
Outline
Some Problems

Possible solutions
Confessions

Summary

Ownership and permissions in Separation logic

Richard Bornat

School of Computing Science, Middlesex University

5th December 2003

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Outline

Some Problems
Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Possible solutions
Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Confessions

Summary

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Non-empty binary trees (Bird trees)

B ::= Node B B | Tip val

fringe (Tip v) =̂ 〈v〉
fringe (Node λ ρ) =̂ fringe λ ++ fringe ρ

btree t (Tip v) =̂ t 7→ nil, v,
btree t (Node λ ρ) =̂ ∃l, r · (t 7→ l, , r ? btree l λ ? btree r ρ)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Non-empty binary trees (Bird trees)

B ::= Node B B | Tip val

fringe (Tip v) =̂ 〈v〉
fringe (Node λ ρ) =̂ fringe λ ++ fringe ρ

btree t (Tip v) =̂ t 7→ nil, v,
btree t (Node λ ρ) =̂ ∃l, r · (t 7→ l, , r ? btree l λ ? btree r ρ)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Non-empty binary trees (Bird trees)

B ::= Node B B | Tip val

fringe (Tip v) =̂ 〈v〉
fringe (Node λ ρ) =̂ fringe λ ++ fringe ρ

btree t (Tip v) =̂ t 7→ nil, v,
btree t (Node λ ρ) =̂ ∃l, r · (t 7→ l, , r ? btree l λ ? btree r ρ)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Non-empty binary trees (Bird trees)

B ::= Node B B | Tip val

fringe (Tip v) =̂ 〈v〉
fringe (Node λ ρ) =̂ fringe λ ++ fringe ρ

btree t (Tip v) =̂ t 7→ nil, v,
btree t (Node λ ρ) =̂ ∃l, r · (t 7→ l, , r ? btree l λ ? btree r ρ)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Fringe-linking a tree – 1

btree t (Tip v) =̂ t 7→ nil, v,
btree t (Node λ ρ) =̂ ∃l, r · (t 7→ l, , r ? btree l λ ? btree r ρ)

lseg y y 〈 〉 =̂ emp
lseg x y (〈v〉++ vs) =̂ ∃x′ · (x 7→ v, x′ ? lseg x′ y vs)

fringelink t c =̂ if [t] = nil then [t + 2] := c; t + 1
else fringelink [t] (fringelink [t + 2] c)
fi

{btree t τ}
res := fringelink t c

{(lseg res c (fringe τ) ? True) ∧ btree t τ}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Fringe-linking a tree – 1

btree t (Tip v) =̂ t 7→ nil, v,
btree t (Node λ ρ) =̂ ∃l, r · (t 7→ l, , r ? btree l λ ? btree r ρ)

lseg y y 〈 〉 =̂ emp
lseg x y (〈v〉++ vs) =̂ ∃x′ · (x 7→ v, x′ ? lseg x′ y vs)

fringelink t c =̂ if [t] = nil then [t + 2] := c; t + 1
else fringelink [t] (fringelink [t + 2] c)
fi

{btree t τ}
res := fringelink t c

{(lseg res c (fringe τ) ? True) ∧ btree t τ}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Fringe-linking a tree – 1

btree t (Tip v) =̂ t 7→ nil, v,
btree t (Node λ ρ) =̂ ∃l, r · (t 7→ l, , r ? btree l λ ? btree r ρ)

lseg y y 〈 〉 =̂ emp
lseg x y (〈v〉++ vs) =̂ ∃x′ · (x 7→ v, x′ ? lseg x′ y vs)

fringelink t c =̂ if [t] = nil then [t + 2] := c; t + 1
else fringelink [t] (fringelink [t + 2] c)
fi

{btree t τ}
res := fringelink t c

{(lseg res c (fringe τ) ? True) ∧ btree t τ}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Fringe-linking a tree – 2

fringelink t c =̂ if [t] = nil then [t + 2] := c; t + 1
else fringelink [t] (fringelink [t + 2] c)
fi

{btree t τ}
res := fringelink t c

{(lseg res c (fringe τ) ? True) ∧ btree t τ}

lseg y y 〈 〉 =̂ emp
lseg x y (〈v〉++ vs) =̂ ∃x′ · (x 7→ v, x′ ? lseg x′ y vs)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Fringe-linking a tree – 2

fringelink t c

t t

c
res

fringelink t c =̂ if [t] = nil then [t + 2] := c; t + 1
else fringelink [t] (fringelink [t + 2] c)
fi

{btree t τ}
res := fringelink t c

{(lseg res c (fringe τ) ? True) ∧ btree t τ}

lseg y y 〈 〉 =̂ emp
lseg x y (〈v〉++ vs) =̂ ∃x′ · (x 7→ v, x′ ? lseg x′ y vs)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Fringe-linking a tree – 2

fringelink t c

t t

c
res

fringelink t c =̂ if [t] = nil then [t + 2] := c; t + 1
else fringelink [t] (fringelink [t + 2] c)
fi

{btree t τ}
res := fringelink t c

{(lseg res c (fringe τ) ? True) ∧ btree t τ}

lseg y y 〈 〉 =̂ emp
lseg x y (〈v〉++ vs) =̂ ∃x′ · (x 7→ v, x′ ? lseg x′ y vs)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 1

17

I We’d like to describe a DAG-heap in the same
sort of way as we describe a tree-heap (root,
left subDAG, right subDAG).

I But DAGs have sharing, so subDAGs have
dangling pointers.

D ::= Empty | Tip int | Node D D | Ptr var | let var = D in D

let c = Tip 17 in Node (Node Empty (Ptr c))
(Node (Ptr c) Empty)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 1

17

I We’d like to describe a DAG-heap in the same
sort of way as we describe a tree-heap (root,
left subDAG, right subDAG).

I But DAGs have sharing, so subDAGs have
dangling pointers.

D ::= Empty | Tip int | Node D D | Ptr var | let var = D in D

let c = Tip 17 in Node (Node Empty (Ptr c))
(Node (Ptr c) Empty)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 1

17

I We’d like to describe a DAG-heap in the same
sort of way as we describe a tree-heap (root,
left subDAG, right subDAG).

I But DAGs have sharing, so subDAGs have
dangling pointers.

D ::= Empty | Tip int | Node D D | Ptr var | let var = D in D

let c = Tip 17 in Node (Node Empty (Ptr c))
(Node (Ptr c) Empty)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 1

17

I We’d like to describe a DAG-heap in the same
sort of way as we describe a tree-heap (root,
left subDAG, right subDAG).

I But DAGs have sharing, so subDAGs have
dangling pointers.

D ::= Empty | Tip int | Node D D | Ptr var | let var = D in D

let c = Tip 17 in Node (Node Empty (Ptr c))
(Node (Ptr c) Empty)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 1

17

I We’d like to describe a DAG-heap in the same
sort of way as we describe a tree-heap (root,
left subDAG, right subDAG).

I But DAGs have sharing, so subDAGs have
dangling pointers.

D ::= Empty | Tip int | Node D D | Ptr var | let var = D in D

let c = Tip 17 in Node (Node Empty (Ptr c))
(Node (Ptr c) Empty)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 2

17

let c = Tip 17 in Node (Node Empty (Ptr c))
(Node (Ptr c) Empty)

lidag nil Empty U =̂ emp
lidag d (Tip α) U =̂ d 7→ 0, α

lidag d (Node λ ρ) U =̂ ∃l, r ·
(

d 7→ 1, l, r ? lidag l λ U ?
lidag r ρ U

)
lidag d (Ptr x) U =̂ U x = d∧ emp

lidag d (let x = δ in δ′) U =̂ ∃d′ ·
(

lidag d′ δ U ?
lidag d δ′ (U ⊕ (x : d′))

)
... provided thatx occurs free inδ′ ...

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 2

17

let c = Tip 17 in Node (Node Empty (Ptr c))
(Node (Ptr c) Empty)

lidag nil Empty U =̂ emp
lidag d (Tip α) U =̂ d 7→ 0, α

lidag d (Node λ ρ) U =̂ ∃l, r ·
(

d 7→ 1, l, r ? lidag l λ U ?
lidag r ρ U

)
lidag d (Ptr x) U =̂ U x = d∧ emp

lidag d (let x = δ in δ′) U =̂ ∃d′ ·
(

lidag d′ δ U ?
lidag d δ′ (U ⊕ (x : d′))

)

... provided thatx occurs free inδ′ ...

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 2

17

let c = Tip 17 in Node (Node Empty (Ptr c))
(Node (Ptr c) Empty)

lidag nil Empty U =̂ emp
lidag d (Tip α) U =̂ d 7→ 0, α

lidag d (Node λ ρ) U =̂ ∃l, r ·
(

d 7→ 1, l, r ? lidag l λ U ?
lidag r ρ U

)
lidag d (Ptr x) U =̂ U x = d∧ emp

lidag d (let x = δ in δ′) U =̂ ∃d′ ·
(

lidag d′ δ U ?
lidag d δ′ (U ⊕ (x : d′))

)
... provided thatx occurs free inδ′ ...

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 3

But the algorithm doesn’t find the sharingand thendo the copying!
Instead it uses a ‘forwarding function’.

copydag d f =̂ if d = nil then nil, f
elsf d ∈ domf then f d, f
elsf d.tag = 0 then

d′ := new(0, d.val); d′, f ⊕ (d : d′)
else

l, f ′ := copydag d.left f ;
r, f ′′ := copydag d.right f ′;
d′ := new(1, l, r);
d′, f ′′ ⊕ (d : d′)

fi

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 3

But the algorithm doesn’t find the sharingand thendo the copying!
Instead it uses a ‘forwarding function’.

copydag d f =̂ if d = nil then nil, f
elsf d ∈ domf then f d, f
elsf d.tag = 0 then

d′ := new(0, d.val); d′, f ⊕ (d : d′)
else

l, f ′ := copydag d.left f ;
r, f ′′ := copydag d.right f ′;
d′ := new(1, l, r);
d′, f ′′ ⊕ (d : d′)

fi

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 4
A description readable left-to-right:

c:17

Node (Node Empty (c : Tip 17))
(Node (Ptr c) Empty)

A description in whicheveryelement is labelled:

17

a:

b:

c:

:d
a : Node (b : Node Empty (c : Tip 17))

(d : Node (Ptr c) Empty)

D ::= Empty | Ptr lab | lab : Tip int | lab : Node D D

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 4
A description readable left-to-right:

c:17

Node (Node Empty (c : Tip 17))
(Node (Ptr c) Empty)

A description in whicheveryelement is labelled:

17

a:

b:

c:

:d
a : Node (b : Node Empty (c : Tip 17))

(d : Node (Ptr c) Empty)

D ::= Empty | Ptr lab | lab : Tip int | lab : Node D D

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 4
A description readable left-to-right:

c:17

Node (Node Empty (c : Tip 17))
(Node (Ptr c) Empty)

A description in whicheveryelement is labelled:

17

a:

b:

c:

:d
a : Node (b : Node Empty (c : Tip 17))

(d : Node (Ptr c) Empty)

D ::= Empty | Ptr lab | lab : Tip int | lab : Node D D

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 5

D ::= Empty | Ptr lab | lab : Tip int | lab : Node D D

We needinputenvironmentU andoutputenvironmentV
(= U ⊕ internals ofδ):

pdag nil Empty U U =̂ emp
pdag d (Ptr x) U U =̂ U x = d∧ emp

pdag d (x : Tip α) U V =̂ d 7→ 0, α ∧ V = U ⊕ (x : d)

pdag d (x : Node λ ρ) U V =̂ ∃l, r, U′, V′ ·


d 7→ 1, l, r ?
pdag l λ U U′ ?
pdag r ρ U′ V′ ∧
V = V′ ⊕ (x : d)


I This is fine forclosedexamples (U empty).
I And examples without errors like multiple declarations.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 5

D ::= Empty | Ptr lab | lab : Tip int | lab : Node D D

We needinputenvironmentU andoutputenvironmentV
(= U ⊕ internals ofδ):

pdag nil Empty U U =̂ emp
pdag d (Ptr x) U U =̂ U x = d∧ emp

pdag d (x : Tip α) U V =̂ d 7→ 0, α ∧ V = U ⊕ (x : d)

pdag d (x : Node λ ρ) U V =̂ ∃l, r, U′, V′ ·


d 7→ 1, l, r ?
pdag l λ U U′ ?
pdag r ρ U′ V′ ∧
V = V′ ⊕ (x : d)



I This is fine forclosedexamples (U empty).
I And examples without errors like multiple declarations.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 5

D ::= Empty | Ptr lab | lab : Tip int | lab : Node D D

We needinputenvironmentU andoutputenvironmentV
(= U ⊕ internals ofδ):

pdag nil Empty U U =̂ emp
pdag d (Ptr x) U U =̂ U x = d∧ emp

pdag d (x : Tip α) U V =̂ d 7→ 0, α ∧ V = U ⊕ (x : d)

pdag d (x : Node λ ρ) U V =̂ ∃l, r, U′, V′ ·


d 7→ 1, l, r ?
pdag l λ U U′ ?
pdag r ρ U′ V′ ∧
V = V′ ⊕ (x : d)


I This is fine forclosedexamples (U empty).

I And examples without errors like multiple declarations.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 5

D ::= Empty | Ptr lab | lab : Tip int | lab : Node D D

We needinputenvironmentU andoutputenvironmentV
(= U ⊕ internals ofδ):

pdag nil Empty U U =̂ emp
pdag d (Ptr x) U U =̂ U x = d∧ emp

pdag d (x : Tip α) U V =̂ d 7→ 0, α ∧ V = U ⊕ (x : d)

pdag d (x : Node λ ρ) U V =̂ ∃l, r, U′, V′ ·


d 7→ 1, l, r ?
pdag l λ U U′ ?
pdag r ρ U′ V′ ∧
V = V′ ⊕ (x : d)


I This is fine forclosedexamples (U empty).
I And examples without errors like multiple declarations.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 6

We would like to prove

{pdag d δ U V ∧ ranU = domf}
d′, f ′ := copydag d f

{pdag d δ U V ? pdag d′ δ (f • U) (f ′ • V) ∧ ranV = domf ′}

I – but the inductive step fails! We need to know that domf points
at originally-existing structureselsewherein the heap and ranf
points at their copies (even more elsewhere).

I We don’t want domf or ranf to be part of the footprint; we don’t
even want read access to those locations.

I Must we fudge this example?

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 6

We would like to prove

{pdag d δ U V ∧ ranU = domf}
d′, f ′ := copydag d f

{pdag d δ U V ? pdag d′ δ (f • U) (f ′ • V) ∧ ranV = domf ′}

I – but the inductive step fails! We need to know that domf points
at originally-existing structureselsewherein the heap and ranf
points at their copies (even more elsewhere).

I We don’t want domf or ranf to be part of the footprint; we don’t
even want read access to those locations.

I Must we fudge this example?

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 6

We would like to prove

{pdag d δ U V ∧ ranU = domf}
d′, f ′ := copydag d f

{pdag d δ U V ? pdag d′ δ (f • U) (f ′ • V) ∧ ranV = domf ′}

I – but the inductive step fails! We need to know that domf points
at originally-existing structureselsewherein the heap and ranf
points at their copies (even more elsewhere).

I We don’t want domf or ranf to be part of the footprint; we don’t
even want read access to those locations.

I Must we fudge this example?

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Directed Acyclic Graphs (DAGs) – 6

We would like to prove

{pdag d δ U V ∧ ranU = domf}
d′, f ′ := copydag d f

{pdag d δ U V ? pdag d′ δ (f • U) (f ′ • V) ∧ ranV = domf ′}

I – but the inductive step fails! We need to know that domf points
at originally-existing structureselsewherein the heap and ranf
points at their copies (even more elsewhere).

I We don’t want domf or ranf to be part of the footprint; we don’t
even want read access to those locations.

I Must we fudge this example?

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Concurrency and Ownership

I Separation logic deals with pointer safety (no dereferencingnil
or a disposed pointer) and space leaks.

I In concurrent programs we are also worried aboutrace
conditions: one thread writing a shared variable, others reading
or writing as well.

I Since Dijkstra, we know that race conditions are avoided by
read/writeprivatevariables, read-onlysharedvariables, and
communication via shared read/write variables in
mutually-exclusive code sections.

I Can we sharelocationsas well as variables?

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Concurrency and Ownership

I Separation logic deals with pointer safety (no dereferencingnil
or a disposed pointer) and space leaks.

I In concurrent programs we are also worried aboutrace
conditions: one thread writing a shared variable, others reading
or writing as well.

I Since Dijkstra, we know that race conditions are avoided by
read/writeprivatevariables, read-onlysharedvariables, and
communication via shared read/write variables in
mutually-exclusive code sections.

I Can we sharelocationsas well as variables?

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Concurrency and Ownership

I Separation logic deals with pointer safety (no dereferencingnil
or a disposed pointer) and space leaks.

I In concurrent programs we are also worried aboutrace
conditions: one thread writing a shared variable, others reading
or writing as well.

I Since Dijkstra, we know that race conditions are avoided by
read/writeprivatevariables, read-onlysharedvariables, and
communication via shared read/write variables in
mutually-exclusive code sections.

I Can we sharelocationsas well as variables?

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Concurrency and Ownership

I Separation logic deals with pointer safety (no dereferencingnil
or a disposed pointer) and space leaks.

I In concurrent programs we are also worried aboutrace
conditions: one thread writing a shared variable, others reading
or writing as well.

I Since Dijkstra, we know that race conditions are avoided by
read/writeprivatevariables, read-onlysharedvariables, and
communication via shared read/write variables in
mutually-exclusive code sections.

I Can we sharelocationsas well as variables?

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Concurrency and Ownership

I Separation logic deals with pointer safety (no dereferencingnil
or a disposed pointer) and space leaks.

I In concurrent programs we are also worried aboutrace
conditions: one thread writing a shared variable, others reading
or writing as well.

I Since Dijkstra, we know that race conditions are avoided by
read/writeprivatevariables, read-onlysharedvariables, and
communication via shared read/write variables in
mutually-exclusive code sections.

I Can we sharelocationsas well as variables?

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Ownership transfer (O’Hearn)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Ownership transfer (O’Hearn)

Resourcer : Varsfull , b;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Ownership transfer (O’Hearn)

Resourcer : Varsfull , b;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Ownership transfer (O’Hearn)

Resourcer : Varsfull , b;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Ownership transfer (O’Hearn)

Resourcer : Varsfull , b;
Invariant(full ∧ b 7→) ∨ (¬full ∧ emp)

{emp}
x := new();
{x 7→ }
with r when ¬full do
{¬full ∧ emp ? x 7→ }
b := x;
{¬full ∧ emp ? x 7→ ∧ b = x}
full := true
{full ∧ b 7→ ? emp}

od
{emp}

{emp}
with r when full do
{full ∧ b 7→ ? emp}
y := b;
{full ∧ b 7→ ? emp ∧ y = b}
full := false
{¬full ∧ emp ? y 7→ }

od;
{y 7→ }
disposey
{emp}


Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Ownership transfer (O’Hearn) – 2

I So: can we share locations between threads?

I Brookes’s semantics of O’Hearn’s proposal suggests we should
be able to.

I But the logic doesn’t deal with read-only locations, so far.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Ownership transfer (O’Hearn) – 2

I So: can we share locations between threads?

I Brookes’s semantics of O’Hearn’s proposal suggests we should
be able to.

I But the logic doesn’t deal with read-only locations, so far.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Ownership transfer (O’Hearn) – 2

I So: can we share locations between threads?

I Brookes’s semantics of O’Hearn’s proposal suggests we should
be able to.

I But the logic doesn’t deal with read-only locations, so far.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (singlecast)

0

13

2

r w

r

w

rw

r

w

I Imagine a multi-port ethernet
switch which has a read and
write thread at each port.

I A packet arriving at a port is
stored in a buffer created by
the read thread.

I Ownership is transferred to the relevant write thread ...

I the data is transmitted ...

I and the buffer is disposed by the write thread.

I Perfect!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (singlecast)

0

13

2

r w

r

w

rw

r

w

I Imagine a multi-port ethernet
switch which has a read and
write thread at each port.

I A packet arriving at a port is
stored in a buffer created by
the read thread.

I Ownership is transferred to the relevant write thread ...

I the data is transmitted ...

I and the buffer is disposed by the write thread.

I Perfect!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (singlecast)

0

13

2

r w

r

w

rw

r

w

2.1 → 0.6; "hello"

I Imagine a multi-port ethernet
switch which has a read and
write thread at each port.

I A packet arriving at a port is
stored in a buffer created by
the read thread.

I Ownership is transferred to the relevant write thread ...

I the data is transmitted ...

I and the buffer is disposed by the write thread.

I Perfect!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (singlecast)

0

13

2

r w

r

w

rw

r

w

2.1 → 0.6; "hello"

I Imagine a multi-port ethernet
switch which has a read and
write thread at each port.

I A packet arriving at a port is
stored in a buffer created by
the read thread.

I Ownership is transferred to the relevant write thread ...

I the data is transmitted ...

I and the buffer is disposed by the write thread.

I Perfect!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (singlecast)

0

13

2

r w

r

w

rw

r

w

2.1 → 0.6; "hello"
I Imagine a multi-port ethernet

switch which has a read and
write thread at each port.

I A packet arriving at a port is
stored in a buffer created by
the read thread.

I Ownership is transferred to the relevant write thread ...

I the data is transmitted ...

I and the buffer is disposed by the write thread.

I Perfect!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (singlecast)

0

13

2

r w

r

w

rw

r

w

2.1 → 0.6; "hello"
I Imagine a multi-port ethernet

switch which has a read and
write thread at each port.

I A packet arriving at a port is
stored in a buffer created by
the read thread.

I Ownership is transferred to the relevant write thread ...

I the data is transmitted ...

I and the buffer is disposed by the write thread.

I Perfect!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (singlecast)

0

13

2

r w

r

w

rw

r

w

2.1 → 0.6; "hello"
I Imagine a multi-port ethernet

switch which has a read and
write thread at each port.

I A packet arriving at a port is
stored in a buffer created by
the read thread.

I Ownership is transferred to the relevant write thread ...

I the data is transmitted ...

I and the buffer is disposed by the write thread.

I Perfect!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (singlecast)

0

13

2

r w

r

w

rw

r

w

I Imagine a multi-port ethernet
switch which has a read and
write thread at each port.

I A packet arriving at a port is
stored in a buffer created by
the read thread.

I Ownership is transferred to the relevant write thread ...

I the data is transmitted ...

I and the buffer is disposed by the write thread.

I Perfect!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (singlecast)

0

13

2

r w

r

w

rw

r

w

I Imagine a multi-port ethernet
switch which has a read and
write thread at each port.

I A packet arriving at a port is
stored in a buffer created by
the read thread.

I Ownership is transferred to the relevant write thread ...

I the data is transmitted ...

I and the buffer is disposed by the write thread.

I Perfect!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0

13

2

r w

r

w

rw

r

w

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0

13

2

r w

r

w

rw

r

w

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0

13

2

r w

r

w

rw

r

w

0.6 → 3.2+2.1; "shut up"

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0

13

2

r w

r

w

rw

r

w

0.6 → 3.2+2.1; "shut up"

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0

13

2

r w

r

w

rw

r

w

0.6 → 3.2+2.1; "shut up"

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0

13

2

r w

r

w

rw

r

w

0.6 → 3.2+2.1; "shut up"

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0

13

2

r w

r

w

rw

r

w

0.6 → 3.2+2.1; "shut up"

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0.6 → 2.1+3.2; "shut up"

0

13

2

r w

r

w

rw

r

w

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0

13

2

r w

r

w

rw

r

w

0.6 → 3.2+2.1; "shut up"

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0.6 → 3.2+2.1; "shut up"

0

13

2

r w

r

w

rw

r

w

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0

13

2

r w

r

w

rw

r

w

0.6 → 3.2+2.1; "shut up"

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0

13

2

r w

r

w

rw

r

w

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Packet switching (multicast)

I Suppose we have solved the problem of sharing ...

0

13

2

r w

r

w

rw

r

w

I A packet arrives with two
addresses ...

I and is shared by two write
threads.

I But how and when is it
disposed?

I Certainly not by the first write
thread to finish ...

I the read thread might wait (expensively) for them both to signal
...

I In practice, programs usepermission countingto deal with this
problem.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Problems summarised

I existence outside footprint;

I shared locations;

I permission counting;

I and some realism in new and dispose (malloc and free deal in
buffers, not cells).

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Problems summarised

I existence outside footprint;

I shared locations;

I permission counting;

I and some realism in new and dispose (malloc and free deal in
buffers, not cells).

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Problems summarised

I existence outside footprint;

I shared locations;

I permission counting;

I and some realism in new and dispose (malloc and free deal in
buffers, not cells).

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Problems summarised

I existence outside footprint;

I shared locations;

I permission counting;

I and some realism in new and dispose (malloc and free deal in
buffers, not cells).

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Trees, DAGs and graphs
Concurrency and Ownership
Pipeline processing
Summary

Problems summarised

I existence outside footprint;

I shared locations;

I permission counting;

I and some realism in new and dispose (malloc and free deal in
buffers, not cells).

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

A concurrent example

Here is a simple example of a program without a race condition:

x := new(); [x] := 1;(
i := [x] + 1 j := [x] + 2

)
;

k := i + j; disposex

And here is one with two races (one fori, several for[x]):

x := new(); [x] := 1;(
i := [x] + 1; disposex [x] := 2; i := [x] + 2

)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

A concurrent example

Here is a simple example of a program without a race condition:

x := new(); [x] := 1;(
i := [x] + 1 j := [x] + 2

)
;

k := i + j; disposex

And here is one with two races (one fori, several for[x]):

x := new(); [x] := 1;(
i := [x] + 1; disposex [x] := 2; i := [x] + 2

)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions

x := new(); [x] := 1;(
i := [x] + 1 j := [x] + 2

)
;

k := i + j; disposex

x := new(); [x] := 1;(
i := [x] + 1; [x] := 2;
disposex i := [x] + 2

)
I John Boyland explained these programs using the notion of

fractional permissions.

I An entirepermission (equivalent to separation logic’s7→)
permits dispose, write and read actions.

I A fractionalpermission (new to separation logic) permits read
access only.

I Entire permissions can be split into fractions; fractions into
smaller fractions;

I ... and the parts can bereassembledarithmetically.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions

x := new(); [x] := 1;(
i := [x] + 1 j := [x] + 2

)
;

k := i + j; disposex

x := new(); [x] := 1;(
i := [x] + 1; [x] := 2;
disposex i := [x] + 2

)
I John Boyland explained these programs using the notion of

fractional permissions.
I An entirepermission (equivalent to separation logic’s7→)

permits dispose, write and read actions.

I A fractionalpermission (new to separation logic) permits read
access only.

I Entire permissions can be split into fractions; fractions into
smaller fractions;

I ... and the parts can bereassembledarithmetically.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions

x := new(); [x] := 1;(
i := [x] + 1 j := [x] + 2

)
;

k := i + j; disposex

x := new(); [x] := 1;(
i := [x] + 1; [x] := 2;
disposex i := [x] + 2

)
I John Boyland explained these programs using the notion of

fractional permissions.
I An entirepermission (equivalent to separation logic’s7→)

permits dispose, write and read actions.
I A fractionalpermission (new to separation logic) permits read

access only.

I Entire permissions can be split into fractions; fractions into
smaller fractions;

I ... and the parts can bereassembledarithmetically.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions

x := new(); [x] := 1;(
i := [x] + 1 j := [x] + 2

)
;

k := i + j; disposex

x := new(); [x] := 1;(
i := [x] + 1; [x] := 2;
disposex i := [x] + 2

)
I John Boyland explained these programs using the notion of

fractional permissions.
I An entirepermission (equivalent to separation logic’s7→)

permits dispose, write and read actions.
I A fractionalpermission (new to separation logic) permits read

access only.
I Entire permissions can be split into fractions; fractions into

smaller fractions;

I ... and the parts can bereassembledarithmetically.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions

x := new(); [x] := 1;(
i := [x] + 1 j := [x] + 2

)
;

k := i + j; disposex

x := new(); [x] := 1;(
i := [x] + 1; [x] := 2;
disposex i := [x] + 2

)
I John Boyland explained these programs using the notion of

fractional permissions.
I An entirepermission (equivalent to separation logic’s7→)

permits dispose, write and read actions.
I A fractionalpermission (new to separation logic) permits read

access only.
I Entire permissions can be split into fractions; fractions into

smaller fractions;
I ... and the parts can bereassembledarithmetically.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions in separation logic

We propose, following Boyland, some axioms for separation logic:

E 7−→z E′ → 0 < z≤ 1
E 7−→z E′ ? E 7−−→

z′
E′′ ⇐⇒ E′ = E′′ ∧ E 7−−−−→

z+z′
E′

{emp} x := new() {x 7−→
1

}
{E 7−→

1
} disposeE {emp}

{Rx
E} x:=E {R}

{x 7−→
1

} [x]:=E {x 7−→
1

E}
{E′ 7−→z E} x:=[E′] {E′ 7−→z E∧ x = E′} (x not free inE, E′)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions in separation logic

We propose, following Boyland, some axioms for separation logic:

E 7−→z E′ → 0 < z≤ 1
E 7−→z E′ ? E 7−−→

z′
E′′ ⇐⇒ E′ = E′′ ∧ E 7−−−−→

z+z′
E′

{emp} x := new() {x 7−→
1

}
{E 7−→

1
} disposeE {emp}

{Rx
E} x:=E {R}

{x 7−→
1

} [x]:=E {x 7−→
1

E}
{E′ 7−→z E} x:=[E′] {E′ 7−→z E∧ x = E′} (x not free inE, E′)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions in separation logic

We propose, following Boyland, some axioms for separation logic:

E 7−→z E′ → 0 < z≤ 1
E 7−→z E′ ? E 7−−→

z′
E′′ ⇐⇒ E′ = E′′ ∧ E 7−−−−→

z+z′
E′

{emp} x := new() {x 7−→
1

}
{E 7−→

1
} disposeE {emp}

{Rx
E} x:=E {R}

{x 7−→
1

} [x]:=E {x 7−→
1

E}
{E′ 7−→z E} x:=[E′] {E′ 7−→z E∧ x = E′} (x not free inE, E′)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions in separation logic

We propose, following Boyland, some axioms for separation logic:

E 7−→z E′ → 0 < z≤ 1
E 7−→z E′ ? E 7−−→

z′
E′′ ⇐⇒ E′ = E′′ ∧ E 7−−−−→

z+z′
E′

{emp} x := new() {x 7−→
1

}
{E 7−→

1
} disposeE {emp}

{Rx
E} x:=E {R}

{x 7−→
1

} [x]:=E {x 7−→
1

E}
{E′ 7−→z E} x:=[E′] {E′ 7−→z E∧ x = E′} (x not free inE, E′)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions rule! – 1

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→

0.5
1}

i := [x] + 1
{x 7−−−→

0.5
1∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2
{x 7−−−→

0.5
1∧ j = 3}

 ;

{(x 7−−−→
0.5

1∧ i = 2) ? (x 7−−−→
0.5

1∧ j = 3)}∴{x 7−→
1

1∧ i = 2∧ j = 3}
k := i + j;
{x 7−→

1
1∧ i = 2∧ j = 3∧ k = 5}

disposex
{emp ∧ i = 2∧ j = 3∧ k = 5}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions rule! – 1

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→

0.5
1}

i := [x] + 1
{x 7−−−→

0.5
1∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2
{x 7−−−→

0.5
1∧ j = 3}

 ;

{(x 7−−−→
0.5

1∧ i = 2) ? (x 7−−−→
0.5

1∧ j = 3)}∴{x 7−→
1

1∧ i = 2∧ j = 3}
k := i + j;
{x 7−→

1
1∧ i = 2∧ j = 3∧ k = 5}

disposex
{emp ∧ i = 2∧ j = 3∧ k = 5}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions rule! – 1

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1} ∴ {x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→

0.5
1}

i := [x] + 1
{x 7−−−→

0.5
1∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2
{x 7−−−→

0.5
1∧ j = 3}

 ;

{(x 7−−−→
0.5

1∧ i = 2) ? (x 7−−−→
0.5

1∧ j = 3)}∴{x 7−→
1

1∧ i = 2∧ j = 3}
k := i + j;
{x 7−→

1
1∧ i = 2∧ j = 3∧ k = 5}

disposex
{emp ∧ i = 2∧ j = 3∧ k = 5}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions rule! – 1

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1} ∴ {x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→

0.5
1}

i := [x] + 1
{x 7−−−→

0.5
1∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2
{x 7−−−→

0.5
1∧ j = 3}

 ;

{(x 7−−−→
0.5

1∧ i = 2) ? (x 7−−−→
0.5

1∧ j = 3)}∴{x 7−→
1

1∧ i = 2∧ j = 3}
k := i + j;
{x 7−→

1
1∧ i = 2∧ j = 3∧ k = 5}

disposex
{emp ∧ i = 2∧ j = 3∧ k = 5}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions rule! – 1

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1} ∴ {x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→

0.5
1}

i := [x] + 1
{x 7−−−→

0.5
1∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2
{x 7−−−→

0.5
1∧ j = 3}

 ;

{(x 7−−−→
0.5

1∧ i = 2) ? (x 7−−−→
0.5

1∧ j = 3)}∴{x 7−→
1

1∧ i = 2∧ j = 3}
k := i + j;
{x 7−→

1
1∧ i = 2∧ j = 3∧ k = 5}

disposex
{emp ∧ i = 2∧ j = 3∧ k = 5}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions rule! – 1

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1} ∴ {x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→

0.5
1}

i := [x] + 1
{x 7−−−→

0.5
1∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2
{x 7−−−→

0.5
1∧ j = 3}

 ;

{(x 7−−−→
0.5

1∧ i = 2) ? (x 7−−−→
0.5

1∧ j = 3)} ∴ {x 7−→
1

1∧ i = 2∧ j = 3}
k := i + j;
{x 7−→

1
1∧ i = 2∧ j = 3∧ k = 5}

disposex
{emp ∧ i = 2∧ j = 3∧ k = 5}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions rule! – 1

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1} ∴ {x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}{x 7−−−→

0.5
1}

i := [x] + 1
{x 7−−−→

0.5
1∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2
{x 7−−−→

0.5
1∧ j = 3}

 ;

{(x 7−−−→
0.5

1∧ i = 2) ? (x 7−−−→
0.5

1∧ j = 3)} ∴ {x 7−→
1

1∧ i = 2∧ j = 3}
k := i + j;
{x 7−→

1
1∧ i = 2∧ j = 3∧ k = 5}

disposex
{emp ∧ i = 2∧ j = 3∧ k = 5}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions rule! – 2

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}∴{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
i := [x] + 1;
{x 7−−−→

0.5
1∧ i = 2}

disposex
{??}

{x 7−−−→
0.5

1}
[x] := 2;
{??}
j := [x] + 2
{??}


{??}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions rule! – 2

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1} ∴ {x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
i := [x] + 1;
{x 7−−−→

0.5
1∧ i = 2}

disposex
{??}

{x 7−−−→
0.5

1}
[x] := 2;
{??}
j := [x] + 2
{??}


{??}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions rule! – 2

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1} ∴ {x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
i := [x] + 1;
{x 7−−−→

0.5
1∧ i = 2}

disposex
{??}

{x 7−−−→
0.5

1}
[x] := 2;
{??}
j := [x] + 2
{??}


{??}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Fractional permissions rule! – 2

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1} ∴ {x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
i := [x] + 1;
{x 7−−−→

0.5
1∧ i = 2}

disposex
{??}

{x 7−−−→
0.5

1}
[x] := 2;
{??}
j := [x] + 2
{??}


{??}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 1

I The Boyland-permission axiomscompletely solvethe problem of
sharing (‘passivity’).

I But they equate dispose and write permission,

I and they don’t solve the problem of existence outside the
footprint (seecopydag andpdag).

I Suppose we split an entire permission into one which is large
enough to do read and write, and another which is too small to
doanything...

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 1

I The Boyland-permission axiomscompletely solvethe problem of
sharing (‘passivity’).

I But they equate dispose and write permission,

I and they don’t solve the problem of existence outside the
footprint (seecopydag andpdag).

I Suppose we split an entire permission into one which is large
enough to do read and write, and another which is too small to
doanything...

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 1

I The Boyland-permission axiomscompletely solvethe problem of
sharing (‘passivity’).

I But they equate dispose and write permission,

I and they don’t solve the problem of existence outside the
footprint (seecopydag andpdag).

I Suppose we split an entire permission into one which is large
enough to do read and write, and another which is too small to
doanything...

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 1

I The Boyland-permission axiomscompletely solvethe problem of
sharing (‘passivity’).

I But they equate dispose and write permission,

I and they don’t solve the problem of existence outside the
footprint (seecopydag andpdag).

I Suppose we split an entire permission into one which is large
enough to do read and write, and another which is too small to
doanything...

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 2

I ι – iota – is an infinitesimal, smaller than any fraction.

I E 7−→ι – note noE′ – says ‘E points somewhere, but we don’t
know what it points to’.

x 7−→ι ? x 7−−→
ι′
⇐⇒ x 7−−−−→

ι+ι′

x 7−→ι ? x 7−→z E ⇐⇒ x 7−−−→z+ι E

{x 7−−−→
1−ι

} [x] := E {x 7−−−→
1−ι

E}

I dispose still needs an entire permission, so if you have anι
permission, your partners can’t dispose what they have.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 2

I ι – iota – is an infinitesimal, smaller than any fraction.

I E 7−→ι – note noE′ – says ‘E points somewhere, but we don’t
know what it points to’.

x 7−→ι ? x 7−−→
ι′
⇐⇒ x 7−−−−→

ι+ι′

x 7−→ι ? x 7−→z E ⇐⇒ x 7−−−→z+ι E

{x 7−−−→
1−ι

} [x] := E {x 7−−−→
1−ι

E}

I dispose still needs an entire permission, so if you have anι
permission, your partners can’t dispose what they have.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 2

I ι – iota – is an infinitesimal, smaller than any fraction.

I E 7−→ι – note noE′ – says ‘E points somewhere, but we don’t
know what it points to’.

x 7−→ι ? x 7−−→
ι′
⇐⇒ x 7−−−−→

ι+ι′

x 7−→ι ? x 7−→z E ⇐⇒ x 7−−−→z+ι E

{x 7−−−→
1−ι

} [x] := E {x 7−−−→
1−ι

E}

I dispose still needs an entire permission, so if you have anι
permission, your partners can’t dispose what they have.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 2

I ι – iota – is an infinitesimal, smaller than any fraction.

I E 7−→ι – note noE′ – says ‘E points somewhere, but we don’t
know what it points to’.

x 7−→ι ? x 7−−→
ι′
⇐⇒ x 7−−−−→

ι+ι′

x 7−→ι ? x 7−→z E ⇐⇒ x 7−−−→z+ι E

{x 7−−−→
1−ι

} [x] := E {x 7−−−→
1−ι

E}

I dispose still needs an entire permission, so if you have anι
permission, your partners can’t dispose what they have.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 2

I ι – iota – is an infinitesimal, smaller than any fraction.

I E 7−→ι – note noE′ – says ‘E points somewhere, but we don’t
know what it points to’.

x 7−→ι ? x 7−−→
ι′
⇐⇒ x 7−−−−→

ι+ι′

x 7−→ι ? x 7−→z E ⇐⇒ x 7−−−→z+ι E

{x 7−−−→
1−ι

} [x] := E {x 7−−−→
1−ι

E}

I dispose still needs an entire permission, so if you have anι
permission, your partners can’t dispose what they have.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 3

Now we can have a non-cyclicpdag :

pdag nil Empty U U =̂ emp
pdag d (Ptr x) U U =̂ U x = d∧ emp

pdag d (x : Tip α) U V =̂
(
{d, d + 1} ∩ ranU = ∅ ∧
d 7→ 0, α ∧ V = U ⊕ (x : d)

)
pdag d (x : Node λ ρ) U V =̂ ∃l, r, U′, V′ ·

{d, d + 1, d + 2} ∩ ranU = ∅ ∧
d 7→ 1, l, r ?
pdag l λ U U′ ?
pdag r ρ U′ V′ ∧
V = V′ ⊕ (x : d)



Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 3

Now we can have a non-cyclicpdag :

pdag nil Empty U U =̂ emp
pdag d (Ptr x) U U =̂ U x = d∧ emp

pdag d (x : Tip α) U V =̂
(
{d, d + 1} ∩ ranU = ∅ ∧
d 7→ 0, α ∧ V = U ⊕ (x : d)

)
pdag d (x : Node λ ρ) U V =̂ ∃l, r, U′, V′ ·

{d, d + 1, d + 2} ∩ ranU = ∅ ∧
d 7→ 1, l, r ?
pdag l λ U U′ ?
pdag r ρ U′ V′ ∧
V = V′ ⊕ (x : d)



Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 4

We can say the right thing about DAGs at last:

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 4

We can say the right thing about DAGs at last:

{pdag d (x : δ) U V?∀?z∈ ranU · z 7−→ι }
d′ := new(1, d, d){
pdag d′ (y : Node (x : δ) (Ptr x)) U (V ⊕ (y : d′)) ?
∀?z∈ ranU · z 7−→ι

}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Existence indicators – 4

We can say the right thing about DAGs at last:

{pdag d (x : δ) U V ? ∀?z∈ ranU · z 7−→ι }
d′ := new(1, d, d){
pdag d′ (y : Node (x : δ) (Ptr x)) U (V ⊕ (y : d′)) ?
∀?z∈ ranU · z 7−→ι

}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 1

I C’s malloc and free (like Pascal’s new and dispose)
allocate/de-allocate buffers all at once.

I In particular, C’s free disposes of an entire buffer when given
only a pointer to its first cell.

I Suppose that every cell permission carries a ‘ghostly outline’ of
the buffer it came from.

I We writeE i,n7−−→z E′ to say thatE points to theith cell of an
n-element buffer (block) with (fractional) access permissionz
and valueE′.

I Clearly, new gives out 1-permission for a block,

I and you can’t dispose unless you have 1-permission for the entire
block.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 1

I C’s malloc and free (like Pascal’s new and dispose)
allocate/de-allocate buffers all at once.

I In particular, C’s free disposes of an entire buffer when given
only a pointer to its first cell.

I Suppose that every cell permission carries a ‘ghostly outline’ of
the buffer it came from.

I We writeE i,n7−−→z E′ to say thatE points to theith cell of an
n-element buffer (block) with (fractional) access permissionz
and valueE′.

I Clearly, new gives out 1-permission for a block,

I and you can’t dispose unless you have 1-permission for the entire
block.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 1

I C’s malloc and free (like Pascal’s new and dispose)
allocate/de-allocate buffers all at once.

I In particular, C’s free disposes of an entire buffer when given
only a pointer to its first cell.

I Suppose that every cell permission carries a ‘ghostly outline’ of
the buffer it came from.

I We writeE i,n7−−→z E′ to say thatE points to theith cell of an
n-element buffer (block) with (fractional) access permissionz
and valueE′.

I Clearly, new gives out 1-permission for a block,

I and you can’t dispose unless you have 1-permission for the entire
block.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 1

I C’s malloc and free (like Pascal’s new and dispose)
allocate/de-allocate buffers all at once.

I In particular, C’s free disposes of an entire buffer when given
only a pointer to its first cell.

I Suppose that every cell permission carries a ‘ghostly outline’ of
the buffer it came from.

I We writeE i,n7−−→z E′ to say thatE points to theith cell of an
n-element buffer (block) with (fractional) access permissionz
and valueE′.

I Clearly, new gives out 1-permission for a block,

I and you can’t dispose unless you have 1-permission for the entire
block.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 1

I C’s malloc and free (like Pascal’s new and dispose)
allocate/de-allocate buffers all at once.

I In particular, C’s free disposes of an entire buffer when given
only a pointer to its first cell.

I Suppose that every cell permission carries a ‘ghostly outline’ of
the buffer it came from.

I We writeE i,n7−−→z E′ to say thatE points to theith cell of an
n-element buffer (block) with (fractional) access permissionz
and valueE′.

I Clearly, new gives out 1-permission for a block,

I and you can’t dispose unless you have 1-permission for the entire
block.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 1

I C’s malloc and free (like Pascal’s new and dispose)
allocate/de-allocate buffers all at once.

I In particular, C’s free disposes of an entire buffer when given
only a pointer to its first cell.

I Suppose that every cell permission carries a ‘ghostly outline’ of
the buffer it came from.

I We writeE i,n7−−→z E′ to say thatE points to theith cell of an
n-element buffer (block) with (fractional) access permissionz
and valueE′.

I Clearly, new gives out 1-permission for a block,

I and you can’t dispose unless you have 1-permission for the entire
block.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 2

E i,n7−−→z E′ → 0 < z≤ 1∧ 0≤ i < n

E i,n7−−→z E1 , ...,Ej ⇐⇒
E i,n7−−→z E1 ? (E + 1) i+1,n7−−−−→z E2 ? ... ? (E + j − 1) i+j−1,n7−−−−−−→z Ej

x i,n7−−→z E ? x i′,n′
7−−−→

z′
E′ → i = i′ ∧ n = n′ ∧ E = E′ ∧ x i,n7−−−−→

z+z′
E

x i,n7−−→z E ? x′ i′,n′
7−−−→

z′
E′ ∧ x 6= x′ →

(x− i = x′ − i′ ∧ n = n′) ∨
x− i + n≤ x′ − i′ ∨
x′ − i′ + n′ ≤ x− i


{emp} x := new(E1 , ...,En) {x 0,n7−−−→

1
E1 , ...,En}

{E 0,n7−−−→
1

E1 , ...,En} disposeE {emp}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 2

E i,n7−−→z E′ → 0 < z≤ 1∧ 0≤ i < n

E i,n7−−→z E1 , ...,Ej ⇐⇒
E i,n7−−→z E1 ? (E + 1) i+1,n7−−−−→z E2 ? ... ? (E + j − 1) i+j−1,n7−−−−−−→z Ej

x i,n7−−→z E ? x i′,n′
7−−−→

z′
E′ → i = i′ ∧ n = n′ ∧ E = E′ ∧ x i,n7−−−−→

z+z′
E

x i,n7−−→z E ? x′ i′,n′
7−−−→

z′
E′ ∧ x 6= x′ →

(x− i = x′ − i′ ∧ n = n′) ∨
x− i + n≤ x′ − i′ ∨
x′ − i′ + n′ ≤ x− i


{emp} x := new(E1 , ...,En) {x 0,n7−−−→

1
E1 , ...,En}

{E 0,n7−−−→
1

E1 , ...,En} disposeE {emp}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 2

E i,n7−−→z E′ → 0 < z≤ 1∧ 0≤ i < n

E i,n7−−→z E1 , ...,Ej ⇐⇒
E i,n7−−→z E1 ? (E + 1) i+1,n7−−−−→z E2 ? ... ? (E + j − 1) i+j−1,n7−−−−−−→z Ej

x i,n7−−→z E ? x i′,n′
7−−−→

z′
E′ → i = i′ ∧ n = n′ ∧ E = E′ ∧ x i,n7−−−−→

z+z′
E

x i,n7−−→z E ? x′ i′,n′
7−−−→

z′
E′ ∧ x 6= x′ →

(x− i = x′ − i′ ∧ n = n′) ∨
x− i + n≤ x′ − i′ ∨
x′ − i′ + n′ ≤ x− i


{emp} x := new(E1 , ...,En) {x 0,n7−−−→

1
E1 , ...,En}

{E 0,n7−−−→
1

E1 , ...,En} disposeE {emp}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 2

E i,n7−−→z E′ → 0 < z≤ 1∧ 0≤ i < n

E i,n7−−→z E1 , ...,Ej ⇐⇒
E i,n7−−→z E1 ? (E + 1) i+1,n7−−−−→z E2 ? ... ? (E + j − 1) i+j−1,n7−−−−−−→z Ej

x i,n7−−→z E ? x i′,n′
7−−−→

z′
E′ → i = i′ ∧ n = n′ ∧ E = E′ ∧ x i,n7−−−−→

z+z′
E

x i,n7−−→z E ? x′ i′,n′
7−−−→

z′
E′ ∧ x 6= x′ →

(x− i = x′ − i′ ∧ n = n′) ∨
x− i + n≤ x′ − i′ ∨
x′ − i′ + n′ ≤ x− i


{emp} x := new(E1 , ...,En) {x 0,n7−−−→

1
E1 , ...,En}

{E 0,n7−−−→
1

E1 , ...,En} disposeE {emp}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 2

E i,n7−−→z E′ → 0 < z≤ 1∧ 0≤ i < n

E i,n7−−→z E1 , ...,Ej ⇐⇒
E i,n7−−→z E1 ? (E + 1) i+1,n7−−−−→z E2 ? ... ? (E + j − 1) i+j−1,n7−−−−−−→z Ej

x i,n7−−→z E ? x i′,n′
7−−−→

z′
E′ → i = i′ ∧ n = n′ ∧ E = E′ ∧ x i,n7−−−−→

z+z′
E

x i,n7−−→z E ? x′ i′,n′
7−−−→

z′
E′ ∧ x 6= x′ →

(x− i = x′ − i′ ∧ n = n′) ∨
x− i + n≤ x′ − i′ ∨
x′ − i′ + n′ ≤ x− i



{emp} x := new(E1 , ...,En) {x 0,n7−−−→
1

E1 , ...,En}
{E 0,n7−−−→

1
E1 , ...,En} disposeE {emp}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Block permissions – 2

E i,n7−−→z E′ → 0 < z≤ 1∧ 0≤ i < n

E i,n7−−→z E1 , ...,Ej ⇐⇒
E i,n7−−→z E1 ? (E + 1) i+1,n7−−−−→z E2 ? ... ? (E + j − 1) i+j−1,n7−−−−−−→z Ej

x i,n7−−→z E ? x i′,n′
7−−−→

z′
E′ → i = i′ ∧ n = n′ ∧ E = E′ ∧ x i,n7−−−−→

z+z′
E

x i,n7−−→z E ? x′ i′,n′
7−−−→

z′
E′ ∧ x 6= x′ →

(x− i = x′ − i′ ∧ n = n′) ∨
x− i + n≤ x′ − i′ ∨
x′ − i′ + n′ ≤ x− i


{emp} x := new(E1 , ...,En) {x 0,n7−−−→

1
E1 , ...,En}

{E 0,n7−−−→
1

E1 , ...,En} disposeE {emp}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

The magic of new

I The frame rule –{Q}C{R} =⇒ {P ? Q}C{P ? R} – is the centre
of separation logic.

I (And it has an interesting side-condition, which we shall return
to).

I The axiom for new –{emp} x := new() {x 7→ } – requires
new to be magic: it must never assign a value tox which will
break the frame rule.

I It’s only stage magic: new has a pile of stuff; you have a separate
pile; it gives you one from its pile on request; dispose takes one
from your pile and gives it back to new.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

The magic of new

I The frame rule –{Q}C{R} =⇒ {P ? Q}C{P ? R} – is the centre
of separation logic.

I (And it has an interesting side-condition, which we shall return
to).

I The axiom for new –{emp} x := new() {x 7→ } – requires
new to be magic: it must never assign a value tox which will
break the frame rule.

I It’s only stage magic: new has a pile of stuff; you have a separate
pile; it gives you one from its pile on request; dispose takes one
from your pile and gives it back to new.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

The magic of new

I The frame rule –{Q}C{R} =⇒ {P ? Q}C{P ? R} – is the centre
of separation logic.

I (And it has an interesting side-condition, which we shall return
to).

I The axiom for new –{emp} x := new() {x 7→ } – requires
new to be magic: it must never assign a value tox which will
break the frame rule.

I It’s only stage magic: new has a pile of stuff; you have a separate
pile; it gives you one from its pile on request; dispose takes one
from your pile and gives it back to new.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

The magic of new

I The frame rule –{Q}C{R} =⇒ {P ? Q}C{P ? R} – is the centre
of separation logic.

I (And it has an interesting side-condition, which we shall return
to).

I The axiom for new –{emp} x := new() {x 7→ } – requires
new to be magic: it must never assign a value tox which will
break the frame rule.

I It’s only stage magic: new has a pile of stuff; you have a separate
pile; it gives you one from its pile on request; dispose takes one
from your pile and gives it back to new.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 1

I Suppose that new keeps a hidden count for every cell/block it
gives you.

I You aren’t allowed to split permissions ‘silently’ as before, but
you can ask to have it done (it increases the permission count).

I Suppose that dispose will accept a fractional permission.
Silently, it decreases the permission count, and reclaims the
space iff the count is now zero.

I There’s a possibility that the fractional permission you are
holding is the last fraction left on earth (because other people
have disposed their fractions). You should surely be able to ask if
this is so!

I Can we make a logic for this language?
I Of course! (We may have to wait for the logicians to agree.)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 1

I Suppose that new keeps a hidden count for every cell/block it
gives you.

I You aren’t allowed to split permissions ‘silently’ as before, but
you can ask to have it done (it increases the permission count).

I Suppose that dispose will accept a fractional permission.
Silently, it decreases the permission count, and reclaims the
space iff the count is now zero.

I There’s a possibility that the fractional permission you are
holding is the last fraction left on earth (because other people
have disposed their fractions). You should surely be able to ask if
this is so!

I Can we make a logic for this language?
I Of course! (We may have to wait for the logicians to agree.)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 1

I Suppose that new keeps a hidden count for every cell/block it
gives you.

I You aren’t allowed to split permissions ‘silently’ as before, but
you can ask to have it done (it increases the permission count).

I Suppose that dispose will accept a fractional permission.
Silently, it decreases the permission count, and reclaims the
space iff the count is now zero.

I There’s a possibility that the fractional permission you are
holding is the last fraction left on earth (because other people
have disposed their fractions). You should surely be able to ask if
this is so!

I Can we make a logic for this language?
I Of course! (We may have to wait for the logicians to agree.)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 1

I Suppose that new keeps a hidden count for every cell/block it
gives you.

I You aren’t allowed to split permissions ‘silently’ as before, but
you can ask to have it done (it increases the permission count).

I Suppose that dispose will accept a fractional permission.
Silently, it decreases the permission count, and reclaims the
space iff the count is now zero.

I There’s a possibility that the fractional permission you are
holding is the last fraction left on earth (because other people
have disposed their fractions). You should surely be able to ask if
this is so!

I Can we make a logic for this language?
I Of course! (We may have to wait for the logicians to agree.)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 1

I Suppose that new keeps a hidden count for every cell/block it
gives you.

I You aren’t allowed to split permissions ‘silently’ as before, but
you can ask to have it done (it increases the permission count).

I Suppose that dispose will accept a fractional permission.
Silently, it decreases the permission count, and reclaims the
space iff the count is now zero.

I There’s a possibility that the fractional permission you are
holding is the last fraction left on earth (because other people
have disposed their fractions). You should surely be able to ask if
this is so!

I Can we make a logic for this language?

I Of course! (We may have to wait for the logicians to agree.)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 1

I Suppose that new keeps a hidden count for every cell/block it
gives you.

I You aren’t allowed to split permissions ‘silently’ as before, but
you can ask to have it done (it increases the permission count).

I Suppose that dispose will accept a fractional permission.
Silently, it decreases the permission count, and reclaims the
space iff the count is now zero.

I There’s a possibility that the fractional permission you are
holding is the last fraction left on earth (because other people
have disposed their fractions). You should surely be able to ask if
this is so!

I Can we make a logic for this language?
I Of course! (We may have to wait for the logicians to agree.)

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 2

x 7−−→
z1

E1 ? x 7−−→
z2

E2 ? ... ? x 7−−→zn En→
E1 = E2 = ... = En∧ z1 + z2 + ... + zn≤ 1(

x 7−−→
z1

E ? x 7−−→
z2

E ? ... ? x 7−−→zn E ∧
(z1 + z2 + ... + zn) ≥ (z1′ + z2′ + ... + zn′)

)
→

x 7−−−→
z1 ′ E ? x 7−−−→

z2 ′ E ? ... ? x 7−−−→
zn ′ E

{emp} x := new() {x 7−→
1

}
{E 7−−−−→

z+z′
E′} splitE {E 7−→z E′ ? E 7−−→

z′
E′}

{E 7−→z E′ ? E 7−−→
z′

E′} disposeE {E 7−−−−→
z+z′

E′}
{E 7−→z } disposeE {emp}
{E 7−→z E′} b := neoE {(b∧ E 7−→

1
E′) ∨ (¬b∧ E 7−→z E′)}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 2

x 7−−→
z1

E1 ? x 7−−→
z2

E2 ? ... ? x 7−−→zn En→
E1 = E2 = ... = En∧ z1 + z2 + ... + zn≤ 1

(
x 7−−→

z1
E ? x 7−−→

z2
E ? ... ? x 7−−→zn E ∧

(z1 + z2 + ... + zn) ≥ (z1′ + z2′ + ... + zn′)

)
→

x 7−−−→
z1 ′ E ? x 7−−−→

z2 ′ E ? ... ? x 7−−−→
zn ′ E

{emp} x := new() {x 7−→
1

}
{E 7−−−−→

z+z′
E′} splitE {E 7−→z E′ ? E 7−−→

z′
E′}

{E 7−→z E′ ? E 7−−→
z′

E′} disposeE {E 7−−−−→
z+z′

E′}
{E 7−→z } disposeE {emp}
{E 7−→z E′} b := neoE {(b∧ E 7−→

1
E′) ∨ (¬b∧ E 7−→z E′)}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 2

x 7−−→
z1

E1 ? x 7−−→
z2

E2 ? ... ? x 7−−→zn En→
E1 = E2 = ... = En∧ z1 + z2 + ... + zn≤ 1(

x 7−−→
z1

E ? x 7−−→
z2

E ? ... ? x 7−−→zn E ∧
(z1 + z2 + ... + zn) ≥ (z1′ + z2′ + ... + zn′)

)
→

x 7−−−→
z1 ′ E ? x 7−−−→

z2 ′ E ? ... ? x 7−−−→
zn ′ E

{emp} x := new() {x 7−→
1

}
{E 7−−−−→

z+z′
E′} splitE {E 7−→z E′ ? E 7−−→

z′
E′}

{E 7−→z E′ ? E 7−−→
z′

E′} disposeE {E 7−−−−→
z+z′

E′}
{E 7−→z } disposeE {emp}
{E 7−→z E′} b := neoE {(b∧ E 7−→

1
E′) ∨ (¬b∧ E 7−→z E′)}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 2

x 7−−→
z1

E1 ? x 7−−→
z2

E2 ? ... ? x 7−−→zn En→
E1 = E2 = ... = En∧ z1 + z2 + ... + zn≤ 1(

x 7−−→
z1

E ? x 7−−→
z2

E ? ... ? x 7−−→zn E ∧
(z1 + z2 + ... + zn) ≥ (z1′ + z2′ + ... + zn′)

)
→

x 7−−−→
z1 ′ E ? x 7−−−→

z2 ′ E ? ... ? x 7−−−→
zn ′ E

{emp} x := new() {x 7−→
1

}
{E 7−−−−→

z+z′
E′} splitE {E 7−→z E′ ? E 7−−→

z′
E′}

{E 7−→z E′ ? E 7−−→
z′

E′} disposeE {E 7−−−−→
z+z′

E′}
{E 7−→z } disposeE {emp}
{E 7−→z E′} b := neoE {(b∧ E 7−→

1
E′) ∨ (¬b∧ E 7−→z E′)}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 3

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}

splitx;
{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
i := [x] + 1;
{x 7−−−→

0.5
1∧ i = 2}

disposex
{emp ∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2;
{x 7−−−→

0.5
1∧ j = 3}

disposex
{emp ∧ j = 3}


{(emp ∧ i = 2 ? (emp ∧ j = 3)}∴{emp ∧ i = 2∧ j = 3}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 3

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}

splitx;
{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
i := [x] + 1;
{x 7−−−→

0.5
1∧ i = 2}

disposex
{emp ∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2;
{x 7−−−→

0.5
1∧ j = 3}

disposex
{emp ∧ j = 3}


{(emp ∧ i = 2 ? (emp ∧ j = 3)}∴{emp ∧ i = 2∧ j = 3}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 3

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}

splitx;
{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
i := [x] + 1;
{x 7−−−→

0.5
1∧ i = 2}

disposex
{emp ∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2;
{x 7−−−→

0.5
1∧ j = 3}

disposex
{emp ∧ j = 3}


{(emp ∧ i = 2 ? (emp ∧ j = 3)}∴{emp ∧ i = 2∧ j = 3}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 3

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}

splitx;
{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
i := [x] + 1;
{x 7−−−→

0.5
1∧ i = 2}

disposex
{emp ∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2;
{x 7−−−→

0.5
1∧ j = 3}

disposex
{emp ∧ j = 3}


{(emp ∧ i = 2 ? (emp ∧ j = 3)}∴{emp ∧ i = 2∧ j = 3}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 3

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}

splitx;
{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
i := [x] + 1;
{x 7−−−→

0.5
1∧ i = 2}

disposex
{emp ∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2;
{x 7−−−→

0.5
1∧ j = 3}

disposex
{emp ∧ j = 3}


{(emp ∧ i = 2 ? (emp ∧ j = 3)}∴{emp ∧ i = 2∧ j = 3}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 3

{emp}
x := new();
{x 7−→

1
}

[x] := 1;
{x 7−→

1
1}

splitx;
{x 7−−−→

0.5
1 ? x 7−−−→

0.5
1}

{x 7−−−→
0.5

1}
i := [x] + 1;
{x 7−−−→

0.5
1∧ i = 2}

disposex
{emp ∧ i = 2}

{x 7−−−→
0.5

1}
j := [x] + 2;
{x 7−−−→

0.5
1∧ j = 3}

disposex
{emp ∧ j = 3}


{(emp ∧ i = 2 ? (emp ∧ j = 3)} ∴ {emp ∧ i = 2∧ j = 3}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 4

{emp}
x := new();
{x 7−→

1
}

splitx;
{x 7−−−→

0.5
? x 7−−−→

0.5
}

disposex;
{x 7−→

1
}

[x] = 0;
{x 7−→

1
0}

disposex
{emp}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 4

{emp}
x := new();
{x 7−→

1
}

splitx;
{x 7−−−→

0.5
? x 7−−−→

0.5
}

disposex;
{x 7−→

1
}

[x] = 0;
{x 7−→

1
0}

disposex
{emp}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 5

neo needs global reasoning!!

{emp}
x := new();
{x 7−→

1
}

splitx;
{x 7−−−→

0.5
? x 7−−−→

0.5
}{x 7−−−→

0.5
}

disposex
{emp}

{x 7−−−→
0.5

}
skip
{x 7−−−→

0.5
}

 ;

{emp ? x 7−−−→
0.5

}∴{x 7−−−→
0.5

}
if neox then [x] := 0 else fault fi
{??}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Fractional permissions
Infinitesimal permissions
Block permissions
Permission counting

Permission counting – 5

neo needs global reasoning!!

{emp}
x := new();
{x 7−→

1
}

splitx;
{x 7−−−→

0.5
? x 7−−−→

0.5
}{x 7−−−→

0.5
}

disposex
{emp}

{x 7−−−→
0.5

}
skip
{x 7−−−→

0.5
}

 ;

{emp ? x 7−−−→
0.5

} ∴ {x 7−−−→
0.5

}
if neox then [x] := 0 else fault fi
{??}

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permission counting – a confession

I You probably think that neo is a big departure – but it’s no more
magic than new.

I But there is something wrong somewhere. Either ‘writing down’
of permissions and/or multiple dispose axioms causes an
apparent paradox (Hongseok Yang).

I Write z instead ofx 7−→z 17, write 0 instead ofemp:

{0.5 ? 0.5} disposex {1}
{0.5} disposex {0}

{0.5 ? ¬1} disposex {¬1}
{(0.5 ? 0.5) ∧ (0.5 ? ¬1)} disposex {1∧ ¬1}

I Oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permission counting – a confession

I You probably think that neo is a big departure – but it’s no more
magic than new.

I But there is something wrong somewhere. Either ‘writing down’
of permissions and/or multiple dispose axioms causes an
apparent paradox (Hongseok Yang).

I Write z instead ofx 7−→z 17, write 0 instead ofemp:

{0.5 ? 0.5} disposex {1}
{0.5} disposex {0}

{0.5 ? ¬1} disposex {¬1}
{(0.5 ? 0.5) ∧ (0.5 ? ¬1)} disposex {1∧ ¬1}

I Oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permission counting – a confession

I You probably think that neo is a big departure – but it’s no more
magic than new.

I But there is something wrong somewhere. Either ‘writing down’
of permissions and/or multiple dispose axioms causes an
apparent paradox (Hongseok Yang).

I Write z instead ofx 7−→z 17, write 0 instead ofemp:

{0.5 ? 0.5} disposex {1}
{0.5} disposex {0}

{0.5 ? ¬1} disposex {¬1}
{(0.5 ? 0.5) ∧ (0.5 ? ¬1)} disposex {1∧ ¬1}

I Oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permission counting – a confession

I You probably think that neo is a big departure – but it’s no more
magic than new.

I But there is something wrong somewhere. Either ‘writing down’
of permissions and/or multiple dispose axioms causes an
apparent paradox (Hongseok Yang).

I Write z instead ofx 7−→z 17, write 0 instead ofemp:

{0.5 ? 0.5} disposex {1}
{0.5} disposex {0}

{0.5 ? ¬1} disposex {¬1}
{(0.5 ? 0.5) ∧ (0.5 ? ¬1)} disposex {1∧ ¬1}

I Oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permissions for variables – a confession

I The frame rule has a side-condition:

{Q}C{R}
{P ? Q}C{P ? R} (modifies C ∩ vars P = ∅)

I Boyland deals with permission to access variables as well as
locations.

I Brookes’ semantics for ownership transfer needs a logical
treatment of permissions for variables, too.

I We don’t know how to do it!
I - without losing Hoare logic
I - and/or needing a garbage-collected ‘stack’
I Oh dear, oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permissions for variables – a confession

I The frame rule has a side-condition:

{Q}C{R}
{P ? Q}C{P ? R} (modifies C ∩ vars P = ∅)

I Boyland deals with permission to access variables as well as
locations.

I Brookes’ semantics for ownership transfer needs a logical
treatment of permissions for variables, too.

I We don’t know how to do it!
I - without losing Hoare logic
I - and/or needing a garbage-collected ‘stack’
I Oh dear, oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permissions for variables – a confession

I The frame rule has a side-condition:

{Q}C{R}
{P ? Q}C{P ? R} (modifies C ∩ vars P = ∅)

I Boyland deals with permission to access variables as well as
locations.

I Brookes’ semantics for ownership transfer needs a logical
treatment of permissions for variables, too.

I We don’t know how to do it!
I - without losing Hoare logic
I - and/or needing a garbage-collected ‘stack’
I Oh dear, oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permissions for variables – a confession

I The frame rule has a side-condition:

{Q}C{R}
{P ? Q}C{P ? R} (modifies C ∩ vars P = ∅)

I Boyland deals with permission to access variables as well as
locations.

I Brookes’ semantics for ownership transfer needs a logical
treatment of permissions for variables, too.

I We don’t know how to do it!
I - without losing Hoare logic
I - and/or needing a garbage-collected ‘stack’
I Oh dear, oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permissions for variables – a confession

I The frame rule has a side-condition:

{Q}C{R}
{P ? Q}C{P ? R} (modifies C ∩ vars P = ∅)

I Boyland deals with permission to access variables as well as
locations.

I Brookes’ semantics for ownership transfer needs a logical
treatment of permissions for variables, too.

I We don’t know how to do it!

I - without losing Hoare logic
I - and/or needing a garbage-collected ‘stack’
I Oh dear, oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permissions for variables – a confession

I The frame rule has a side-condition:

{Q}C{R}
{P ? Q}C{P ? R} (modifies C ∩ vars P = ∅)

I Boyland deals with permission to access variables as well as
locations.

I Brookes’ semantics for ownership transfer needs a logical
treatment of permissions for variables, too.

I We don’t know how to do it!
I - without losing Hoare logic

I - and/or needing a garbage-collected ‘stack’
I Oh dear, oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permissions for variables – a confession

I The frame rule has a side-condition:

{Q}C{R}
{P ? Q}C{P ? R} (modifies C ∩ vars P = ∅)

I Boyland deals with permission to access variables as well as
locations.

I Brookes’ semantics for ownership transfer needs a logical
treatment of permissions for variables, too.

I We don’t know how to do it!
I - without losing Hoare logic
I - and/or needing a garbage-collected ‘stack’

I Oh dear, oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Permissions for variables – a confession

I The frame rule has a side-condition:

{Q}C{R}
{P ? Q}C{P ? R} (modifies C ∩ vars P = ∅)

I Boyland deals with permission to access variables as well as
locations.

I Brookes’ semantics for ownership transfer needs a logical
treatment of permissions for variables, too.

I We don’t know how to do it!
I - without losing Hoare logic
I - and/or needing a garbage-collected ‘stack’
I Oh dear, oh dear!

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Summary

I Fractional permissions are wonderful.

I Infinitesimal permissions are interesting, and may be wonderful
one day.

I Block permissions are a bit complicated, and need some work.

I I think the permission counting idea might be made to work.

I Local reasoning is still hard.

I We must do variable-permissions.

I We are nowhere near the edge of this field yet.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Summary

I Fractional permissions are wonderful.

I Infinitesimal permissions are interesting, and may be wonderful
one day.

I Block permissions are a bit complicated, and need some work.

I I think the permission counting idea might be made to work.

I Local reasoning is still hard.

I We must do variable-permissions.

I We are nowhere near the edge of this field yet.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Summary

I Fractional permissions are wonderful.

I Infinitesimal permissions are interesting, and may be wonderful
one day.

I Block permissions are a bit complicated, and need some work.

I I think the permission counting idea might be made to work.

I Local reasoning is still hard.

I We must do variable-permissions.

I We are nowhere near the edge of this field yet.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Summary

I Fractional permissions are wonderful.

I Infinitesimal permissions are interesting, and may be wonderful
one day.

I Block permissions are a bit complicated, and need some work.

I I think the permission counting idea might be made to work.

I Local reasoning is still hard.

I We must do variable-permissions.

I We are nowhere near the edge of this field yet.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Summary

I Fractional permissions are wonderful.

I Infinitesimal permissions are interesting, and may be wonderful
one day.

I Block permissions are a bit complicated, and need some work.

I I think the permission counting idea might be made to work.

I Local reasoning is still hard.

I We must do variable-permissions.

I We are nowhere near the edge of this field yet.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Summary

I Fractional permissions are wonderful.

I Infinitesimal permissions are interesting, and may be wonderful
one day.

I Block permissions are a bit complicated, and need some work.

I I think the permission counting idea might be made to work.

I Local reasoning is still hard.

I We must do variable-permissions.

I We are nowhere near the edge of this field yet.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Summary

I Fractional permissions are wonderful.

I Infinitesimal permissions are interesting, and may be wonderful
one day.

I Block permissions are a bit complicated, and need some work.

I I think the permission counting idea might be made to work.

I Local reasoning is still hard.

I We must do variable-permissions.

I We are nowhere near the edge of this field yet.

Richard Bornat Ownership and permissions in Separation logic

Outline
Some Problems

Possible solutions
Confessions

Summary

Summary

I Fractional permissions are wonderful.

I Infinitesimal permissions are interesting, and may be wonderful
one day.

I Block permissions are a bit complicated, and need some work.

I I think the permission counting idea might be made to work.

I Local reasoning is still hard.

I We must do variable-permissions.

I We are nowhere near the edge of this field yet.

Richard Bornat Ownership and permissions in Separation logic

	Outline
	Some Problems
	Trees, DAGs and graphs
	Concurrency and Ownership
	Pipeline processing
	Summary

	Possible solutions
	Fractional permissions
	Infinitesimal permissions
	Block permissions
	Permission counting

	Confessions
	Summary

