Under consideration for publication in Formal Aspects of Computing

Explanation by refinement and
linearisability of two non-blocking
shared-variable communication
algorithms

Richard Bornat and Hasan Amjad
Middlesex University, London, UK

Abstract. Simpson and Harris have described multi-slot algorithms implementing a single-place buffer,
each operating without explicit hardware synchronisation mechanisms. Conventional refinement and proof
techniques have explained that these algorithms work, but do not give convincing descriptions of how they
work. An unconventional refinement process starting from the classic single-variable buffer, using both data
and atomicity refinement and drawing information from unsuccessful steps, derives each algorithm. The logic
used is RGSep, a marriage of rely/guarantee and concurrent separation logic. Extensive detailed verifications
are described. The result is an explanation of how the algorithms work and some pointers to how such
algorithms might be devised.

Keywords: separation logic, rely-guarantee, concurrency, proof, refinement, atomicity

1. Introduction

Most work in program verification is, rightly, about practical concerns. At the time of writing there is a
great deal of practical progress. Separation logic allows us to begin to deal with pointers, and there has been
significant work in dealing with concurrent algorithms. Developments in theorem proving and static analysis
techniques have advanced already to the point that automatic tools can guess and verify safety properties of
entire programs as large as a million-line operating system. Better still, we can find mistakes in those huge
programs, mistakes subtle enough to elude a type system.

In another direction we can use program logic to study programs that don’t have mistakes. Many simple
to understand algorithms lack formal proof. Developments in program logic mean that we can give some of
them straightforward simple proofs, proofs that justify our intuitions of how they work. Simple, clear proofs
are beautiful. Beautiful algorithms deserve beautiful proofs.

Correspondence and offprint requests to: Richard Bornat, Department of Engineering and Information Sciences, Middlesex
University, LONDON, NW4 4BT, email: R.Bornat@mdx.ac.uk

2 R. Bornat and H. Amjad

But there are algorithms which aren’t simple, which aren’t clear, which we understand with difficulty if
at all. If their complexity and intricacy is essential then perhaps they are as beautiful as they can be. But
because they are difficult to understand, not very many people will see their beauty. If we could make a
beautiful proof of those algorithms, perhaps the proof itself could serve as explanation.

Concurrency is the area of programming where such beasts are the most common, and where it seems we
need them: we have to pull tricks to solve tricky problems. This paper is an attempt to use formal reasoning
to reveal the beauty of two tricky concurrent algorithms. If it generates understanding along the way then
that can be seen as practical; to build a better mousetrap you must understand current technology.

2. Background

Dijkstra [Dij65] defined the first classic concurrency problem, that of two processes/threads communicating
through a single shared ‘buffer’ variable: one writing; the other reading. The difficulty is that writing and
reading aren’t instantaneous operations, so that if their executions overlap in time, the reader may extract
a value from the buffer which is made up of parts of two or more distinct written values. The solution that
Dijkstra put forward, use of semaphores to ensure turn-taking, is nowadays challenged by so-called non-
blocking algorithms in which the processes do not pause for each other but do manage to avoid overlapping
reads and writes.

One famous non-blocking algorithm is by Simpson [Sim90], which uses an array of four data slots and
some single-bit index variables to control their use. It apparently uses no synchronisation mechanisms and
is wait-free [Her91], or asynchronous: neither reader and writer loops during its operation on the shared
buffer. Another is Harris’s algorithm [Har04], which is also wait-free but uses only three slots. Simpson’s
algorithm was devised as an illustration of a particular interprocess communication mechanism in the MAS-
COT software engineering framework [SJ79, [Sim86] and is practically useful, for example in connecting a
sensor to a data collector, but its economy and novelty attracted those keen to extend the range of formal
proof of algorithms. Harris’s algorithm was devised in response to the challenge to construct an equally
capable algorithm with fewer than four slots. Both algorithms are maddeningly concise and lack accessible
explanation of how they work, why they never go wrong and how they achieve communication.

There can be no doubt about the validity of these algorithms: they do achieve reliable and effective
communication. Simpson’s algorithm can relatively easily be model-checked: Simpson himself justifies it in
those terms [Sim92] [Sim97al as does Rushby [Rus02]. There are also formal treatments which don’t use model
checking [HP02) [Hen03, [PHA04] and our own contribution in [BA10]. Harris’s algorithm could equally easily
be model-checked and is formally proved by us in [BAI0]. If a beautiful proof of an algorithm is one which
elegantly and simply justifies our intuitions of how it works, none of these proofs, including our own, is
beautiful. We lack intuitions which can be justified, and none of these proofs provides insight: all of them
elaborate a great deal of detail in order to justify the claim that good things happen and bad things don’t.
We need more than that to understand what is going on, either to be able to reproduce the algorithm or to
build new similarly intricate algorithms.

Refinement is a formal approach which might be said to concentrate upon explanation. It normally starts
with a highly abstract specification which is implemented by a magical program and modifies specification
and program step by step together, making the specification less abstract and the program less magical,
to produce an implementable algorithm. Each step preserves the correspondence between specification and
program and is small enough to be intuitively justifiable. If the end result is a known algorithm like Simpson’s
or Harris’s, the process can reasonably be said to stand as an explanation of why the algorithm is written
as it is and how it really works. This is the approach followed by Abrial [ACO06, [Abr0§] and Jones and
Pierce [JPO8, [JP09].

We believe that these explanations start from too low a level, conceding too much in their specification
to the final algorithm. In this paper we attempt an alternative approach, starting with a simple but difficult-
to-implement algorithm which has a simple specification, and working by steps of atomicity refinement and
data refinement towards the algorithm we want to explain. Jones and Pierce present but reject this simpler
specification, claiming that it does not properly deal with overlapping concurrent read and write operations;
we argue in that this objection is invalid. Abrial’s specification is in terms of interleaving of sequences,
as is ours, but he too finds it necessary to discuss the properties of overlapping executions, which we are
able to deal with implicitly.

Explanation by refinement and linearisability of two non-blocking shared-variable communication algorithms 3

3. Outline

In order that the structure of our argument is not obscured by its details, we give an overview. Our goal is
a buffer algorithm whose only atomic actions are single-bit reads and writes. We start with a single-variable
buffer algorithm (fig. , which has a fairly straightforward specification, is easy to verify, but requires an
implementation of atomic shared-variable access. We make a data refinement to replace the single variable
by a two-slot array plus a single-bit index variable. This generates an algorithm (fig. which fails atomicity
refinement, because the refined reader is not guaranteed to read values in the sequence that they are written.
An alternative data refinement, to two slots plus two index variables, gives fig. which we atomicity-refine
into fig. A second data refinement divides each of the buffer slots into a pair (fig. , using an extra two-
element array of single-bit indices. Atomicity refinement then gives us Simpson’s 1990 four-slot algorithm
(fig. [40).

A second alternative refinement to two slots plus an indexing variable and a danger-signalling variable
gives fig. [43] but because there is a loop in the reader the algorithm is not wait-free. Data refinement on the
danger signal produces a three-slot algorithm which is once again wait-free (fig. , and atomicity refinement
then produces what is essentially Harris’s algorithm (fig. .

4. Our logic

Our verifications use rely-guarantee [Jon83] in a presentation derived from Vafeiadis [Vaf07]. This presen-
tation was devised to support a combination of concurrent separation logic [O’HO7] and rely-guarantee. We
don’t use separation or ownership transfer, unlike our earlier effort in [BAT0]; nevertheless we find that the
Vafeiadis presentation style has some advantages.

The quintuple C'sat (P, R,G, Q) states that any execution of C, in a state which satisfies P, under
interference at most R, will cause at most interference GG and, if it terminates, will produce a state which
satisfies Q). P and @ are assertions describing sets of states; R and G are state to state relations. The rule
of parallel composition is straightforward:

Clsat(P1,RUG2,G1,Q1) C2sat(P2,RUGI,G2,Q2) y
arallel composition
(C1 | C2)sat(P1AP2,R,G1U G2, Q1 A Q2) ’ ’ (1)

Each thread must suffer the interference of the environment and its partner together; the environment
must suffer the interference of both. Pre and postconditions must satisfy the requirements of each thread
separately.

It is with the treatment of shared store and interference that our presentation differs from the standard.
Our assertions are about state, as in Hoare logic: that is, postconditions do not describe a relation with the
precondition. Assertions are written in two parts: assertions about shared store are boxed; assertions about
thread-local store are unboxed. Boxed assertions may only refer to shared store, unboxed to local store.
Atomic instructions may access shared and local store; non-atomic instructions may only access local store.
Actions P ~» @ state how an atomic instruction can change shared store from state P to state Q; since
both P and @ describe sets of states, actions are relations between sets of states and we can form relies and
guarantees as usual.

The presentation hinges on the treatment of atomic instructions, which may access shared store. The
instantaneous effect of an execution (C) — by convention we use angle-bracketing to indicate atomicity — is
dealt with by the rule (adapted from [VP0T])

{PAsP}C{QANsQ} sP~sQCG
atomic instruction

(C)sat(P/\W,R,G,Ef(Q/\)) 2)

P is the local-store precondition. sP is the shared-store precondition. P can’t mention shared store, and
sP can’t mention local store. The corresponding postconditions are () and s@. The Hoare-logic triple
{P A sP} C {Q A sQ} shows the effect of the command on the combination of local and shared store. The
action of (C) is its effect on shared store, and is written sP ~~ 5QE| That action, which is itself a relation

1 In RGSep proper, we have to be concerned about precise assertions in order that resource splits are unambiguous. In this

4 R. Bornat and H. Amjad

{x=3]} { 3B(b = B) }

{b=15} {b=B}
yZ:b b

{y=BAb=B} _BAb=B} =
B

{
{y=Bnr[b=B]| {s—BAIB (b B
{3B(y=81[380=5)])}

(a) Mid stability (b) Full stability

Fig. 1. Two alternative verifications of an atomic read

between states, must be contained in the guarantee G of the maximum effect of the thread on shared store.
Because local (unboxed) assertions can only mention local store, and shared-store (boxed) assertions can
only mention shared store, we use existential quantification to allow the local postcondition to refer to values
retrieved from the shared store by (C). In our treatment this happens only occasionally: see, for example,

figures [§] and
4.0.1. The treatment of stability

This rule is deliberately crafted to deal with the instantaneous effect of the atomic instruction (C) and
says nothing about stability. If sP holds in the instant before the instruction is executed, then s@ holds
immediately afterwards. This is a variation of Vafeiadis’s mid-stability presentation, which we have adopted
because it makes certain properties of atomic instructions easier to understand.

Consider, for example, the atomic instruction (y := b) where y is a local variable but b is shared and
subject to interference —i.e. R is such that the environment can interfere by rewriting b. It’s obvious that the
assignment retrieves the value of b at some instant, but that the value it retrieves isn’t a stable value of b,
because under those circumstances there is no stable value of b. Our treatment of the command is shown in
fig. by default upper-case identifiers stand for universally-quantified values, and the verification shows
clearly that whatever the value of b in the instant before execution, that same value is in y and in b in the
instant afterwards.

By contrast, if we were to insist, as in the full stability presentation, that pre and postconditions must
make stable assertions about shared store, invariant against actions contained in R, we should have to reason
as in fig. The stable precondition states that there is a value in b. The internal Hoare-logic verification
(note that the rule strips away the existential in the antecedent precondition) shows that this value is copied
to y; we can see that at least for an instant y and b contain the same value. But then the requirement that the
shared part of the postcondition be stable means that we must immediately weaken that shared part — that
is, b = B — to allow for the interference of the environment. We do that by introducing an existential, and
the link between y and b is lost. The deduction is sound and not misleading: there isn’t a stable connection
between the values of y and b after the atomic command executes. But something is obscured, which is that
the command retrieves a value which is, if only instantaneously, in the shared variable b.

We can’t ignore stability, and we require it in sequences of actions. If we consider the sequence C1; C2
and we assert

{PA[sP]} c1 {P’/\} c2 {Qr[sQ]} (3)

then we can say that sP is the instantaneous shared-store precondition of the sequence and s@ its instan-
taneous shared-store postcondition. But the intermediate shared-store assertion sP’, which holds from the
instant after the execution of C1 until the instant before the execution of C2, holds for an interval and must

paper that care is unnecessary: we can see how to separate assertions P and sP because one refers only to local store, the other
only to shared store, and there is no means of resource transfer.

Explanation by refinement and linearisability of two non-blocking shared-variable communication algorithms 5

therefore be stable. We impose the requirement of stability in the sequence rule

C1sat(P A , R,G,P' A) sP' stable under R C2sat(P’ A , R.G,QN)
(C1; C2)sat (P A[sP] R, G,QA|sQ)) R (4)
Where necessary we use the rule of consequence to provide the necessary stability.
4.0.2. Triples rather than quintuples
Quintuple assertions C'sat (P, R, G, Q) are unwieldy. For simplicity and clarity in presentation of proofs,
since we are dealing with algorithms in which there are only two threads and a single parallel composition,

we keep R and G implicit: the writer’s R is the reader’s G and vice-versa. Our versions of the atomic
instruction rule and the instruction sequence rule are then

PAsP} C A P caG
{ sP} {QAsQ} sP~sQC atomic instruction (abbreviated)

{Pa[3E6P)]} () {37 (@A [5Q))} (5)

{P /\} C1 {P’ A } sP’ stable under R {P’ A } C2 {Q /\}
sequence (abbreviated)
{PnlsP]} c1;02 {Qn]sQ]) (6)

4.1. Atomicity refinement

Suppose we have an atomic sequence (A; B) with a verified specification

{Palselt (4sm) {Qn[s@]} ™)

and that we have shown the environment’s assertions stable under the action sP ~> s@.
We wish to refine the original atomic instruction into a sequence of two atomic instructions (A); (B).

Verification of the refined sequence with the same precondition as before requires a step of stabilisation
between (A) and (B):

{PA[sP]} (4) {P’ A }

sP" = sP"; sP" stable under R (8)
{7 alspl} 8y {@ as@]}

The refined version generates two actions sP ~» sP’ and sP” ~» sQ’, and a postcondition Q' A which

may not be the same as Q A .

For this to be an atomicity refinement we require that the environment cannot tell the difference, and that
the sequential context into which the original fitted accepts the refined version. The first of these conditions is
straightforward: we must show that the environment’s assertions are as stable under the two refined actions
as they were under the single original. The second is more subtle: sQ and sQ’ must stabilise to the same
assertion, and the local precondition of anything which followed (A; B) and now follows (A); (B) must be
implied by @’ as it was by Q.

In practice in our atomicity refinements @ and @Q’ will often be identical and sP ~ sP’ will often be the
identity action or deal with state that isn’t mentioned in the environment’s assertions. All of this will make
the verification of atomicity refinement straightforward.

We note that atomicity refinement is not local reasoning: we have to assess, in all the other threads, the
interference of the refined sequence on their previously-stable assertions. In this paper that isn’t much of a
problem, because there is only one other thread, so not much to check, and because we use a communication
invariant to simplify a lot of stability arguments.

6 R. Bornat and H. Amjad

datab = nullin

(... calls of write(-) calls of read(-) ... >
write(dataw) = (b := w) dataread() = datayin(y := b); returny ni

ni

Fig. 2. A single-variable buffer, with angle-bracketed atomic instructions

5. The atomic single-slot algorithm

Fig. [2|is a buffer algorithm using a single shared variable b. Two processes/threads are composed in parallel:
one makes calls write(WW) which writes the value W to the buffer; the other makes calls read() which
retrieve the current value from the buffer. The algorithm is idealised in the sense that it depends upon
an unexplained execution mechanism: the angle-bracketed buffer accesses are required to occur atomically,
which ideally means instantaneously and never at the same instant. Because execution is instantaneous and
instants infinitesimally small, neither operation has to wait for the other and there is no need of a scheduler.
A write(w) call on one side of the parallel composition executes (b := w), instantaneously writing to the
buffer; a read() call on the other side executes (y := b), instantaneously reading. It’s obvious that this is a
wait-free algorithm: the writer can always operate without waiting for the reader, and vice-versa, and every
procedure call will always terminate.

Instantaneous non-overlapping execution is impossible in practice. We might settle for interleaving of
competing pseudo-atomic executions, which isn’t difficult to implement: we could, for example, make each
atomic instruction a critical section by bracketing it with P(m) and V(m) where m is a global binary
semaphore. But such an implementation complicates the issue by introducing questions of fairness and
liveness: an unfair scheduler might prevent one or other process from ever executing its critical section,
and it could be difficult to prove that that never happened. We don’t, therefore, want to consider how to
implement atomicity. It will be the unexplained mechanism in our idealised algorithm, and removing it the
goal of our refinement.

The important properties of this algorithm have to do with communication: it is potentially lossy and
stuttering, which might be thought to be drawbacks, but it also exhibits freshness and coherence [Sim90],
which are definitely advantages. Lossiness and stuttering are essential characteristics of wait-free single-place-
buffer algorithms: the writer can overwrite the buffer at any time, so some written values may never be read
(lossiness); and the reader may read the buffer at any time, so some values may be read more than once
(stuttering). But each time the reader executes (y := b), it is certain to get the latest value that the writer
has placed there (freshness)ﬂ and the writer always writes a complete value with (b := w), so the buffer
only ever contains complete values, and the reader therefore always retrieves a complete value with (y := b)
(coherence).

Our description of the properties of the algorithm in fig. [2| — stuttering, lossiness, coherence, freshness —
is essentially Simpson’s, and we take this algorithm to be the specification of a single-place buffer. Single-
place buffer algorithms must do some or all of what this algorithm does, we assert, or else they aren’t
single-place buffer algorithms. But there is an objection to considering this algorithm as a starting place
in a refinement process. First we note that, so far as communication is concerned, it defines a sequential
interleaving of (b := w) and (y := b) operations. A sequential specification may not sufficiently constrain
the refined algorithm: atomicity refinement adds interactions and therefore potentially adds communication
behaviours. Jones and Pierce [JP08|, [TP09] object that a sequential specification like ours, with single atomic
actions in writer and reader, must be inadequate because it doesn’t sufficiently describe behaviour of the
refined algorithm in which reads and writes are sequences of actions rather than atomic actions, and therefore
can overlap. We deal with that objection in after we have annotated the specification to permit formal
description and refinement.

5.1. A communication invariant

The writer in fig. [2| produces a sequence of values, and the reader consumes some or all of those values. To
facilitate reasoning about the sequences of values written and read, we introduce a version of the algorithm,

2 If it reads before the first write it will see the initial value null, but we treat that as if it was the first value written.

Explanation by refinement and linearisability of two non-blocking shared-variable communication algorithms 7

datab = nullindata* ws = .null,rs = . in
... calls of write(_) calls of read() ...
(write(dataw) = (b := w; ws := ws.w) >
dataread() = datayin(y :=b; rs := rs.y);return y ni

nini

Fig. 3. A single-variable buffer, with darkened auxiliary annotations

in fig. 3] with added assignments to auxiliary data-sequence variables ws and rs to record those sequences.
Because we use angle brackets for atomic instructions, we can’t use them for sequences; so ‘s.x’ appends the
single value x to sequence s; ‘.’ is the singleton sequence containing x; and ‘.’ is the empty sequence.

We capture the first part of our requirements for communication with the assertion

lrs] < ws Awsqg =0 (9)

— the read sequence destuttered is a subsequence of the written sequence, and the value in the buffer is
the last element of the written sequence. We shall see that this assertion is invariant under the actions of
either thread from fig. [3] The first part of the invariant deals with stuttering (we consider |rs] rather than
simply 7s), lossiness (subsequence < rather than equality) and coherence (the values in 7s come only from
ws). The second part helps with consideration of freshness: it’s obvious, given wsqg = b, that our annotated
specification algorithm always assigns the last element of ws — the latest written value — to y.

But what is obvious must be stated formally. Our specification of freshness is that if B is the initial value
in the buffer when the reader begins, we require when it ends that it has assigned a fresh value to y:

dB'(y = B' A |rs.B.B'| < ws) (10)

— the value in y is part of the written sequence and no earlier in that sequence than B. This is a somewhat
informal specification because it requires context (B is the value in the buffer when the reader starts) before
it can be interpreted. It is obviously true of the algorithm in fig. [3| (because B = B’ = wsgq after y := b); in
later refinements we shall see that this formulation emerges naturally from our verifications, which provide
the necessary context. Note that this specification allows the writer to add to the sequence between the
time that the reader starts (the instant when the reading process calls read()) and the time that it retrieves
a value (the instant that the read() procedure executes y := b in our idealised algorithm). Again, this is
essentially Simpson’s definition of freshness.

When we come to refine our algorithm we shall have a multi-variable implementation, and read and write
operations will no longer contain a single atomic action, but we still shall have a single-place buffer — only
a single buffered latest value, and no queuing. We shall, therefore, hold on to lossiness and stuttering; and
we must surely hold on to coherence and freshness.

5.2. Is it a sufficient specification?

Atomicity refinement, by converting atomic sequences into sequences of atomic actions, adds interaction
behaviour: actions which were instantaneous and necessarily alternated become extended over time and can
therefore overlap. By allowing reads and writes to overlap we might add communication behaviours, and
then (9) and might not specify the behaviour of the refined algorithm. Jones and Pierce [JP0S, [JP09)
insist that it is necessary to constrain the behaviour of the refined algorithm as part of the specification,
and that it is not enough to describe, as we do, a simple sequential interleaving of reads and writes. We
assert, however, that our refinements add no communication behaviours and that therefore our specification
is adequate. The basis of our argument is that all the refinements we consider (with the exception of the
faulty fig. are linearisable [HW90] and therefore every concurrent execution is equivalent to a sequential
execution.

We have chosen to wrap our atomic communication operations in procedure definitions because it isolates
the sites at which we have to perform refinement. Procedure calls take time, so there will be an interval
between the start of a write(w) call and execution of the atomic (b := w) operation it contains; during that
interval one or more read() procedure calls might execute their (y := b) operations. The same applies to
the interval between execution of (b := w) and the return of the write(w) call, and the reverse applies to
the similar intervals in the execution of read() procedure calls, during each of which there can be write(w)

8 R. Bornat and H. Amjad

writes

reads

Fig. 4. Concurrent execution with write procedure calls overlapping a read

wl w2 rl w3 w4 wS
| | | | | |

Fig. 5. Sequential execution equivalent to fig.

calls for various different values of w. So there is a sense in which even this simple algorithm generates
concurrent overlapping executions. Fig. [d] shows an example in which several writes overlap a single read,
with a horizontal line showing the duration of a procedure call and a vertical spike the execution of each
atomic operation.

But the concurrency can be simplified: the write(_) calls which execute their atomic operation before
(y := b) might as well have taken place before the read() call started, and those which execute their atomic
operation after (y := b) might as well have waited until it returns. Fig. |5| shows the sequential execution
equivalent to fig. [@] - note that in pushing writes aside we haven’t reordered their executions.

Not much seems to have happened: the order of procedure executions in fig. |5| is just the order of the
atomic executions in fig. [4} and indeed that is the point. The sequential and concurrent executions are
equivalent, in the sense that reader and writer can’t tell the difference between them, just because the
spike-orders are the same. We don’t even need to know where the atomic-execution spikes occur within the
procedure call execution interval: it’s enough to observe that for every concurrent (overlapping) execution
there is an equivalent (non-overlapping) sequential execution which gives just the same order of spikes.

We have illustrated the principle of linearisability with an example. If concurrent procedure call executions
have the character that they each contain exactly one instant — an atomic execution, called a linearisation
point — before which the procedure call has had no effect (write) or has not fixed upon a value (read), and
after which the effect is visible (write) or the value is decided (read), then they can always be rearranged
into an equivalent sequential execution. The effects of all concurrent executions are contained within the
effects of all sequential executions: nothing is left out.

All the algorithms we consider (with the exception once again of the faulty fig. have just this character.
In write procedures the linearisation point is either the buffer assignment or one of the index-variable updates
which follow it, but is always annotated with an assignment to ws. The linearisation point for reads is trickier
to identify, because it is often in the writer rather than in the reader. We prefer to appeal to the notion of
freshness and to observe that if our freshness condition y = B’ A |rs.B.B’| < ws holds, where B is the buffer
value when the reader begins, then

either B = B’ and the linearisation point is the instant the reader began; the write procedure call which
wrote B effectively occurred before the read call; and all subsequents writes effectively occur after the
read call.

or B # B’ and B’ was written after B by an overlapping write procedure; the linearisation point of the read
is the linearisation point of that write; that procedure call, and all the writes which precede it, effectively
occurred before the read; and all subsequent writes effectively occur after the read.

We prefer not to make linearisation points explicit in our arguments, since to do so would simply repeat
the argument above in local detail. What is important is that our algorithms, up to and including Simpson’s
and Harris’s algorithms (fig. and fig. are linearisable refinements of fig. |3 The behaviours of the
algorithm in fig. [3]encompass the behaviours of the refinements so far as communication is concerned. There
is no need to say more about concurrent executions. Jones and Pierce’s objection is mistaken; we have an
adequate specification.

Explanation by refinement and linearisability of two non-blocking shared-variable communication algorithms 9

{sz/\|b=B/\ws= WS.B A |rs] 4ws|}

{w=WAb=BAws= WS.BA|rs| < ws}
b:=w

{w=WAb=W Aws= WS.BA |rs] < ws}
ws 1= ws.w

{w=WAb=W Aws=WS.BW A |rs] < ws}

{w:W/\|b=W/\ws: WS.B.W A |rs] 4ws|}

Fig. 6. Mid-stability verification of single-variable writer

{|b:B/\TS=RS/\’wS=WS.B/\L?"SJ#UJSH
{b=BArs=RSANws= WS.BA|rs] < ws}
y:=>b
{y=BAb=BArs=RSNws= WS.BA|[rs] < ws}
TS 1= Ts.y
{y=BAb=BArs=RSBAws=WS.BA|rs| < ws}

I
{y:B/\|b:B/\rs=RS.B/\ws:WS.BALr5j<w5|}

Fig. 7. Mid-stability verification of single-variable reader

5.3. Verification of the single-variable algorithm

Our verification of the single-variable writer is shown in fig. @ Just before execution of (b := wj;...) the
buffer contains a value B, the value to be written is W, and the written sequence is WS .BE| We observe
that if | X| < Z.B then | X| < Z.B.W, which enables us to conclude that |rs| < ws still holds after the
update of ws. Ignoring the value of rs which doesn’t change during this atomic execution and writing WS
in place of WS.B, we extract the action

b=BAws=WS~b=WAws=WSW (11)

Mid-stability verification tells us what the atomic instruction inside a write(w) procedure call does, but we
might like to know the stable pre and postcondition of the procedure call itself. The reader can change rs,
which is mentioned in both assertions but, as we shall see, if it does so it preserves |rs| < ws. So both pre
and postcondition of fig. |§| are stable, and they are the stable pre and postcondition of write(w).

We verify the single-variable reader in fig. [} We observe that if | X | < Z.B then | X.B| < Z.B, which
enables us once again to verify that |rs] < ws is invariant. Dropping irrelevant detail, this verification

3 By convention we write quantified variables in upper case and in the absence of explicit quantification there is an implicit
universal quantification over the entire verification. So B, W and WS are universally quantified in fig. @

EIB,WS(sz/\rs:RS/\ws:WS.B/\LrsJﬁws)}
{b=BArs=RSAws= WS.BA|rs] < ws}
y:=b
{y=BAb=BArs=RSANws=WS.BA|rs|] < ws}
rS = Ts.Y
{y=BAb=BArs=RS.BAws=WS.BA|rs| < ws} =
{y=BArs=RS.BA|rs| < wsAwsq=">b}

{EB(y:B/\|Ts:RS.B/\LrsJ <wsAst:b|)}

—~

Fig. 8. Full-stability verification of single-variable reader

10 R. Bornat and H. Amjad

| BArs=RSAws= WS.BA|[rs] = ws|}

{y:=1b)
Yy = B/\|b—B/\r5—RS/\w5— WS.B A |rs] < ws|} = (stability)

(rs := rs.y)
Yy = B/\|rs—RSB/\LrsJ ws/\st—b|}

{
{
{y B/\|7"8—RS/\LRSBJ ws A |rs] < ws A wsqg =b |}
{

Fig. 9. Atomicity refinement of single-variable reader

datab = null indata* ws = .null,rs = . in
- .. N b= w; .d.a.ta read() = datayin
write(dataw) = < ws = WS > () (%/: b):
(rs := rs.y);
returny

ni
nini

Fig. 10. Atomicity-refined single-variable single-place buffer

generates the action
b=BArs=RS~b=BArs=RS.B (12)

In the instantaneous postcondition y holds the same value as the last element in the written sequence — that
is, the reader has retrieved the freshest possible value. This is definitely a mid-stability deduction: both pre
and postcondition are unstable since the writer can alter both b and ws. The full-stability verification is
shown in fig. [8] in which it is only possible to see that the reader has retrieved a fresh value if we look at
the deduction inside the angle brackets. This enables us to see the stable pre and postcondition of a read()
procedure call, for what it’s worth.

5.4. Atomicity refinement of the single-variable algorithm

We can’t do atomicity refinement on the writer, because if we separate the updates of b and ws we cannot keep
wsq = b invariant. But we can atomically refine the reader’s atomic operation into (y := b); (rs := rs.y).
The verification in fig. [0] uses the same precondition as fig. [7] In the postcondition of the first step we see
freshness just as before: y = b = wsg. In the stability weakening step, required in the sequence rule @ and
allowing in this case for the fact that the writer can alter b and add to ws, that association is lost. But
the fact that B is a valid appendage to rs is stable under the writer’s action 7 so we retain it. In the
postcondition we see that the value of b at the instant we begin is the value of y at the instant we end;
otherwise the postcondition is a stabilised version of the postcondition of fig. [7] which fulfils the second
requirement of atomicity refinement. The action of (y := b) is the identity action, which cannot destabilise
anything; the action of (rs := rs.y) is

rs = RS AN |RS.B] < ws ~ rs = RS.B (13)

which does not destabilise the writer’s pre or postcondition since it only writes to rs in circumstances which
preserve | rs| < ws, which fulfils the first condition of atomicity refinement. We have an atomicity refinement,

shown in fig.

6. Refinement to two slots

We need atomicity in the single-variable algorithm because reader and writer compete for access to the same
variable. If the buffer variable could be refined by two variables to give a multi-variable but still single-place

Explanation by refinement and linearisability of two non-blocking shared-variable communication algorithms 11

data c[2] = (null, null) inbit! = Oindata* ws = .null, rs = . in

write(dataw) = dataread() =
(c[l] == w;l =1 ws := ws.w) datayin
(y = cll); (rs = rs.y)
returny
ni
ninini

Fig. 11. Two slots, writer chooses

{w:W/\|l:L/\ws: WS.B A |7s] ;<ws/\c[L]zB|}

(c[N] :=w;l :=1; ws := ws.w)

{w:W/\|l:!L/\w5: WS.BW A |rs] #ws/\c[L]zB/\c[!L}:WH

Fig. 12. Data refinement of fig. [f] to two slots (writer chooses)

buffer, we might hope that reader and writer could operate in different variables at the same time, achievin
overlapping executions without compromising coherence. Following [Sim90] we use a two-element array
and a single-bit index variable [to point to the position — the slot — containing the last-written value. In
assertions we replace b = F by c[l] = E. The refined invariant is

[rs] < ws A c]l] = wsq (14)

We can easily refine (y := b) to (y := c[l]), but refining (b := w) isn’t so immediate. There are two
straightforward possibilitiesﬂ

{ell] = w) (15)

(el] :==w; 1 :=1) (16)

The first writes directly into c[l]; the second does not write to ¢[l] but by manipulating ! it changes the
referent of ¢[l] and so achieves ¢[l] = w. The second operates in two steps, which will be important when we
come to atomicity refinement. For now we note that a refinement which used only the single-step would
use only one of the two slots, which would seem to make the refinement pointless. We investigate first of all,
therefore, an algorithm which uses only the two-step .

7. A two-slot algorithm — first attempt

Fig. shows the two-slot algorithm which refines b := w with (16]). Inspired by Simpson [Sim97a] we call
this algorithm ‘writer chooses’, because the writer decides the slot into which it will write and the reader
must follow.

Because everything is atomic we retain coherence; because we have refined y := b by y := ¢[l]; and because
we retain c[l] = wsq we retain freshness. In the writer, data refinement of the pre and postcondition from fig.
[l and introduction of a universally-quantified L so that we can track the value of I gives us the specification
in fig. which is easily verified (details omitted) and produces the action

Il=LAws=WSAc[L]=B~1=ILAws=WSWAc[L]=BAc[\L] =W

This is a straightforward data refinement of . We have had to be explicit about the value of [because
it is changed, but otherwise it changes c[l] = B on the left to c[l] = W on the right, just as changes

4 In our refinements we do not use the long variable names that Simpson and Harris used. Instead we use single-letter names
to save space in assertions.
5 To save space in our programs and assertions we use the C bit-inversion !F rather than 1 — F to invert a single-bit value
(l0=1-0=1, !1=1-1=0).

12 R. Bornat and H. Amjad

&
I
oy
A
>
IS
»
I
2
oy
>
cl
%
g
w»
>
,i‘
Il
&
—

y=DBA

rs = RS ANws = WS.BA|rs] g wsAcll]=B |} = (stability)

y=B/\|7“5:RS/\ |RS.B| < ws A|rs] < ws/\c[l]zst|}

(rs := rs.y)

y:B/\|r32RS.B/\LrsJ < ws A c]l] = wsq |}

Fig. 13. Data refinement of fig. [J] to two slots (writer chooses)

{w:W/\|l:L/\ws: WS.B A |7s] ;<ws/\c[L]=B|}
(c[ll] == w)
{w:W/\|l:L/\ws= WS.B A |rs] ﬁws/\c[L}:B/\c[!L]:WG

(I :=; ws := ws.w)

{w:W/\|l:!L/\w5: WS.BW A |rs] #ws/\c[L]zB/\c[!L}:WH

Fig. 14. Atomicity refinement of two-slot writer (writer chooses)

b= B to b= W. In this action ¢[L] = B appears on both sides, because that slot doesn’t change, but we
don’t need to mention parts of shared store which don’t change. We simplify the action, therefore, into

l=LAws=WS~1l=ILAws=WSWACcL =W (17)

In the reader, data refinement of assertions gives us fig. which also verifies easily. Because b wasn’t
mentioned in the single-slot reader’s actions the refined version produces the same actions as before: identity
action in the first step; in the second step. As before we see freshness, and we have a simply refined
postcondition.

The writer is ripe for atomicity refinement. We can separate c[!l] := w from [:= lI: the reader’s assertions
depend on the value in c[l], not ¢[!]; so ¢[li] := w won’t disturb any stability considerations. On the other
hand we can’t separate [:= !l and the update of ws, because together they preserve c[l] = wsq but separately
they do not. The verification in fig. [14] shows two actions

l=L~1l=LAcL]=W (18)

l=LAws=WSACLl=W ~Il=ILAws=WSWAc[L]=W (19)

neither of which disturbs the invariant: changes only c¢[!l]; and updates both [and ws at the same
time so as to preserve wsq = c[l]. Note that the linearisation point is the assignment to I: before that point
the reader can’t see the effect of the write; after that point it is completed.

We can go further. We shall see that it is an advantage to use atomic instructions which make only a
single access to a single shared variable or array element. If we introduce in the writer a local single-bit
variable wt (for writer temporary) we can decompose (c[!l] := w) into (wt :=l); {c[wt] := w), and then we
can replace [:= !l by [:= wt. The verification is shown in fig. The first step generates the identity action,
and the second and third generate (18) and as before.

Something important has happened, indicated by the double-angle-bracketing of the first and third in-
structions. An instruction which makes a single access — either read or write — to a single-bit shared variable
can be called naturally atomic. Stores serialise such accesses, and Simpson’s algorithm rests on the assump-
tion that they do, and on the assumption that competing store accesses are scheduled fairly, or at least not
infinitely unfairlyjﬂ From now on we shall make the same assumptions, and we defer until the discussion
of what happens in modern processor designs with their so-called ‘weak memory models’.

6 Shared-store concurrency always depends on the assumption that the store arbiter is fair. If it isn’t fair or fair-ish, there
really doesn’t seem much point in sharing store.

Explanation by refinement and linearisability of two non-blocking shared-variable communication algorithms

{sz/\|l=L/\ws= WS.B A |rs] <ws/\c[L]:B|}

ot := 1)
w=WAwt= 'L/\|l—L/\ws—WSB/\LTsJ ws/\c[L]zB|}

{
{clwt] := w)

{w—W/\wt 'L/\|l—L/\ws— WS.BA |rs] = ws/\c[L]:B/\c[!L]:W|}
{

{1 := wt; ws := ws.w))

w=WA[l=1LAws=WSBW Al[rs] < ws/\c[L]:B/\c[!L]:W|}

Fig. 15. Second atomicity refinement of two-slot writer (writer chooses)

{|l=L/\7"S:RS/\wS:WS.B/_’I“SJ#U)S/\C[L]ZBH
{(rt := 1))
{rt:L/\|l:L/\rs:RS/\ws:WS.B/\Lrsjﬁws/\c[L]:B|}
= (stability)
{ = /\|7“3—RS/\Lrsj ws/\c[l]:w59|}
= c[rt])
{3B’(y:B’/\|rs:RS/\L7“sJ-\<ws/\c[l]:st|)}
(rs := rs.y)

{HB’ (y: B’/\|rs = RS.B' A c[l] = wsq |>}

Fig. 16. Unsuccessful atomicity refinement of two-slot reader (writer chooses)

write(W) {| Il=LAc[L)=_ |} read()
{(wt == 11)) (rt = 1)
{wt =L} {rt =L}
(clwt] = w) {| I=LAcL]=_AcllL] =W |}

(= wt) | {[i=1LAdLl = ALl =w]}

write(W")
((wt == 1)
{wt =L}
(clwt] = w) {| I=1LACL] =W Ac[lL] =W |}

(y = c[rt])
ly=w'}
read()
(rt == 1))
{rt =L}
(y = c[rt])
{y=w}

Fig. 17. Writer-chooses reader, after atomicity refinement, can read out of sequence

13

14 R. Bornat and H. Amjad

data c[2] = (null, null) inbit! = Oindata* ws = .null, rs = . in

write(dataw) = dataread() =
bit wt in datayinbitrtin
{wt = 11)); (rt :=1); (y := [rt]); (rs := rs.y)
(c[wt] := w); returny
(I := wt; ws := ws.w) nini
ni
ninini

Fig. 18. Two slots, writer chooses, imperfectly refined

data c[2] = (null, null) inbit! = 0,7 = Oindata* ws = .null, rs = . in
write(dataw) = dataread() =
(c[lr] = w;l:="r; ws := ws.w) datayin
(r:=1Ly:=cll]); (rs := rs.y)
returny
ni
nini ni

Fig. 19. Two slots, reader chooses

Next we turn to atomicity refinement in the reader. To split (y := ¢[l]) into a sequence of single-shared-
access instructions we add a local variable r¢t and decompose it into {(rt := 1)); (y := ¢[rt]). Unfortunately
we discover, in fig. that this is not an atomicity refinement: after the first step the initial value of [is
captured, but the writer can change [, ¢[l] and ws before the second step. The stability weakening expresses

this loss of information, so that in the second step we can’t assert that y receives the latest written value:
action becomes

rs = RS ~» rs = RS.B (20)

We can’t be sure that this action updates rs so that | rs| < ws. We have made the writer’s stable assertions
unstable. We don’t have an atomicity refinement.

This is more than a failure to prove a result: the communication invariant |rs| < ws can actually be
violated. The reader can read a value which has not yet been added to the written sequence — ¢[ll] has
been written but I and ws haven’t yet been updated — and then come back to read the previous written
value, as illustrated in fig. The writer writes W, then writes W’ but pauses before it is added to ws; the
reader begins before W is added to ws, pauses until W’ is about to be added to ws; then the writer pauses,
the reader restarts and retrieves W', then begins again and sees W. It’s possible to see this as a failure of
coherence (the reader retrieves a value W’ which is not yet part of the written sequence), but we describe it
as an out-of-sequence read (W’ before W). In either case we fail to preserve |rs| < ws.

This is a real problem which we can’t solve by doing atomicity and data refinement in some other order.
However we try, we can’t prevent the reader sometimes getting one step ahead of the writer-chooses writer.
Simpson in [Sim97al [Sim97b] and in private communication argues that this is not a crippling problem in
practice — the reader is guaranteed the latest value or at worst the one before, so there is a kind of freshness
guarantee — and he goes on to derive a four-slot algorithm which retains the feature. But that’s not a true
descendant of the idealised algorithm and it won’t do for us.

8. Two slot algorithm — second attempt

The writer in fig. [L8| constantly switches slots, and therefore can overtake the reader, producing the out-of-
sequence read in fig. Simpson’s solution is to add a shared index variable r in which the reader indicates
the slot ¢[r] it is reading from, and the writer writes to slot ¢[!r]. The writer still updates ! to show which is
the latest value written, and the reader still reads that latest value. The refinement/bug-fix has surprising
consequences.

Explanation by refinement and linearisability of two non-blocking shared-variable communication algorithms 15

{w:W/\|l:L/\r=R/\ws: WS.B A |rs] <ws/\c[l]=B|}

(c[lr] == w;l:=tr; ws := ws.w)

{sz/\|l:!R/\r=R/\ws: WS.B.W A |rs] <ws/\c[l]=W|}

Fig. 20. Data refinement of fig. [6] to two slots (reader chooses)

|l:L/\rs=RS/\ws= WS.B A |rs] #ws/\c[L]:B|}
(r=1lLy:=cl]);
y:B/\|l:7":L/\7’s:RS/\ws: WS.B A |rs] <ws/\c[L]:B|}

<3

= (stability)

(rs := rs.y)

{
{
{y:B/\|r=LArs:RS/\LRS.Bj K ws A |rs] <ws/\c[l]=w89|}
{

y:B/\|7':L/\7"s=RS.B/\LrsJ <ws/\c[l]:st|}

Fig. 21. Data refinement of fig. [J] to two slots (reader chooses)

In fig. [I9] we have backtracked, for reasons of explanation, on the atomicity refinement of the writer-
chooses algorithm and gone back to atomic buffer accesses in both reader and writer. The reader reads from
c[l], but it also writes in a shared variable r the index of the slot it is reading from, and the writer always
writes in the opposite slot. Inspired by Simpson [Sim97a] we call this algorithm ‘reader chooses’. Two slots
are not enough to guarantee coherent operation without using atomic instructions, so it isn’t a complete
solution, but it does avoid the out-of-sequence problem.

An obvious property of the algorithm is that the writer only ever alters [so as to make [= !r and the
reader only ever alters 7 so as to make r = [. That is, [= r is stable under the reader’s actions, and [# r
under the writer’s. These facts are preserved in refinement to the four-slot algorithm and they are important
in its proof, but they are harder to spot there than in fig. [I9] It is an advantage of the refinement approach
that they emerge so early in development.

Data refinement is straightforward, once we have added universally quantified L and R to track the values
of the indexed variables. Refining pre and postconditions from fig. [f] the writer’s specification is shown in
fig. 200 We verify this specification below, but note already that it generates the action

Il=LAr=RANws=WSAcl]=B~1l=!RAr=RANws=WSWAC[l]=W

Because we don’t know the relationship between [and r on the left-hand side, it isn’t really clear what
happens to [. We make it clearer by describing two actions: one in the case that [= r initially, and the other
in the case that [# r:

l=r=LAws=WSAc[L]=B~ll=r=LAws=WSWAcLl=BAcL=W
