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Abstract

More than thirty years ago Rod Burstall showed how to do a proof of a neat little program, shown
in a modern notation in figure 1(a) [4]. The program, which was well understood by programmers
even before Burstall’s efforts, reverses the order of a straight-line linked list of cells in the heap using
only three variables and without moving or copying anything in the heap. An algorithm which does
copy cells in order to produce a separate reversed list, is shown in figure 1(b). A copying algorithm
which doesn’t use assignment is shown in figure 1(c).
Each of the algorithms has its advantages and disadvantages: reverse by copying means that you
don’t disturb the original list and you have a separate copy to play with, but if you don’t need the
original again it’s wasteful of time and space; copying without assignment is even more wasteful
because it needs a stack of procedure executions, unless you have a compiler clever enough to
recognise that it’s equivalent to the with-assignment version. Copying without assignment was
historically the first to have a specification and a proof, then copying with assignment and finally
in-place list reversal. The in-place reversal problem influenced early developments in separation
logic, by showing us so clearly that separation was important [3]. A proof in separation logic is
shown in figure 3, using the heap predicate listp defined in figure 2. Note that the predicate pins
down the precise location in memory of the cells of the list as well as the values of the sequence
that they represent, so that the proof can show that the reversed list uses exactly the cells of the
original list with exactly their original value content.
I concentrate on in-place reversal because it remains the most economical and the most ‘dangerous’
of the three algorithms, and because it has a useful peculiarity: it terminates even if the input list
is circular, whereas the other two terminate only on finite straight-line lists. More peculiarly still,
it terminates even if the input list has a handle and then a circle, a ‘frying pan’ list as in figure
4, which reads 1, 2, 3, 4, 5, 6, 7, 8, 4, 5, 6, ... It reverses the handle, then goes round the pan
reversing it, then back up the handle de-reversing it, finishing up just where it started, so figure 4
‘reversed’ reads 1, 2, 3, 8, 7, 6, 5, 4, 8, 7, 6, ... It works because the nil which it puts in y is inserted
into the heap by [z + 1] := y, and so acts a termination marker when it’s seen again. The copying
algorithms don’t change the original list, so they go round and round the pan for ever looking for
a nil that isn’t there.

1 Proof of frying-pan ‘reversal’

The copying algorithms don’t work on the structure in figure 4 because it isn’t a list. Lists represent
sequences, and sequences don’t have loops. To specify what the in-place list reversal algorithm does

1



y := nil;
while x 6= nil do

z := x; x := [x + 1]; [z + 1] := y; y := z
od

(a) ‘in-place’

y := nil;
while x 6= nil do

z := [x]; x := [x + 1]; y := cons(w, y)
od

(b) copying

let f z =
if z = nil then nil else cons([z], f [z + 1]) fi

in f z ni

(c) copying without assignment

Figure 1: reversing a list

listpx 〈 〉 =̂ x = nil ∧ emp
listpx (〈(n, c)〉 ++ xs) =̂ x = c ∧ ∃x′ · (x 7→ n, x′ ? listpx′ xs)

Figure 2: a heap predicate for straight-line lists

1. {listpx L}
2. y := nil;
3. {listpx L ∧ y = nil} ∴
4. {listpx L ? listp y 〈 〉} ∴
5. {∃xs, ys ·

(
(listpx xs ? listp y ys) ∧ rev xs ++ ys = rev L

)
}

6. while x 6= nil do
7. {∃xs, ys ·

(
(listpx xs ? listp y ys) ∧ rev xs ++ ys = rev L

)
∧ x 6= nil} ∴

8. {∃n, xs ′, ys ·
(

(listpx (〈(n, x)〉 ++ xs ′) ? listp y ys) ∧ rev(〈n〉 ++ xs ′) ++ ys = rev L
)
} ∴

9. {∃n, x′, xs ′, ys ·
(

(x 7→ n, x′ ? listpx′ xs ′ ? listp y ys) ∧ rev xs ′ ++ 〈(n, x)〉 ++ ys = rev L
)
}

10. z := x
11. {∃x′, xs ′, ys ·

(
(x 7→ n, x′ ? listpx′ xs ′ ? listp y ys) ∧ rev xs ′ ++ 〈(n, x)〉 ++ ys = rev L

)
∧ z = x}

12. {∃x′, xs ′, ys ·
(

(z 7→ n, x′ ? listpx′ xs ′ ? listp y ys) ∧ rev xs ′ ++ 〈(n, z)〉 ++ ys = rev L
)
∧ x = z}

13. x := [x + 1]
14. {∃n, xs ′, ys ·

(
(z 7→ n, x ? listpx xs ′ ? listp y ys) ∧ rev xs ′ ++ 〈(n, z)〉 ++ ys = rev L

)
}

15. [z + 1] := y
16. {∃n, xs ′, ys ·

(
(z 7→ n, y ? listpx xs ′ ? listp y ys) ∧ rev xs ′ ++ 〈(n, z)〉 ++ ys = rev L

)
} ∴

17. {∃n, xs ′, ys ·
(

(listpx xs ′ ? listp z (〈(n, z)〉 + ys)) ∧ rev xs ′ ++ 〈(n, z)〉 ++ ys = rev L
)
} ∴

18. {∃xs ′, ys ′ ·
(

(listpx xs ′ ? listp z ys ′) ∧ rev xs ′ ++ ys ′ = rev L
)
}

19. y := z
20. {∃xs ′, ys ′ ·

(
(listpx xs ′ ? listp y ys ′) ∧ rev xs ′ ++ ys ′ = rev L

)
}

21. od
22. {∃xs, ys ·

(
(listpx xs ? listp y ys) ∧ rev xs ++ ys = rev L

)
∧ xs = nil} ∴

23. {listp y (rev L)}

Figure 3: a separation-logic proof of in-place list reversal
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x:

1 2 3 6

4 5

78

Figure 4: a frying-pan list

lspx x′ 〈 〉 =̂ x = x′ ∧ emp
lspx x′ (〈(n, c)〉 ++ xs) =̂ x 6= x′ ∧ x = c ∧ ∃x′′ · (x 7→ n, x′′ ? lspx′′ xs)

Figure 5: a heap predicate for straight-line list segments

with the frying pan, we need another heap predicate which describes a ‘list segment’, a straight-
line list of cells which doesn’t necessarily end with nil. The heap predicate is defined in figure 5:
listpx L is equivalent to lspx nil L. It’s clear that a frying-pan list is made up of list segments.
If the point where the handle joins the circle (the cell containing 3 in figure 4) is X then there’s
a segment which is the handle – lspx X H, the cells containing 1 and 2 in figure 4. Then you
might suppose that the pan is defined by lspX X P , but the definition of lsp makes that the empty
segment.1 The pan always contains at least the cell pointed to by X, so there are two possibilities:
that cell points to itself (X 7→ n, X ∧ P = 〈(n, X)〉) or it points to another cell which is the start
of a list segment ending in X (∃j · ((X 7→ n, j ? lsp j X P ′)∧P = 〈(n, j)〉++P ′)). And then we can
see that the singleton case is subsumed in the general case (X = j ∧ P = 〈 〉), and I can write a
specification in terms of H, the handle, X, the join point, and P ′, the rest of the pan (which, from
now on, I’m going to call P rather than P ′.)
The hard bit in almost every program verification is guessing the invariant. There are three distinct
stages in the algorithm, shown in figure 6: it seems inevitable that the invariant will be a three-way
disjunction. In figures 7 and 8 H, P , X and n are universally quantified. The invariant (line 6 in
each figure) is easily transformed, by three uses of the lsp definition, into

∃j ·



∃x′, n′,H0 ,H1 ′ ·
(

(x 7→ n′, x′ ? lspx′ X H1 ′ ? lsp y nil H0 ? X 7→ n, j ? lsp j X P ) ∧
rev(〈(n′, x)〉 ++ H1 ′) ++ H0 = rev H ∧ x 6= X

)
∨

∃H0 · ((lsp y nil H0 ? X 7→ n, j ? lsp j X P ) ∧ rev(〈 〉) ++ H0 = rev H ∧ x = X) ∨

∃x′, n′,P0 ,P1 ′ ·
(

(lsp j nil (rev H) ? x 7→ n′, x′ ? lsp x′ X P1 ′ ? X 7→ n, j ? lsp y X P0 ) ∧
rev(〈(n′, x)〉 ++ P1 ′) ++ P0 = rev P ∧ x 6= X

)
∨

∃P0 · ((lsp j nil (rev H) ? X 7→ n, j ? lsp y X P0 ) ∧ rev(〈 〉) ++ P0 = rev P ∧ x = X) ∨

∃x′, n′,H0 ′,H1 ·
(

(x 7→ n′, x′ ? lspx′ nil H0 ′ ? lsp y X H1 ? X 7→ n, j ? lsp j X (rev P )) ∧
rev(〈(n′, x)〉 ++ H0 ′) ++ H1 = H ∧ x 6= nil

)
∨

∃H1 · ((lsp y X H1 ? X 7→ n, j ? lsp j X (rev P )) ∧ rev(〈 〉) ++ H1 = H ∧ x = nil)


(1)

1 In [3] I allowed list segments to be frying pans, and the third argument of the predicate dealt with ambiguities at
the join point. I have learnt something since then: straight-line segments make a longer specification, but they
also make a proof possible.
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y x

X P

H0 H1

(a) going down the handle

y
x

X P0

rev H

P1

(b) going round the pan

yx

X rev P

H0 H1

(c) coming back up the handle

Figure 6: stages of frying-pan ‘reversal’

1. {∃j ·
(

lspx X H ? X 7→ n, j ? lsp j X P
)
}

2. y := nil;
3. {∃j ·

(
lspx X H ? X 7→ n, j ? lsp j X P

)
∧ y = nil} ∴

4. {∃j ·
(

lspx X H ? X 7→ n, j ? lsp j X P ? lsp y nil 〈 〉
)
} ∴

5. {∃j,H0 ,H1 ·
(

(lspx X H1 ? lsp y nil H0 ? X 7→ n, j ? lsp j X P ) ∧ rev H1 ++ H0 = rev H
)
} ∴

6.

 ∃j ·

 ∃H0 ,H1 · ((lspx X H1 ? lsp y nil H0 ? X 7→ n, j ? lsp j X P ) ∧ rev H1 ++ H0 = rev H) ∨
∃P0 ,P1 · ((lsp j nil (rev H) ? lspx X P1 ? X 7→ n, j ? lsp y X P0 ) ∧ rev P1 ++ P0 = rev P ) ∨
∃H0 ,H1 · ((lspx nil H0 ? lsp y X H1 ? X 7→ n, j ? lsp j X (rev P )) ∧ rev H0 ++ H1 = H)

 
Figure 7: a separation-logic proof of frying-pan ‘reversal’ (initialisation establishes invariant)
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6.

 ∃j ·

 ∃H0 ,H1 · ((lspx X H1 ? lsp y nil H0 ? X 7→ n, j ? lsp j X P ) ∧ rev H1 ++ H0 = rev H) ∨
∃P0 ,P1 · ((lsp j nil (rev H) ? lspx X P1 ? X 7→ n, j ? lsp y X P0 ) ∧ rev P1 ++ P0 = rev P ) ∨
∃H0 ,H1 · ((lspx nil H0 ? lsp y X H1 ? X 7→ n, j ? lsp j X (rev P )) ∧ rev H0 ++ H1 = H)

 
7. while x 6= nil do

8.


∃j ·



∃x′, n′,H0 ,H1 ′ ·
(

(x 7→ n′, x′ ? lspx′ X H1 ′ ? lsp y nil H0 ? X 7→ n, j ? lsp j X P ) ∧
rev H1 ′ ++ 〈(n′, x)〉 ++ H0 = rev H ∧ x 6= X

)
∨

((lsp y nil (rev H) ? X 7→ n, j ? lsp j X P ) ∧ x = X) ∨

∃x′, n′,P0 ,P1 ′ ·
(

(lsp j nil (rev H) ? X 7→ n, j ? x 7→ n′, x′ ? lspx′ X P1 ′ ? lsp y X P0 ) ∧
rev P1 ′ ++ 〈(n′, x)〉 ++ P0 = rev P ∧ x 6= X

)
∨

((lsp j nil (rev H) ? X 7→ n, j ? lsp y X (rev P )) ∧ x = X) ∨

∃x′, n′,H0 ′,H1 ·
(

(x 7→ n′, x′ ? lspx′ nil H0 ′ ? lsp y X H1 ? X 7→ n, j ? lsp j X (rev P )) ∧
rev H0 ′ ++ 〈(n′, x)〉 ++ H1 = H ∧ x 6= nil

)




9. z := x

10.


x = z ∧ ∃j ·



∃x′, n′,H0 ,H1 ′ ·
(

(z 7→ n′, x′ ? lspx′ X H1 ′ ? lsp y nil H0 ? X 7→ n, j ? lsp j X P ) ∧
rev H1 ′ ++ 〈(n′, z)〉 ++ H0 = rev H ∧ z 6= X

)
∨

((lsp y nil (rev H) ? X 7→ n, j ? lsp j X P ) ∧ z = X) ∨

∃x′, n′,P0 ,P1 ′ ·
(

(lsp j nil (rev H) ? X 7→ n, j ? z 7→ n′, x′ ? lspx′ X P1 ′ ? lsp y X P0 ) ∧
rev P1 ′ ++ 〈(n′, z)〉 ++ P0 = rev P ∧ z 6= X

)
∨

((lsp j nil (rev H) ? X 7→ n, j ? lsp y X (rev P )) ∧ z = X) ∨

∃x′, n′,H0 ′,H1 ·
(

(z 7→ n′, x′ ? lspx′ nil H0 ′ ? lsp y X H1 ? X 7→ n, j ? lsp j X (rev P )) ∧
rev H0 ′ ++ 〈(n′, z)〉 ++ H1 = H ∧ z 6= nil

)




11. x := [x + 1]

12.


∃j ·



∃n′,H0 ,H1 ′ ·
(

(z 7→ n′, x ? lspx X H1 ′ ? lsp y nil H0 ? X 7→ n, j ? lsp j X P ) ∧
rev H1 ′ ++ 〈(n′, z)〉 ++ H0 = rev H ∧ z 6= X

)
∨

((lsp y nil (rev H) ? X 7→ n, j ? lsp j X P ) ∧ z = X ∧ x = j) ∨

∃n′,P0 ,P1 ′ ·
(

(lsp j nil (rev H) ? X 7→ n, j ? z 7→ n′, x ? lspx X P1 ′ ? lsp y X P0 ) ∧
rev P1 ′ ++ 〈(n′, z)〉 ++ P0 = rev P ∧ z 6= X

)
∨

((lsp j nil (rev H) ? X 7→ n, j ? lsp y X (rev P )) ∧ z = X ∧ x = j) ∨

∃n′,H0 ′,H1 ·
(

(z 7→ n′, x ? lspx nil H0 ′ ? lsp y X H1 ? X 7→ n, j ? lsp j X (rev P )) ∧
rev H0 ′ ++ 〈(n′, z)〉 ++ H1 = H ∧ z 6= nil

)




13. [z + 1] := y

14.


∃j ·



∃n′,H0 ,H1 ′ ·
(

(z 7→ n′, y ? lspx X H1 ′ ? lsp y nil H0 ? X 7→ n, j ? lsp j X P ) ∧
rev H1 ′ ++ 〈(n′, z)〉 ++ H0 = rev H ∧ z 6= X

)
∨

((lsp y nil (rev H) ? X 7→ n, y ? lsp j X P ) ∧ z = X ∧ x = j) ∨

∃n′,P0 ,P1 ′ ·
(

(lsp j nil (rev H) ? X 7→ n, j ? z 7→ n′, y ? lspx X P1 ′ ? lsp y X P0 ) ∧
rev P1 ′ ++ 〈(n′, z)〉 ++ P0 = rev P ∧ z 6= X

)
∨

((lsp j nil (rev H) ? X 7→ n, y ? lsp y X (rev P )) ∧ z = X ∧ x = j) ∨

∃n′,H0 ′,H1 ·
(

(z 7→ n′, y ? lspx nil H0 ′ ? lsp y X H1 ? X 7→ n, j ? lsp j X (rev P )) ∧
rev H0 ′ ++ 〈(n′, z)〉 ++ H1 = H ∧ z 6= nil

)




∴

15.


∃j ·



∃H0 ′,H1 ′ ·
(

(lspx X H1 ′ ? lsp z nil H0 ′ ? X 7→ n, j ? lsp j X P ) ∧
rev H1 ′ ++ H0 ′ = rev H

)
∨

((lsp j nil (rev H) ? X 7→ n, j ? lspx X P ) ∧ z = X) ∨

∃P0 ′,P1 ′ ·
(

(lsp j nil (rev H) ? X 7→ n, j ? lspx X P1 ′ ? lsp z X P0 ′) ∧
rev P1 ′ ++ P0 ′ = rev P ∧ z 6= X

)
∨

((lspx nil (rev H) ? X 7→ n, y ? lsp y X (rev P )) ∧ z = X) ∨

∃H0 ′,H1 ′ ·
(

(lspx nil H0 ′ ? lsp z X H1 ′ ? X 7→ n, j ? lsp j X (rev P )) ∧
rev H0 ′ ++ H1 ′ = H ∧ z 6= nil

)




16. y := z

17.


∃j ·



∃H0 ′,H1 ′ ·
(

(lspx X H1 ′ ? lsp y nil H0 ′ ? X 7→ n, j ? lsp j X P ) ∧
rev H1 ′ ++ H0 ′ = rev H

)
∨

((lsp j nil (rev H) ? X 7→ n, j ? lspx X P ) ∧ y = X) ∨

∃P0 ′,P1 ′ ·
(

(lsp j nil (rev H) ? X 7→ n, j ? lspx X P1 ′ ? lsp y X P0 ′) ∧
rev P1 ′ ++ P0 ′ = rev P ∧ y 6= X

)
∨

((lspx nil (rev H) ? X 7→ n, y ? lsp y X (rev P )) ∧ y = X) ∨

∃H0 ′,H1 ′ ·
(

(lspx nil H0 ′ ? lsp y X H1 ′ ? X 7→ n, j ? lsp j X (rev P )) ∧
rev H0 ′ ++ H1 ′ = H ∧ y 6= nil

)




∴

18.


∃j ·


∃H0 ′,H1 ′ ·

(
(lspx X H1 ′ ? lsp y nil H0 ′ ? X 7→ n, j ? lsp j X P ) ∧

rev H1 ′ ++ H0 ′ = rev H

)
∨

∃P0 ′,P1 ′ ·
(

(lsp j nil (rev H) ? X 7→ n, j ? lspx X P1 ′ ? lsp y X P0 ′) ∧
rev P1 ′ ++ P0 ′ = rev P ∧ y 6= X

)
∨

∃H0 ′,H1 ′ ·
(

(lspx nil H0 ′ ? lsp y X H1 ′ ? X 7→ n, j ? lsp j X (rev P )) ∧
rev H0 ′ ++ H1 ′ = H ∧ y 6= nil

)




18. od
19. {(lsp y X H ? X 7→ n, j ? lsp j X (rev P )) ∧ x = nil}

Figure 8: a separation-logic proof of frying-pan ‘reversal’ (loop preserves invariant)
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y := nil; p := 0;
while x 6= nil do

z := x; x := [x + 1]; [z + 1] := y; y := z;
if y = X then p := p + 1 else skip fi

od

Figure 9: in-place list reversal with auxiliary phase variable p

which simplifies, using properties of rev, to

∃j ·



∃x′, n′,H0 ,H1 ′ ·
(

(x 7→ n′, x′ ? lspx′ X H1 ′ ? lsp y nil H0 ? X 7→ n, j ? lsp j X P ) ∧
rev H1 ′ ++ 〈(n′, x)〉 ++ H0 = rev H ∧ x 6= X

)
∨

((lsp y nil (rev H) ? X 7→ n, j ? lsp j X P ) ∧ x = X) ∨

∃x′, n′,P0 ,P1 ′ ·
(

(lsp j nil (rev H) ? X 7→ n, j ? x 7→ n′, x′ ? lspx′ X P1 ′ ? lsp y X P0 ) ∧
rev P1 ′ ++ 〈(n′, x)〉 ++ P0 = rev P ∧ x 6= X

)
∨

((lsp j nil (rev H) ? X 7→ n, j ? lsp y X (rev P )) ∧ x = X) ∨

∃x′, n′,H0 ′,H1 ·
(

(x 7→ n′, x′ ? lspx′ nil H0 ′ ? lsp y X H1 ? X 7→ n, j ? lsp j X (rev P )) ∧
rev H0 ′ ++ 〈(n′, x)〉 ++ H1 = H ∧ x 6= nil

)
∨

((lsp y X H ? X 7→ n, j ? lsp j X (rev P )) ∧ x = nil)


(2)

This equivalence is used to generate lines 8 and 20 of figure 8, and the proof is then simply
mechanical.

2 Is that it?

Well no, it isn’t quite. To show that the algorithm terminates I need a measure, and the measure
can’t be a disjunction, but it still has to take account of the stages shown in figure 6. The switch
between stages happens when y = X, and if I add an auxiliary variable p and manipulate it as in
figure 9, the measure is

if p = 0 then 2 + lengthH1 + lengthP elsf p = 1 then 1 + lengthP1 else lengthH0 fi (3)

– if you see what I mean, of course, because H1 and P1 are existentially quantified in the invariant.
So I’m not going to go through the tedious business of showing that this invariant reduces just yet.

3 A mechanical safety proof

I used Smallfoot [1] to check that my proof wasn’t entirely mistaken. In trying to do so I found out
how the phase variable works. The Smallfoot control file is shown in figure 10. Note that I had to
use case analysis to modify p because Smallfoot (quite reasonably) can’t deal with any arithmetic,
I had to assign to j because Smallfoot can’t yet deal with ∃ quantification, and worst of all I had
to use the abominable C syntax for assignment and equality and I had to put semicolons in the
strange places that C demands them.

Acknowledgements

I didn’t get to this point unaided. I knew almost immediately after doing a Hoare-logic proof of
in-place reversal for [3] that the algorithm terminated on frying-pan lists, but I had no notion of
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hd ,tl;

fryingpanrev(x) [lseg(x,X) * X|->tl:j * lseg(j,X)] {
local z;
p = 0;
y = NULL;
while (x!=NULL)
[if p==0 then (lseg(y,NULL)*lseg(x,X)*X|->tl:j*lseg(j,X))
else
if p==1 then (lseg(j,NULL)*X|->tl:j*lseg(y,X)*lseg(x,X))
else
(lseg(x,NULL)*lseg(y,X)*X|->tl:j*lseg(j,X))] {
z = x; x = x->tl; z->tl = y; y = z;
if (y==X) {

if (p==0) p = 1; else p = 2;
j = X->tl;

}
}

} [lseg(y,X) * X|->tl:j * lseg(j,X)]

Figure 10: a Smallfoot control file for in-place list reversal

how to specify or prove it. A year or so later, Cristiano Calcagno and Josh Berdine were working
on SAW, a precursor of Smallfoot [1, 2], struggling to understand what was right and what was
wrong with my definition of list segment, and the frying pan came up often in our conversations.
They eventually settled on straight-line segments like those in figure 5, but by then I think we’d
given up on the frying pan problem. Then, in March 2006, Dino Distefano showed a demo of the
separation-logic shape analysis tool SpaceInvader that he and Peter O’Hearn had been developing
[5]. It took a description of a frying-pan list and spat out lots of text amongst which was the
remark “ok” and an eleven-way disjunction labelled “invariant”. I was startled, and asked Dino if
he had analysed the invariant. He hadn’t, and neither so far have I, but it was those eleven lines
that inspired me to try again to make a manual proof, and it was Cris and Josh’s straight-line list
segments that made it work.
Peter O’Hearn’s name ‘panhandle list’ needed correcting, and I have done so. At the time of
writing, Matthew Parkinson has not yet interfered with the ideas in this note, and neither has
Hongseok Yang.
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