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Abstract

Boyland [2] has shown the utility of fractional permissions in reas-
oning about programs. They permit concurrent threads simultan-
eous read access to shared locations, and at the same time prevent
disposal or any write access. Fractional permissions fit very well
into separation logic. We can go further, and allow infinitesimal
permissions to attest to the existence of a heap cell but not give ac-
cess to its contents. Block permissions allow us to reason about a
system which allocates and disposes entire buffers rather than single
cells. By adopting an alternative model, we are able to deal with a
well-known concurrent programming technique called permission
counting.

1 Background

1.1 Basics

Separation logic is one particular model of BI. In the model a heap
is a partial map from addresses to values. The simplest heaps are
the empty heapemp and the singletonx 7→ E; we writex 7→ as a
shorthand for∃v ·x 7→ v. Two heaps can be combined, using multi-
plicative conjunction(?) iff their domains are disjoint. Separation
is policed and exploited by the frame rule

{Q}C{R}
{P?Q}C{P?R}

(modifies C∩vars P= /0)
(1)

– if C can’t modify the variables ofP, and if the heap it manipu-
lates is disjoint fromP, then we can reason aboutC and its effects
separately fromP.

The language that separation logic treats includes new and dispose,
abstractions of similar Pascal or C library primitives. In descrip-
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tions of separation logic so far new has been seen as a heap creator
– it makes a singleton heap – and dispose a corresponding heap des-
troyer. In the simplest version of the language we don’t care what
value is in the heap that new creates:

{emp} x := new() {x 7→ }
{E 7→ } disposeE {emp} (2)

There is absolutely no way to make a heap other than with new. To
make the frame rule work, we know that new has to be magic, in
the sense of program refinement: it must always return an address
which is disjoint from the domain of any heap in the program at the
time. (Of course new is easy to implement, so it’s really only stage
magic.)

Addresses received from new are just integers, and can be manip-
ulated as such, but all a program can do with with the heap via an
address is access or modify the addressed value. WritingE for a
‘pure’ expression – one which doesn’t involve heap access – and[ ]
for heap access, we recognise three forms of assignment:

{Rx
E} x:=E {R}

{E′ 7→ } [E′]:=E {E′ 7→ E}
{E′ 7→ E} x:=[E′] {E′ 7→ E∧x = E′} (x not free inE, E′)

(3)

The use of conventional Hoare logic in the first assignment axiom
gives rise to the proviso in the frame rule. We’d love to get rid of
that condition, but as we shall see that isn’t so easy.

1.2 Ownership

O’Hearn, in [5, 6], gave an alternative reading of separation lo-
gic. In a multi-threaded program,x 7→ E expressesownershipof a
heap location. He used conditional critical regions with invariants
to transfer ownership between threads. This held out the prom-
ise that separation logic could build zero-execution-cost barriers
between threads. Brookes, in [3], showed that the idea was sound.
But Brookes’s semantics went further: it required in a separation
between writeable stack variables and heap locations of concurrent
threads, but permitted threads to share read-only variablesand loc-
ations. We already didn’t know how to do that in separation logic.
We called it the ‘passivity problem’, and it was a long-standing
worry.

For separation logic users, O’Hearn’s alternative reading of the



7→ relation was nevertheless a breakthrough, a liberation. But we
needed help to take the next step.

1.3 Fractional permissions

In order to reason about non-interference of concurrent threads,
Boyland [2] associates a numberzwith each stack variable and heap
location. Like Brookes, he distinguishes total control (dispose, read
and write permission) from shared access (read only: no thread can
write or dispose).z = 1 is total control; 0< z < 1 is shared ac-
cess. This enables him to describe the allocation of memory access
rights to threads and he points out, correctly, that separation logic
can’t match this. He suggests, however, that separation logic might
be modified to include the equivalent ofP � εP? (1− ε)P and thus
be able to deal with shared heaps.

Boyland’s suggestion turns out to be the solution to our passivity
problem and very much else beside.

2 Fractional permissions in separation logic

Inspired by Boyland [2], we modify the model of separation logic.
A heap is now a partial map from addresses to values with per-
missions. Our first treatment uses Boyland’s numerical scheme: a
permission isz, where 0< z≤ 1; z= 1 allows dispose, write and
read; any other value is read access only.

x 7−→z E =⇒ 0 < z≤ 1 (4)

Heaps can be combined iff they agree on values and their permis-
sions combine arithmetically. Reading in the other direction, an ex-
isting permission can always be split in two.1 (We require positive
z andz′ to avoid silly games like 1⇐⇒ 2?−1.)

x 7−→z E ?x 7−−→z′ E′ ⇐⇒ E = E′∧x 7−−−−→z+z′ E∧z> 0∧z′ > 0 (5)

new and dispose deal only in full permissions:

{emp} x := new() {x 7−−→1 }
{E 7−−→1 } disposeE {emp} (6)

Assignment needs full access for writing, any access at all for read-
ing:

{Rx
E} x:=E {R}

{x 7−−→1 } [x]:=E {x 7−−→1 E}
{E′ 7−→z E} x:=[E′] {E′ 7−→z E∧x = E′} (x not free inE, E′)

(7)

It’s then completely straightforward to check the correctness of the
following program, in which parallel threads require simultaneous

1The numbersz and z′ that we choose for a split are entirely
arbitrary; only their sum matters as anaide-memoirefor recom-
bination. Reasoning about their magnitudes would seem to be like
reasoning about the particular names we use for the parameters of
a theorem. They should be treated as names.

read access to location[x]:

{emp}
x := new();
{x 7−−→1 }
[x] := 7;
{x 7−−→1 7} ∴ {x 7−−−→0.5 7?x 7−−−→0.5 7}{x 7−−−→0.5 7}

y := [x]−1
{x 7−−−→0.5 7∧y = 6}

{x 7−−−→0.5 7}
z := [x]+1
{x 7−−−→0.5 7∧z= 8}

 ;

{x 7−−−→0.5 7?x 7−−−→0.5 7∧y = 6∧z= 8} ∴ {x 7−−→1 7∧y = 6∧z= 8}
disposex;
{emp∧y = 6∧z= 8}

(8)

2.1 The model of fractional permissions

Seems to be very easy. Seems to be easy to prove the frame prop-
erty. Watch this space.

3 Fractional permissions for variables

The frame rule (1) takes a subset of the permissions provided to
the whole program and supplies them to commandC. It is clear
that we might give permissions to variables – perhaps treating(=)
like (7→) – but it isn’t clear how to make the Hoare assignment rule
for variables work in that context. The problem is that assertions
P, Q andR are read as algebraic formulae: names likex stand for
values and can be replaced by formulae describing the same value.
If we were to have a permissionx =

z
E in an assertion, intending to

describe a permission to access variablex, it’s clear that we can’t
substitute something else forx – it’s being used as anamenot a
description of a value.

At present this is a showstopper for us. If we knew how to do it, we
could remove the side-condition from the frame rule, and from its
descendants, to great benefit (aliasing conquered, in effect!).

4 Existence permissions

Like Brookes, Boyland equates dispose and write permission: you
can dispose of a cell iff you can write it. But there are circumstances
where you might be able to write a cell though you can’t dispose it,
and it is useful sometimes to be sure that a cell can’t be disposed
even though you or others are able to write it.

There is no need to stick to single-number permissions. We could
have two sub-permissions: a dispose and a read/write permission.
Either could be subdivided, and only(0,0) would be meaningless.
Then to dispose you would need(1,1); to write you would need
( ,1) and to read( , ). Combining permissions would be piecewise
addition.

What could you do with a permission of(1,0)? Nothing at all, not
even read its content; you must wait to combine it with the missing
(0,1) fraction again if possible. But there is somethinglogical you
can do in a proof: ifx 7−−−→

,0 then aftery := new() you know, because

of the frame rule, thatx 6= y. Even though you can never access[x],
your fraction of the permission constrains new not to overlap that
cell.

We can actually do a neater trick which preserves single-number



pdag nilEmpty U U =̂ emp
pdagd (Ptr x) U U =̂ U x = d∧emp

pdagd (x : Tip α) U V =̂ x /∈ domU ∧d,d+1 /∈ ranU ∧V = U⊕ (x : d)∧d 7−→ 0,α

pdagd (x : Node λ ρ) U V =̂ ∃l , r,U ′,V ′ ·
(

x /∈ domU ∧x /∈ domV ′∧d,d+1,d+2 /∈ ranU ∧V = V ′⊕ (x : d) ∧
d 7−→ 1, l , r ?pdagl λ U U ′ ?pdagr ρ U ′ V ′

)
Figure 1. Heap predicate for non-cyclic partial DAGs

permissions, and it is amusing to do so. Supposeι is an infinites-
imal: a number greater than zero but smaller than any fraction; then
1− ι is less than 1 but larger than any fraction. Multipleιs never
amount to as much as a fraction.ι-permissions give no access but
prevent disposal of the 1− ι fragment alone, using the dispose ax-
iom of (6).2

We do need to be careful withι-permissions in the logic. You can’t
write x 7−→ι E, because that conflicts with the frame rule (you could
then prove{x 7−−−→1−ι E ? x 7−→ι E}[x] := E′{x 7−−−→1−ι E′ ? x 7−→ι E}). In-
stead we writex 7−→ι , without even a blank, to emphasise that it
isn’t shorthand for an existence formula; instead, it’s witness for
the existence of a permission. We must add axioms for combining
ι-permissions (we can have multiple and partιs – why not?) and
for combining them with fractional permissions

x 7−→ι ?x 7−−→ι′ ⇐⇒ x 7−−−−→ι+ι′
x 7−→ι ?x 7−→z E ⇐⇒ x 7−−−→z+ι E

(9)

With ι-permissions we can usefully express the fact that dangling
pointers point somewhere, and this seems to have something to say
about thecopydagspecification problems discussed in [1].

4.1 The model of existence permissions

We haven’t agreed one yet. If we can’t, we will be content to forget
existence permissions for the time being.

5 Block permissions

The single-cell new and dispose of (6) are usable, but they don’t
match the Pascal or C originals. It’s necessary to be able to alloc-
ate records (buffers) of contiguous cells and to make sure that we
dispose of them all in one piece. We also have to deal with the
fact that pointers into the middle of allocated blocks don’t have the
same status as pointers to the beginning (the problem of ‘skewed
sharing’). All these problems can be solved, now we have permis-
sion technology!

One way might be to useι-permissions when a block is split into
segments. A neater way, we believe, is to annotate cells with a
permission that describes the size and position of the block they
came from (a ‘ghostly outline’) as well as access rights.

x i,n7−−→z E→ 0 < z≤ 1∧0≤ i < n (10)

In previous versions of the logic, with single-cell new and dispose,
x 7→ E1, ...,En was simply a shorthand for an iterated conjunction

2It would be a mistake to regard anι-permission as a dispose
permission or even a fraction of a dispose permission. Disposal
seems necessarily to require anentirepermission, andι is just large
enough to deny that if necessary. In fact you can always subtract
anι from any permission, even from a fractional permission which
already doesn’t allow disposal, or you can halve an infinitesimal
permission to make two infinitesimals.

x 7→ E1? x+ 1 7→ E2? ... ? x+ n−1 7→ En. Now x i,n7−−→z E1, ...,Ek
describes ak-element segment set inside a block whose outline is
x− i...x− i +n−1.

For ease of description we describe how to split a segment into
single cells (note that the access rightz is transmitted to the cells
unchanged, because dispose permission is dealt with in (12) by re-
quiring us to dispose an entire block):

x i,n7−−→z E1, ...,Ej ⇐⇒
x i,n7−−→z E1? (x+1) i+1,n7−−−−−→z E2? ... ? (x+ j−1) i+ j−1,n7−−−−−−−→z Ej

(11)

Like malloc and free, new and dispose deal with entire fully-
populated blocks in a single action:

{emp} x := new(E1, ...,En) {x 0,n7−−−→1 E1, ...,En}
{E 0,n7−−−→1 E1, ...,En} disposeE {emp}

(12)

Two heaps can be combined iff they agree on values and permis-
sions. Using block permissions, that means agreeing on outlines,
which must overlap exactly or not at all.

x i,n7−−→z E ?x′ i′,n′7−−−→z′ E′→
(x = x′→ E = E′∧0 < z+z′ ≤ 1) ∧(

(x− i = x′− i′∧n = n′) ∨
x− i +n≤ x′− i′∨x′− i′+n′ ≤ x− i

) (13)

5.1 The model of block permissions

We’re still disputing this one. The models we’ve tried so far all
permit situations that the logic can’t deal with. We’d be reluctant
to give up the idea of block permissions, but the present logical
proposal may not survive.

6 Counting permissions and permission
counting

The fractional idea suits certain programs and not others. It fits
problems where the splitting is symmetrical – each split permission
is like every other – and where the splitting is built into the struc-
ture of the program, as for example in parallel quicksort. That is,
essentially, fork-join programs.

There are other problems which don’t fit this paradigm. One is
the readers-and-writers program; another is the problem of pipeline
processing where a permission to access a buffer is passed from
an originator thread to a number of assistants, all of which may
pass it on further, and eventually dispose it without the originator’s
involvement.

The simplest example is the elegant readers and writers program of
Courtois et al. [4], shown in figure 2. Two mutex semaphoresread
and write protect access; readers must pass through a read-entry



P(read);
count+ := 1;
if count= 1 then P(write);

V(read);

... reading happens here ...;

P(read);
count− := 1;
if count= 0 then V(write);

V(read)

P(write);

... writing happens here ...

V(write)

Figure 2. Readers and writers

prologue to gain access and through an epilogue to relinquish it. As
initially presented, the program has several critical sections. Using
O’Hearn’s resource reading of semaphores (cite ??), we understand
it using permissions and the atomic semaphore actions are the only
units of mutual exclusion.

Suppose that the resource which is to be accessed is a cell pointed
to by z. Then to begin with we have a single permission to read,
write or dispose that cell. Readers don’t need all that permission:
they can make do with a part of it. Writers need it all, apart from
the dispose permission. The program evidently counts: it should
be clear that a permission mechanism which counts will be a better
specification-fit than one which keeps track using fractions.

We propose a new logic, and a new model, which fits this problem
and others like it. A read permission is now not like other permis-
sions: in particular, you can’t split it. We writez ⇀ E′ for read
access.3 Other permissions include a count of the number of read
permissions that have been chipped from them: we writeE n7−−→ E′.

E n7−−→ E′→ n≥ 0

E n7−−→ E′ ⇐⇒ E n+17−−−−→ E′ ?E ⇀ E′
(14)

The assignment and new/dispose axioms are as you would expect.

Only a total permission,E 07−−→ E′, gets write and dispose access.{
Rx

E

}
x:=E

{
R
}{

E′ 07−−→
}

[E′]:=E
{

E′ 07−−→ E
}{

E′ ⇀ E
}

x:=[E′]
{

E′ ⇀ E∧x = E
}

(x not free inE, E′){
emp

}
x:=new(E)

{
x 07−−→ E

}{
E′ 07−−→

}
disposeE′

{
emp

}
(15)

In the readers and writers program the two binary semaphores have
invariants

write: if write = 0 thenempelsez 07−−→ fi
read: if read= 0∨count= 0 thenempelsez count7−−−−−→ fi

(16)

Using O’Hearn’s reading of semaphores, this says that, for ex-
ample, passing P(write) releases a complete permission into the
program, and in order to pass a V(write) the program must provide
the same permission, which is locked up into the semaphore. The
read invariant is more complicated, but has the same kind of ef-
fect. (We would like also to specify that thereadsemaphore owns
thecountvariable, bit we don’t yet have the logic to say so.) Then
a proof that the readers prologue releases a read permission into

3Tentative notational proposal; suggestions welcome.

the surrounding program goes as in figure 3; the epilogue reverses
the action (proof not shown, but obviously similar to the prologue
case).

This is all highly satisfactory. One oddity is that it isn’t possible to
write pre- and post-conditions for operations on thereadsemaphore
without mentioning thecountvariable, which is notionally owned
by the semaphore and locked up whenread= 1. This problem will
become clearer in the next example.

Suppose we have a network switch which has a read thread for
every input port, and a write thread for every output port. Sup-
pose the read thread is an infinite loop which acquires a buffer,
fills it with packet contents from the network, then passes it to
an address-resolution thread which somehow computes an output
port, then passes the buffer to the write thread at that port which
transmits the packet onwards and then disposes the buffer. There is
no need for the read thread to account for its buffers; clearly each
thread hasemp as a loop invariant. This is thesingle-castingcase,
and it’s covered by O’Hearn’s notion of ownership transfer between
threads.

Now suppose that a packet can contain several addresses. In this
multi-castingcase, the address-resolution thread may have to pass
the same information to more than one output thread. Copying the
buffer contents would be inefficient (which matters in the context of
packet processing!) and so it’s normal to send the same pointer to as
many threads as necessary. In order to avoid space leaks, program-
mers usepermission countingto record the number of permissions
that have been issued. For keeping count accurately between con-
current threads we must use a counting semaphore. Each output
thread can ‘dispose’ the buffer as before, but what really happens
is that the semaphore counts down and, when it reaches zero, the
buffer can be disposed.

The various threads are easily programmed:

while true do
x := new();
fill(x); enqueue(x,addressresolverQ)

od

while true do
i := 0; x := dequeue(addressresolverQ);
while i < addresses(x) do

if i +1 6= addresses(x) then splitx fi;
enqueue(x,addrQ(addri(x))); i+ := 1

od



{
emp

}
P(read);{

if count= 0 thenempelsez count7−−−−−→
}

count+ := 1;{
if count−1 = 0 thenempelsez count−17−−−−−−−→

}
if count= 1 then

{
emp

}
P(write)

{
z 07−−→

}
else

{
z count−17−−−−−−−→

}
;{

z count−17−−−−−−−→
}

∴
{

z count7−−−−−→ ?z⇀
}

V(read);{
z⇀

}
Figure 3. Release of resource by the readers prologue

while true do
x := dequeue(port jQ);
empty(x); freex

od

The splitx operation can be implemented byV(count), since all it
has to do is to increment a count of readers. The invariant of the
semaphore is then ifcount= 0 thenempelsex count+17−−−−−−−→ fi. When
the semaphore is 0, the split user must provide a full-access permis-
sion which the semaphore will lock away, releasing in return two
read permissions. When the semaphore is non-zero a read permis-
sion will apparently be split in two, though of course the trick is
done via the permission locked inside the semaphore.

The freex operation can’t simply be a semaphore. It has to be a
critical region, something like

count− := 1;
if count= 0 then dispose(x) fi

It’s easy to see that a semaphore can be created each time we call
new; less easy to see how permission to access that semaphore can
be described; harder still to see how to de-allocate the semaphore
when the buffer disappears. But it all looks as if it can be done.

Clearly, the precondition for V(count) involvescount: sometimes

you must provide a07−−→ permission, sometimes a⇀ permission.
That’s an interesting problem!

6.1 Model of counting permissions

Amazingly, all you need is to pair each value in the heap with a
number. A positive numbern corresponds to an7−−→ (or, ambiguously

but harmlessly so, an+17−−−−→ plus a ⇀ ... and so on); a negative
number−n corresponds ton ⇀ read permissions.

7 Conclusion

The notion of permissions has opened up a universe of possibilities
in separation logic. There is much work still to do, though, most
especially in dealing with stack variables as resources.
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