... Y = Z,
it’s possible to treat reflexivity A = A and symmetry A = B ⇒ B = Al
like logical identity and treat transitivity (A = B; B = C) ⇒ A = C as
a kind of cut, generating a sequence of lines A =, = B, = C, ..., = Z.
Jape’s rendering mechanism can do this, but it isn’t directly relevant to
this discussion.

2.5 What’s Wrong with This Mechanism?

The rendering mechanism goes wrong in stage 1. In a box-and-line proof
it’s possible to use any previous line (boxes permitting) when making a



step: that is, the underlying structure is a DAG. In a tree, on the other
hand, you can’t refer to sibling subtrees. When a tree node is rendered,
therefore, although the lines representing the deductions of subtree n
come before the lines of subtree n + 1, they must all be inaccessible to
the lines of the sibling subtree below. In multiplicative (context-splitting)
logics the inaccuracy is even worse, because the left formulae – shown
as premises and assumptions – accessible from one subtree will not be
the same as those accessible from another subtree, and the box-and-line
rendering doesn’t show the difference.

The problem is illustrated, and there is a hint of its possible solution,
in the trees of figure 11 and 12. These different trees each generate the
same box-and-line display, shown in figure 13. To generate figure 11 the
first step is ∧ introduction, and then a new left formula Q is generated
in the left subtree by a forward → elimination step, closing that subtree.
If the proof is to be completed, the same forward step will have to be
duplicated in the second subtree. To generate figure 12 the first step is a
forward → elimination, which generates a left formula Q usable by the
whole of the proof. The next step is ∧ introduction; the left formula of
the cut closes the left subtree, and it’s also available to the right subtree.

P, P→Q, Q→R " Q∧R
∧-I

P, P→Q, Q→R " Q
cut

P, P→Q, Q→R " Q
→-E

P, P→Q, Q→R " P
hyp

P, P→Q, Q→R " P→Q
hyp

P, P→Q, Q→R, Q " Q
hyp

P, P→Q, Q→R " R

Fig. 11. Intro then elim

P, P→Q, Q→R " Q∧R
cut

P, P→Q, Q→R " Q
→-E

P, P→Q, Q→R " P
hyp

P, P→Q, Q→R " P→Q
hyp

P, P→Q, Q→R, Q " Q∧R
∧-I

P, P→Q, Q→R, Q " Q
hyp

P, P→Q, Q→R, Q " R

Fig. 12. Elim then intro

Figure 13 isn’t quite as ambiguous as it seems. From the earliest days of
Jape, Bernard Sufrin and I used a greying-out mechanism to show which
left formulae were visible in a box-and-line proof but not accessible. If
the tree behind figure 13 is figure 11, for example, then selecting line
3 will grey out line 2; if the tree is 12, line 2 will be undimmed. The
manual advised users to select a position in the tree by clicking on an



4: Q∧R ∧-I 2,3

3: 

. . .

R

2: Q →-E 1.1,1.2

1: P, P→Q, Q→R premises

Fig. 13. An ambiguous display

active consequent – a formula below a line of three dots – and observe
which formulae above the consequent remained visibly active and which
were greyed out. If the results broke the rules of box-and-line proofs
then novices perhaps thought it no more surprising than anything else
Jape did, experts perhaps could explain it by thinking of the underlying
working of the tree, and probably everybody was too grateful for the
display of proof context to complain about its inaccuracies. At any rate
I don’t recall much criticism of our treatment.

This was the state of Jape for three or four years: inaccurately rendered
proofs, and imperfectly executed forward steps. If the problem suited it,
and if you were prepared, as most logical novice users are, to make all
possible forward steps before any backward step,2 then the misrepres-
entation of tree proofs seemed much less of a problem.

The problem isn’t caused or made worse by the introduction of forward
steps into a backwards-reasoning sequent-tree calculator. On the con-
trary, forward steps provide a way to increase efficiency, by choosing
to do as much as possible by forward reasoning early on in the proof.
Jape’s deficiencies are perceived as inefficiency of the user’s proof strategy
caused by poor planning: that is, Jape is imposing a planning load on
its users.

3 True Forward Steps

The first step towards a solution of the problem is to deal properly with
forward steps. If a forward step always produces a tree like figure 12,
never like figure 11, whichever order the forward and backward steps are
undertaken, then at least one part of the problem is solved. In the latest
versions of Jape, forward steps can insert a cut node at the lowest point
possible in the tree. This means that, for the first time, users can make
steps which are not directed towards a conclusion-tip. For example, the
partial proof of figure 14 can evolve into figure 15, inserting a hypothesis
formula directly below the line it derives from. This is a true forward
step.

To make Jape take the step required some new internal mechanisms.
Previously, the tactic which implemented forward steps was

2 Novices believe with great fervour, no matter how they are instructed, in the unique
efficacy of forward reasoning. They resist backward reasoning with the same convic-
tion. I’ve concluded that they think backwards steps are cheating.



4: E→(F∧G) → intro 2-3

3: 

. . .

F∧G

2: E assumption

1: (E→F)∧(E→G) premise

Fig. 14. Before forward step

5: E→(F∧G) → intro 3-4

4: 

. . .

F∧G

3: E assumption

2: E→F ∧ elim 1

1: (E→F)∧(E→G) premise

Fig. 15. After forward step

TACTIC ForwardCut (n,rule)

SEQ cut

(LETGOALPATH G (WITHARGSEL rule)

(GOALPATH (SUBGOAL G n))

(WITHHYPSEL hyp)

(GOALPATH G)

NEXTGOAL)
– apply cut; record the current position (left subgoal of the cut) by
binding its tree path to G; make the user’s proof step; move to the nth
subgoal of the rule step; using the user’s hypothesis selection, close with a
selected left formula; move back to position G; look for the next unclosed
tip using right-to-left recursive traversal of the tree.
The new tactic is superficially similar:

TACTIC ForwardCut (n,rule)

CUTIN (LETGOALPATH G (WITHARGSEL Rule)

(GOALPATH (SUBGOAL G n))

(WITHHYPSEL hyp)

(GOALPATH G))

)
Like all Jape tactics, ForwardCut executes at a position in a proof tree.
To begin, the tree position is defined by the user’s formula selections: a
conclusion selection defines a tip; a hypothesis selection defines the lowest
point in the tree at which it is present as a left formula; if there’s more
than one selected position then the greying-out mechanisms guarantee
that they are all on the same path in the tree, and Jape uses the highest.
Then the CUTIN operation, which can only be used if the logic has a
suitable cut rule and has been specified in ADDITIVELEFT style, looks for
the lowest point in the tree which has exactly the same left formulae as
the selected position. It breaks the tree there, tops the break with a cut
node using the old top section as its right subtree, and augments every
left context in the old top section with the cut formula, generating new
provisos where necessary.3 Then it executes its argument tactic at the
left subtree of the new cut node, and finally it returns to the point in the
tree at which it was originally applied. The effect is to splice a forward
step into the tree.

3 In Jape’s rule notation FRESH c requires that the name c can’t appear free in left or
right formulae of the consequent of a step which uses a rule. Nodes at which FRESH

has been applied are marked, and CUTIN must add a proviso for the formula it is
inserting, each time it encounters such a node.



The complication is navigation: Jape tactics navigate by storing tree
paths (LETGOALPATH and GOALPATH, for example, in the tactics above),
which are invalidated if a new node is inserted into the tree somewhere
along the path. Rather than attempt to search for and correct all stored
paths, I implemented a path-following algorithm which ignores inserted
cut nodes unless they are explicitly mentioned in the path formula. (Easy
to say, horrible to implement.)

4 Building a DAG

Forward steps are only half of the problem. Multi-antecedent backward
steps are the other half. In Jape’s rendering mechanism, a formula on a
previous line is only accessible if it represents an immediate antecedent
or it represents a left formula (a hypothesis, in the language we use to
talk about Jape proofs). The lines and boxes describing subtree n aren’t
direct antecedents of anything in subtree n +1. There is nothing else for
it: they have to be hypotheses; that is, they have to be introduced by
cut steps. And then, by induction, it’s clear that every backward step
has to generate new hypotheses. This apparently absurd situation is the
only solution to the problem that fits the bill.
The way to generate new hypotheses, low enough down in the tree that
they can be accessed by lines which might need them, is of course to
use CUTIN. The tactic which is behind the menu entry for ∧ intro, for
example, is

TACTIC "∧ intro backward" IS SEQ "∧ intro" fstep fstep

TACTIC fstep IS

ALT (ANY (MATCH hyp))

(trueforward SKIP)

MACRO trueforward(tac) IS

LETGOAL _A (CUTIN (LETGOAL _B (UNIFY _A _B)

tac))

(ANY (MATCH hyp))

– apply the ∧ intro rule, then apply the fstep tactic to each of its
antecedents. The fstep tactic checks that the tip it is applied to can’t
be closed by an identity step (if it can, there’s no need to introduce
a new left formula) and then applies trueforward; that tactic records
the consequent of the tip it is applied to (LETGOAL); then runs CUTIN,
unifying the new cut formula with the original consequent and applying
the argument tactic (in this case simply SKIP to the left subtree of the
cut; finally, back at the original position in the tree, closes the tip with
an identity step.
The effect, since this mechanism is used for every backward step, is to
close every backward step by identity with a left formula generated lower
down in the tree. All the identity steps will be invisible in the box-and-
line display, because they are elided in stage 2 of the rendering algorithm;
the lower position will be above the positions which inserted hypotheses
visible to the backward step; stage 3 of the rendering algorithm, applied
recursively, exposes hypotheses in lowest-first order; it follows that the
lines of backward steps, if fstep is uniformly applied at every stage,



appear in the correct order. In effect, the antecedents of a backward step
are inserted below and push the lines above them upwards, rather than
growing the proof above the step itself.
The total effect, if we think of cuts as augmenting an environment and
rule steps as generating nodes, is to generate a DAG. A cut which intro-
duces a left formula A in effect produces a tree which is described by the
formula “let line = treeA in tree” where tree can refer as many times as
necessary to line. This is a description of the spanning tree of a DAG.
It seems inside out, and it is odd to use the proof tree in this way, but
it does work!

5 Pointing to Formulae

In a sequent, left formulae are separated from right formulae by the turn-
stile, so that a selection-click on a left formula is spatially and obviously
distinct from one on a right formula. Jape’s tactic language was built
from the first to allow discrimination between left (LETHYP) and right
selections (LETCONC). When Bernard Sufrin and I first implemented box-
and-line display of tree proofs, we retained the same distinction, since
left formulae were labelled premise or assumption, and right formulae of
tips were unlabelled and below a line of dots.
Before the developments described in this paper, stage 3 of the render-
ing mechanism hid two sorts of cut steps: one where the cut formula
was a hypothesis alone, with no lines above it that could use it as a
target conclusion; the other where the cut formula was a conclusion,
with no lines below it that could call upon it as hypothesis. All formu-
lae in the display, whether generated normally or by forward steps, could
then be classified as hypothesis or conclusion, and clicks on them treated
appropriately as left or right selections. This meant that the rendering
mechanism couldn’t deal with raw cut steps – ones which generated a
formula that was a possible bridge between hypotheses and conclusion,
but not yet connected to either – because it wasn’t possible to classify the
occurrence of the cut formula as purely hypothesis or purely conclusion.
Under this rendering mechanism active conclusion formulae appeared
below a line of dots, and hypotheses were those formulae above an active
conclusion which didn’t grey out when the conclusion was selected. All
very well, provided that you clicked on a conclusion before every step,
but novices didn’t do that very often (remember, they prefer to reason
forwards). Some more emphatic distinction seemed necessary, and even
before implementing forward steps I began to make hypothesis selections
– boxes open downwards – visibly distinct from conclusion selections
– boxes open upwards. Also, following Bernard Sufrin’s lead from his
implementation of the Jape GUI module for Linux, I made the selection
boxes red as shown in figure 16.
True forward steps made it essential to deal with raw cuts. In an ∧ intro
step, for example, the left-hand formula can be used as a conclusion to
be proved from the lines above it, as in figure 17, or a hypothesis to
be used in the lines below it, as in figure 18. As these examples show,
Jape’s rendering mechanism can now hide all cut steps, and interprets



5: E→(F∧G) → intro 3-4

4: 

. . .

F∧G

3: E assumption

2: E→F ∧ elim 1

1: (E→F)∧(E→G) premise

Fig. 16. Directed selection boxes

clicks on the top half of an ambiguously-usable cut formula as conclusion
selection (upward-pointing), on the bottom half as hypothesis selection
(downward-pointing). In either case the closed end of the selection is
drawn with a dashed line, intended to suggest that it’s only a temporary
assignment of rôle.

4: (E→F)∧(E→G) ∧ intro 2,3

3: 

. . .

E→G

2: 

. . .

E→F

1: E→(F∧G) premise

Fig. 17. A cut-conclusion

4: (E→F)∧(E→G) ∧ intro 2,3

3: 

. . .

E→G

2: 

. . .

E→F

1: E→(F∧G) premise

Fig. 18. A cut-hypothesis

The selection gesture now makes more demand on a prover’s motor con-
trol than before, but the main issue is that the hypothesis/conclusion
distinction sometimes has to be chosen by the prover. That means that
novices now have to understand the distinction, where previously they
might have been able to ignore it and blunder through. I think that
perhaps this is a good thing.

6 Assessment

The four mechanisms discussed above made quite a difference to the
usability of the logic encoding that I presented to my first-year under-
graduate class, but they haven’t been documented or widely publicised
nor yet independently assessed, and so it’s difficult to assess their even-
tual impact. The selection gesture improvement seems like a no-brainer,
though a scientific evaluation would be needed to be certain. The modi-
fied logic encoding, with its improved error messages, its elimination of
incomplete steps, its more rational set of logical rules and its correct
display of box-and-line proofs, seems to be a success with novices and
is unlikely to be completely misconceived, though my experience of edu-
cational evaluation warns me that there must be many points of detail
which could be improved.



What is not to be celebrated is the means of implementing all this.
Throughout the early development of Jape[4, 12, 5, 13, 7], Bernard Sufrin
and I made great play of the notion that what is on the screen is an
interpretation of what is in the machine, eliding unnecessary parts and
showing tidied up versions of others. What was in the machine was sup-
posed to be transparently an encoding of a logic; what appeared was
supposed to fit the demands of proof development and display. It was
and is the case that sequent trees are the easiest and most transpar-
ent way to represent formal logical proofs. It’s easy to understand how
to implement operations like applying a rule at a tip, or deleting the
subtree(s) above a node. It’s easy to implement a mechanism to enforce
a proviso like “c must not occur in this sequent”, and thus implement
privacy conditions (eigenvariable conditions) on quantifier rules.
We also aimed to provide a lightweight way of encoding logics in Jape’s
rule and tactic notation. The developments described here seem to have
subverted that aim: in my latest encoding of natural deduction the en-
coding of logical rules is a mere 45 lines and 1.4K characters; the tactics
and definitions which support interaction via clicks and menu commands
are 800 lines and 37K where, prior to improvement, they had been only
54 lines and 2K.
Much of the extra encoding volume is tactic programming that con-
structs error messages for particular situations. I’m confident that that
is an inevitable cost of attempting to generate messages by interpreting
user’s intentions, though no doubt it would be worth searching for more
transparent and economical representations of the search. The rest of
the increase is caused by the complexity of the representation of forward
steps, the need to use them everywhere, and the fact that they have to
be carefully crafted if they aren’t to break down with inexplicable error
messages, to generate duplicate hypothesis lines, or loop for ever. In the
particular case of natural deduction, which was the second example I
tackled, it wasn’t very difficult to get it right but then (a) I designed the
mechanisms, so I understood them, and (b) in the other example, which
was a treatment of Hoare logic and had to deal with large displays, I
never quite got it right. It’s hard to avoid the conclusion that for Jape
tactic programming, this may already be a bridge too far.
Least satisfactory of all is the use of cuts to implement a DAG. The
tree mechanism, which was until recently quite clearly behind the imple-
mentation of box-and-line proofs, is now little more than the scaffold on
which quite a different structure is built. Worst of all, DAG generation is
imperfectly implemented: in particular, the treatment of transitive reas-
oning is not integrated into it, and it does not support the next obvious
step, which is moving lines around in a box-and-line display to produce
a more pleasing arrangement.

7 Where Next?

Jape was designed as a sequent tree calculator, because Bernard Sufrin
and I understood the syntax and semantics of trees. We knew we could
get the tree part right and then work from a solid engineering basis. For a



long time this architecture was a success, and the difficulty of rendering
a tree proof in box-and-line form was comparable to the difficulty of
rendering a tree proof directly.4 Now it’s a very much more complicated
business, and the complexity extends outside the module that actually
renders the picture into the tactic interpreter (via CUTIN), the prooftree
navigator (because of the need to carefully interpret paths once a cut
step has been inserted), and worst of all the logic encoding (via fstep

and the like).
One way forward is obvious. All that the complexity is accomplishing is
the preservation of an illusion that what you see – a box-and-line proof,
i.e. a DAG – is really there. If the illusion were reality, it would surely
be much easier to implement the insertion of a line, which is all that
CUTIN does. And if the DAG were the underlying representation, new
mechanisms can be imagined which are impossibly daunting today: users
could rearrange the lines of a displayed proof, for example, and it might
be possible to satisfy undergraduate students’ desire for a mechanism
which would take in their pencil-and-paper proofs and comment on their
correctness.
The drawback of such a development would be that Jape would no longer
embrace forms of logic that don’t fit DAGs. That would be a pity, but two
lessons I have learnt from building Jape are to recognise the beauty of
natural-deduction-style logics on the one hand, and to realise the range of
logical invention and hence the difficulty of squeezing many useful logics
even into Jape’s sequent idiom. BI[11] and its cousin separation logic[10],
for example, have trees in their left contexts, which is hard to mimic in
Jape let alone implement effectively. Jape could usefully retreat from
the hubris of universal aims and be made to support natural deduction
reasoning even better than it does now.
All that is perhaps. It would be a significant effort to comprehend and
implement the semantics of box-and-line proofs so that all the mechan-
isms Jape currently supports are accurately translated, and so that there
is room for development.5 It would be a still larger effort to re-design
and re-implement all the parts of Jape that work on the tree. Maybe the
recent port to Windows[1] is my last push, and Jape’s swansong.
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