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Abstract. Simpson and Harris have described multi-slot algorithms implementing a single-place buffer,
each operating without explicit hardware synchronisation mechanisms. Conventional refinement and proof
techniques have explained that these algorithms work, but do not give convincing descriptions of how they
work. An unconventional refinement process starting from the classic single-variable buffer, using both data
and atomicity refinement and drawing information from unsuccessful steps, derives each algorithm. The logic
used is RGSep, a marriage of rely/guarantee and concurrent separation logic. Extensive detailed verifications
are described. The result is an explanation of how the algorithms work and some pointers to how such
algorithms might be devised.
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1. Introduction

Most work in program verification is, rightly, about practical concerns. At the time of writing there is a
great deal of practical progress. Separation logic allows us to begin to deal with pointers, and there has been
significant work in dealing with concurrent algorithms. Developments in theorem proving and static analysis
techniques have advanced already to the point that automatic tools can guess and verify safety properties of
entire programs as large as a million-line operating system. Better still, we can find mistakes in those huge
programs, mistakes subtle enough to elude a type system.

In another direction we can use program logic to study programs that don’t have mistakes. Many simple
to understand algorithms lack formal proof. Developments in program logic mean that we can give some of
them straightforward simple proofs, proofs that justify our intuitions of how they work. Simple, clear proofs
are beautiful. Beautiful algorithms deserve beautiful proofs.
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But there are algorithms which aren’t simple, which aren’t clear, which we understand with difficulty if
at all. If their complexity and intricacy is essential then perhaps they are as beautiful as they can be. But
because they are difficult to understand, not very many people will see their beauty. If we could make a
beautiful proof of those algorithms, perhaps the proof itself could serve as explanation.

Concurrency is the area of programming where such beasts are the most common, and where it seems we
need them: we have to pull tricks to solve tricky problems. This paper is an attempt to use formal reasoning
to reveal the beauty of two tricky concurrent algorithms. If it generates understanding along the way then
that can be seen as practical; to build a better mousetrap you must understand current technology.

2. Background

Dijkstra [Dij65] defined the first classic concurrency problem, that of two processes/threads communicating
through a single shared ‘buffer’ variable: one writing; the other reading. The difficulty is that writing and
reading aren’t instantaneous operations, so that if their executions overlap in time, the reader may extract
a value from the buffer which is made up of parts of two or more distinct written values. The solution that
Dijkstra put forward, use of semaphores to ensure turn-taking, is nowadays challenged by so-called non-
blocking algorithms in which the processes do not pause for each other but do manage to avoid overlapping
reads and writes.

One famous non-blocking algorithm is by Simpson [Sim90], which uses an array of four data slots and
some single-bit index variables to control their use. It apparently uses no synchronisation mechanisms and
is wait-free [Her91], or asynchronous: neither reader and writer loops during its operation on the shared
buffer. Another is Harris’s algorithm [Har04], which is also wait-free but uses only three slots. Simpson’s
algorithm was devised as an illustration of a particular interprocess communication mechanism in the MAS-
COT software engineering framework [SJ79, Sim86] and is practically useful, for example in connecting a
sensor to a data collector, but its economy and novelty attracted those keen to extend the range of formal
proof of algorithms. Harris’s algorithm was devised in response to the challenge to construct an equally
capable algorithm with fewer than four slots. Both algorithms are maddeningly concise and lack accessible
explanation of how they work, why they never go wrong and how they achieve communication.

There can be no doubt about the validity of these algorithms: they do achieve reliable and effective
communication. Simpson’s algorithm can relatively easily be model-checked: Simpson himself justifies it in
those terms [Sim92, Sim97a] as does Rushby [Rus02]. There are also formal treatments which don’t use model
checking [HP02, Hen03, PHA04] and our own contribution in [BA10]. Harris’s algorithm could equally easily
be model-checked and is formally proved by us in [BA10]. If a beautiful proof of an algorithm is one which
elegantly and simply justifies our intuitions of how it works, none of these proofs, including our own, is
beautiful. We lack intuitions which can be justified, and none of these proofs provides insight: all of them
elaborate a great deal of detail in order to justify the claim that good things happen and bad things don’t.
We need more than that to understand what is going on, either to be able to reproduce the algorithm or to
build new similarly intricate algorithms.

Refinement is a formal approach which might be said to concentrate upon explanation. It normally starts
with a highly abstract specification which is implemented by a magical program and modifies specification
and program step by step together, making the specification less abstract and the program less magical,
to produce an implementable algorithm. Each step preserves the correspondence between specification and
program and is small enough to be intuitively justifiable. If the end result is a known algorithm like Simpson’s
or Harris’s, the process can reasonably be said to stand as an explanation of why the algorithm is written
as it is and how it really works. This is the approach followed by Abrial [AC06, Abr08] and Jones and
Pierce [JP08, JP09].

We believe that these explanations start from too low a level, conceding too much in their specification
to the final algorithm. In this paper we attempt an alternative approach, starting with a simple but difficult-
to-implement algorithm which has a simple specification, and working by steps of atomicity refinement and
data refinement towards the algorithm we want to explain. Jones and Pierce present but reject this simpler
specification, claiming that it does not properly deal with overlapping concurrent read and write operations;
we argue in §5.2 that this objection is invalid. Abrial’s specification is in terms of interleaving of sequences,
as is ours, but he too finds it necessary to discuss the properties of overlapping executions, which we are
able to deal with implicitly.
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3. Outline

In order that the structure of our argument is not obscured by its details, we give an overview. Our goal is
a buffer algorithm whose only atomic actions are single-bit reads and writes. We start with a single-variable
buffer algorithm (fig. 2), which has a fairly straightforward specification, is easy to verify, but requires an
implementation of atomic shared-variable access. We make a data refinement to replace the single variable
by a two-slot array plus a single-bit index variable. This generates an algorithm (fig. 11) which fails atomicity
refinement, because the refined reader is not guaranteed to read values in the sequence that they are written.
An alternative data refinement, to two slots plus two index variables, gives fig. 19, which we atomicity-refine
into fig. 31. A second data refinement divides each of the buffer slots into a pair (fig. 32), using an extra two-
element array of single-bit indices. Atomicity refinement then gives us Simpson’s 1990 four-slot algorithm
(fig. 40).

A second alternative refinement to two slots plus an indexing variable and a danger-signalling variable
gives fig. 43, but because there is a loop in the reader the algorithm is not wait-free. Data refinement on the
danger signal produces a three-slot algorithm which is once again wait-free (fig. 47), and atomicity refinement
then produces what is essentially Harris’s algorithm (fig. 52).

4. Our logic

Our verifications use rely-guarantee [Jon83] in a presentation derived from Vafeiadis [Vaf07]. This presen-
tation was devised to support a combination of concurrent separation logic [O’H07] and rely-guarantee. We
don’t use separation or ownership transfer, unlike our earlier effort in [BA10]; nevertheless we find that the
Vafeiadis presentation style has some advantages.

The quintuple C sat (P,R,G,Q) states that any execution of C, in a state which satisfies P , under
interference at most R, will cause at most interference G and, if it terminates, will produce a state which
satisfies Q. P and Q are assertions describing sets of states; R and G are state to state relations. The rule
of parallel composition is straightforward:

C1 sat (P1 , R ∪G2 ,G1 ,Q1 ) C2 sat (P2 , R ∪G1 ,G2 ,Q2 )

( C1 C2 ) sat (P1 ∧ P2 , R,G1 ∪G2 ,Q1 ∧Q2 )
parallel composition

(1)

Each thread must suffer the interference of the environment and its partner together; the environment
must suffer the interference of both. Pre and postconditions must satisfy the requirements of each thread
separately.

It is with the treatment of shared store and interference that our presentation differs from the standard.
Our assertions are about state, as in Hoare logic: that is, postconditions do not describe a relation with the
precondition. Assertions are written in two parts: assertions about shared store are boxed; assertions about
thread-local store are unboxed. Boxed assertions may only refer to shared store, unboxed to local store.
Atomic instructions may access shared and local store; non-atomic instructions may only access local store.
Actions P  Q state how an atomic instruction can change shared store from state P to state Q; since
both P and Q describe sets of states, actions are relations between sets of states and we can form relies and
guarantees as usual.

The presentation hinges on the treatment of atomic instructions, which may access shared store. The
instantaneous effect of an execution 〈C〉 – by convention we use angle-bracketing to indicate atomicity – is
dealt with by the rule (adapted from [VP07])

{P ∧ sP} C {Q ∧ sQ} sP  sQ ⊆ G

〈C〉 sat (P ∧ ∃~x(sP) , R,G,∃~x
Ä
Q ∧ sQ

ä
)

atomic instruction

(2)

P is the local-store precondition. sP is the shared-store precondition. P can’t mention shared store, and
sP can’t mention local store. The corresponding postconditions are Q and sQ . The Hoare-logic triple
{P ∧ sP} C {Q ∧ sQ} shows the effect of the command on the combination of local and shared store. The
action of 〈C〉 is its effect on shared store, and is written sP  sQ .1 That action, which is itself a relation

1 In RGSep proper, we have to be concerned about precise assertions in order that resource splits are unambiguous. In this
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b = B

©∞
{b = B}
y := b

{y = B ∧ b = B}

∫
¶
y = B ∧ b = B

©
(a) Mid stability

{
∃B(b = B)

}≤ {b = B}
y := b

{y = B ∧ b = B} ⇒
{y = B ∧ ∃B′(b = B′)}

º
{
∃B
(
y = B ∧ ∃B′(b = B′)

)}
(b) Full stability

Fig. 1. Two alternative verifications of an atomic read

between states, must be contained in the guarantee G of the maximum effect of the thread on shared store.
Because local (unboxed) assertions can only mention local store, and shared-store (boxed) assertions can
only mention shared store, we use existential quantification to allow the local postcondition to refer to values
retrieved from the shared store by 〈C〉. In our treatment this happens only occasionally: see, for example,
figures 8 and 29.

4.0.1. The treatment of stability

This rule is deliberately crafted to deal with the instantaneous effect of the atomic instruction 〈C〉 and
says nothing about stability. If sP holds in the instant before the instruction is executed, then sQ holds
immediately afterwards. This is a variation of Vafeiadis’s mid-stability presentation, which we have adopted
because it makes certain properties of atomic instructions easier to understand.

Consider, for example, the atomic instruction 〈y := b〉 where y is a local variable but b is shared and
subject to interference – i.e. R is such that the environment can interfere by rewriting b. It’s obvious that the
assignment retrieves the value of b at some instant, but that the value it retrieves isn’t a stable value of b,
because under those circumstances there is no stable value of b. Our treatment of the command is shown in
fig. 1(a): by default upper-case identifiers stand for universally-quantified values, and the verification shows
clearly that whatever the value of b in the instant before execution, that same value is in y and in b in the
instant afterwards.

By contrast, if we were to insist, as in the full stability presentation, that pre and postconditions must
make stable assertions about shared store, invariant against actions contained in R, we should have to reason
as in fig. 1(b). The stable precondition states that there is a value in b. The internal Hoare-logic verification
(note that the rule strips away the existential in the antecedent precondition) shows that this value is copied
to y; we can see that at least for an instant y and b contain the same value. But then the requirement that the
shared part of the postcondition be stable means that we must immediately weaken that shared part – that
is, b = B – to allow for the interference of the environment. We do that by introducing an existential, and
the link between y and b is lost. The deduction is sound and not misleading: there isn’t a stable connection
between the values of y and b after the atomic command executes. But something is obscured, which is that
the command retrieves a value which is, if only instantaneously, in the shared variable b.

We can’t ignore stability, and we require it in sequences of actions. If we consider the sequence C1 ; C2
and we assert¶

P ∧ sP
©

C1
{
P ′ ∧ sP ′

}
C2
¶
Q ∧ sQ

©
(3)

then we can say that sP is the instantaneous shared-store precondition of the sequence and sQ its instan-
taneous shared-store postcondition. But the intermediate shared-store assertion sP ′, which holds from the
instant after the execution of C1 until the instant before the execution of C2 , holds for an interval and must

paper that care is unnecessary: we can see how to separate assertions P and sP because one refers only to local store, the other
only to shared store, and there is no means of resource transfer.
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therefore be stable. We impose the requirement of stability in the sequence rule

C1 sat(P ∧ sP , R,G, P ′ ∧ sP ′ ) sP ′ stable under R C2 sat(P ′ ∧ sP ′ , R,G,Q ∧ sQ )

(C1 ; C2 ) sat (P ∧ sP , R,G,Q ∧ sQ )
sequence

(4)

Where necessary we use the rule of consequence to provide the necessary stability.

4.0.2. Triples rather than quintuples

Quintuple assertions C sat (P,R,G,Q) are unwieldy. For simplicity and clarity in presentation of proofs,
since we are dealing with algorithms in which there are only two threads and a single parallel composition,
we keep R and G implicit: the writer’s R is the reader’s G and vice-versa. Our versions of the atomic
instruction rule and the instruction sequence rule are then

{P ∧ sP} C {Q ∧ sQ} sP  sQ ⊆ G{
P ∧ ∃~x(sP)

}
〈C〉
¶
∃~x
Ä
Q ∧ sQ

ä© atomic instruction (abbreviated)

(5)¶
P ∧ sP

©
C1

{
P ′ ∧ sP ′

}
sP ′ stable under R

{
P ′ ∧ sP ′

}
C2
¶
Q ∧ sQ

©¶
P ∧ sP

©
C1 ; C2

¶
Q ∧ sQ

© sequence (abbreviated)

(6)

4.1. Atomicity refinement

Suppose we have an atomic sequence 〈A;B〉 with a verified specification¶
P ∧ sP

©
〈A;B〉

¶
Q ∧ sQ

©
(7)

and that we have shown the environment’s assertions stable under the action sP  sQ .
We wish to refine the original atomic instruction into a sequence of two atomic instructions 〈A〉; 〈B〉.

Verification of the refined sequence with the same precondition as before requires a step of stabilisation
between 〈A〉 and 〈B〉:¶

P ∧ sP
©
〈A〉

{
P ′ ∧ sP ′

}
sP ′ ⇒ sP ′′; sP ′′ stable under R{
P ′ ∧ sP ′′

}
〈B〉

{
Q′ ∧ sQ ′

} (8)

The refined version generates two actions sP  sP ′ and sP ′′  sQ ′, and a postcondition Q′ ∧ sQ ′ which

may not be the same as Q ∧ sQ .

For this to be an atomicity refinement we require that the environment cannot tell the difference, and that
the sequential context into which the original fitted accepts the refined version. The first of these conditions is
straightforward: we must show that the environment’s assertions are as stable under the two refined actions
as they were under the single original. The second is more subtle: sQ and sQ ′ must stabilise to the same
assertion, and the local precondition of anything which followed 〈A;B〉 and now follows 〈A〉; 〈B〉 must be
implied by Q′ as it was by Q.

In practice in our atomicity refinements Q and Q′ will often be identical and sP  sP ′ will often be the
identity action or deal with state that isn’t mentioned in the environment’s assertions. All of this will make
the verification of atomicity refinement straightforward.

We note that atomicity refinement is not local reasoning: we have to assess, in all the other threads, the
interference of the refined sequence on their previously-stable assertions. In this paper that isn’t much of a
problem, because there is only one other thread, so not much to check, and because we use a communication
invariant to simplify a lot of stability arguments.
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data b = null inÅ
. . . calls of write( ) . . .
write(dataw) =̂ 〈b := w〉

. . . calls of read( ) . . .
data read( ) =̂ data y in〈y := b〉; return y ni

ã
ni

Fig. 2. A single-variable buffer, with angle-bracketed atomic instructions

5. The atomic single-slot algorithm

Fig. 2 is a buffer algorithm using a single shared variable b. Two processes/threads are composed in parallel:
one makes calls write(W ) which writes the value W to the buffer; the other makes calls read( ) which
retrieve the current value from the buffer. The algorithm is idealised in the sense that it depends upon
an unexplained execution mechanism: the angle-bracketed buffer accesses are required to occur atomically,
which ideally means instantaneously and never at the same instant. Because execution is instantaneous and
instants infinitesimally small, neither operation has to wait for the other and there is no need of a scheduler.
A write(w) call on one side of the parallel composition executes 〈b := w〉, instantaneously writing to the
buffer; a read( ) call on the other side executes 〈y := b〉, instantaneously reading. It’s obvious that this is a
wait-free algorithm: the writer can always operate without waiting for the reader, and vice-versa, and every
procedure call will always terminate.

Instantaneous non-overlapping execution is impossible in practice. We might settle for interleaving of
competing pseudo-atomic executions, which isn’t difficult to implement: we could, for example, make each
atomic instruction a critical section by bracketing it with P(m) and V(m) where m is a global binary
semaphore. But such an implementation complicates the issue by introducing questions of fairness and
liveness: an unfair scheduler might prevent one or other process from ever executing its critical section,
and it could be difficult to prove that that never happened. We don’t, therefore, want to consider how to
implement atomicity. It will be the unexplained mechanism in our idealised algorithm, and removing it the
goal of our refinement.

The important properties of this algorithm have to do with communication: it is potentially lossy and
stuttering, which might be thought to be drawbacks, but it also exhibits freshness and coherence [Sim90],
which are definitely advantages. Lossiness and stuttering are essential characteristics of wait-free single-place-
buffer algorithms: the writer can overwrite the buffer at any time, so some written values may never be read
(lossiness); and the reader may read the buffer at any time, so some values may be read more than once
(stuttering). But each time the reader executes 〈y := b〉, it is certain to get the latest value that the writer
has placed there (freshness);2. and the writer always writes a complete value with 〈b := w〉, so the buffer
only ever contains complete values, and the reader therefore always retrieves a complete value with 〈y := b〉
(coherence).

Our description of the properties of the algorithm in fig. 2 – stuttering, lossiness, coherence, freshness –
is essentially Simpson’s, and we take this algorithm to be the specification of a single-place buffer. Single-
place buffer algorithms must do some or all of what this algorithm does, we assert, or else they aren’t
single-place buffer algorithms. But there is an objection to considering this algorithm as a starting place
in a refinement process. First we note that, so far as communication is concerned, it defines a sequential
interleaving of 〈b := w〉 and 〈y := b〉 operations. A sequential specification may not sufficiently constrain
the refined algorithm: atomicity refinement adds interactions and therefore potentially adds communication
behaviours. Jones and Pierce [JP08, JP09] object that a sequential specification like ours, with single atomic
actions in writer and reader, must be inadequate because it doesn’t sufficiently describe behaviour of the
refined algorithm in which reads and writes are sequences of actions rather than atomic actions, and therefore
can overlap. We deal with that objection in §5.2, after we have annotated the specification to permit formal
description and refinement.

5.1. A communication invariant

The writer in fig. 2 produces a sequence of values, and the reader consumes some or all of those values. To
facilitate reasoning about the sequences of values written and read, we introduce a version of the algorithm,

2 If it reads before the first write it will see the initial value null , but we treat that as if it was the first value written.
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data b = null indata*ws = .null , rs = . in(
. . . calls of write( ) . . .
write(dataw) =̂ 〈b := w;ws := ws.w〉

. . . calls of read( ) . . .

data read( ) =̂ data y in〈y := b; rs := rs.y〉; return y ni

)
ni ni

Fig. 3. A single-variable buffer, with darkened auxiliary annotations

in fig. 3, with added assignments to auxiliary data-sequence variables ws and rs to record those sequences.
Because we use angle brackets for atomic instructions, we can’t use them for sequences; so ‘s.x’ appends the
single value x to sequence s; ‘.x’ is the singleton sequence containing x; and ‘. ’ is the empty sequence.

We capture the first part of our requirements for communication with the assertion

brsc 4 ws ∧ wsΩ = b (9)

– the read sequence destuttered is a subsequence of the written sequence, and the value in the buffer is
the last element of the written sequence. We shall see that this assertion is invariant under the actions of
either thread from fig. 3. The first part of the invariant deals with stuttering (we consider brsc rather than
simply rs), lossiness (subsequence 4 rather than equality) and coherence (the values in rs come only from
ws). The second part helps with consideration of freshness: it’s obvious, given wsΩ = b, that our annotated
specification algorithm always assigns the last element of ws – the latest written value – to y.

But what is obvious must be stated formally. Our specification of freshness is that if B is the initial value
in the buffer when the reader begins, we require when it ends that it has assigned a fresh value to y:

∃B′(y = B′ ∧ brs.B.B′c 4 ws) (10)

– the value in y is part of the written sequence and no earlier in that sequence than B. This is a somewhat
informal specification because it requires context (B is the value in the buffer when the reader starts) before
it can be interpreted. It is obviously true of the algorithm in fig. 3 (because B = B′ = wsΩ after y := b); in
later refinements we shall see that this formulation emerges naturally from our verifications, which provide
the necessary context. Note that this specification allows the writer to add to the sequence between the
time that the reader starts (the instant when the reading process calls read( )) and the time that it retrieves
a value (the instant that the read( ) procedure executes y := b in our idealised algorithm). Again, this is
essentially Simpson’s definition of freshness.

When we come to refine our algorithm we shall have a multi-variable implementation, and read and write
operations will no longer contain a single atomic action, but we still shall have a single-place buffer – only
a single buffered latest value, and no queuing. We shall, therefore, hold on to lossiness and stuttering; and
we must surely hold on to coherence and freshness.

5.2. Is it a sufficient specification?

Atomicity refinement, by converting atomic sequences into sequences of atomic actions, adds interaction
behaviour: actions which were instantaneous and necessarily alternated become extended over time and can
therefore overlap. By allowing reads and writes to overlap we might add communication behaviours, and
then (9) and (10) might not specify the behaviour of the refined algorithm. Jones and Pierce [JP08, JP09]
insist that it is necessary to constrain the behaviour of the refined algorithm as part of the specification,
and that it is not enough to describe, as we do, a simple sequential interleaving of reads and writes. We
assert, however, that our refinements add no communication behaviours and that therefore our specification
is adequate. The basis of our argument is that all the refinements we consider (with the exception of the
faulty fig. 18) are linearisable [HW90] and therefore every concurrent execution is equivalent to a sequential
execution.

We have chosen to wrap our atomic communication operations in procedure definitions because it isolates
the sites at which we have to perform refinement. Procedure calls take time, so there will be an interval
between the start of a write(w) call and execution of the atomic 〈b := w〉 operation it contains; during that
interval one or more read( ) procedure calls might execute their 〈y := b〉 operations. The same applies to
the interval between execution of 〈b := w〉 and the return of the write(w) call, and the reverse applies to
the similar intervals in the execution of read( ) procedure calls, during each of which there can be write(w)
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w1 w2 w3 w4 w5

r1

writes

reads

Fig. 4. Concurrent execution with write procedure calls overlapping a read

w1 w2 w3 w4 w5r1

Fig. 5. Sequential execution equivalent to fig. 4

calls for various different values of w. So there is a sense in which even this simple algorithm generates
concurrent overlapping executions. Fig. 4 shows an example in which several writes overlap a single read,
with a horizontal line showing the duration of a procedure call and a vertical spike the execution of each
atomic operation.

But the concurrency can be simplified: the write( ) calls which execute their atomic operation before
〈y := b〉 might as well have taken place before the read( ) call started, and those which execute their atomic
operation after 〈y := b〉 might as well have waited until it returns. Fig. 5 shows the sequential execution
equivalent to fig. 4 – note that in pushing writes aside we haven’t reordered their executions.

Not much seems to have happened: the order of procedure executions in fig. 5 is just the order of the
atomic executions in fig. 4, and indeed that is the point. The sequential and concurrent executions are
equivalent, in the sense that reader and writer can’t tell the difference between them, just because the
spike-orders are the same. We don’t even need to know where the atomic-execution spikes occur within the
procedure call execution interval: it’s enough to observe that for every concurrent (overlapping) execution
there is an equivalent (non-overlapping) sequential execution which gives just the same order of spikes.

We have illustrated the principle of linearisability with an example. If concurrent procedure call executions
have the character that they each contain exactly one instant – an atomic execution, called a linearisation
point – before which the procedure call has had no effect (write) or has not fixed upon a value (read), and
after which the effect is visible (write) or the value is decided (read), then they can always be rearranged
into an equivalent sequential execution. The effects of all concurrent executions are contained within the
effects of all sequential executions: nothing is left out.

All the algorithms we consider (with the exception once again of the faulty fig. 18) have just this character.
In write procedures the linearisation point is either the buffer assignment or one of the index-variable updates
which follow it, but is always annotated with an assignment to ws. The linearisation point for reads is trickier
to identify, because it is often in the writer rather than in the reader. We prefer to appeal to the notion of
freshness and to observe that if our freshness condition y = B′∧brs.B.B′c 4 ws holds, where B is the buffer
value when the reader begins, then

either B = B′ and the linearisation point is the instant the reader began; the write procedure call which
wrote B effectively occurred before the read call; and all subsequents writes effectively occur after the
read call.

or B 6= B′ and B′ was written after B by an overlapping write procedure; the linearisation point of the read
is the linearisation point of that write; that procedure call, and all the writes which precede it, effectively
occurred before the read; and all subsequent writes effectively occur after the read.

We prefer not to make linearisation points explicit in our arguments, since to do so would simply repeat
the argument above in local detail. What is important is that our algorithms, up to and including Simpson’s
and Harris’s algorithms (fig. 40 and fig. 52) are linearisable refinements of fig. 3. The behaviours of the
algorithm in fig. 3 encompass the behaviours of the refinements so far as communication is concerned. There
is no need to say more about concurrent executions. Jones and Pierce’s objection is mistaken; we have an
adequate specification.
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{
w = W ∧ b = B ∧ ws = WS .B ∧ brsc 4 ws

}≥
{w = W ∧ b = B ∧ ws = WS .B ∧ brsc 4 ws}
b := w
{w = W ∧ b = W ∧ ws = WS .B ∧ brsc 4 ws}
ws := ws.w
{w = W ∧ b = W ∧ ws = WS .B.W ∧ brsc 4 ws}

Ω
{
w = W ∧ b = W ∧ ws = WS .B.W ∧ brsc 4 ws

}
Fig. 6. Mid-stability verification of single-variable writer{

b = B ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws
}≥

{b = B ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws}
y := b

{y = B ∧ b = B ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws}
rs := rs.y

{y = B ∧ b = B ∧ rs = RS .B ∧ ws = WS .B ∧ brsc 4 ws}

Ω
{
y = B ∧ b = B ∧ rs = RS .B ∧ ws = WS .B ∧ brsc 4 ws

}
Fig. 7. Mid-stability verification of single-variable reader

5.3. Verification of the single-variable algorithm

Our verification of the single-variable writer is shown in fig. 6. Just before execution of 〈b := w; . . .〉 the
buffer contains a value B, the value to be written is W , and the written sequence is WS .B.3 We observe
that if bXc 4 Z.B then bXc 4 Z.B.W , which enables us to conclude that brsc 4 ws still holds after the
update of ws. Ignoring the value of rs which doesn’t change during this atomic execution and writing WS
in place of WS .B, we extract the action

b = B ∧ ws = WS  b = W ∧ ws = WS .W (11)

Mid-stability verification tells us what the atomic instruction inside a write(w) procedure call does, but we
might like to know the stable pre and postcondition of the procedure call itself. The reader can change rs,
which is mentioned in both assertions but, as we shall see, if it does so it preserves brsc 4 ws. So both pre
and postcondition of fig. 6 are stable, and they are the stable pre and postcondition of write(w).

We verify the single-variable reader in fig. 7. We observe that if bXc 4 Z.B then bX.Bc 4 Z.B, which
enables us once again to verify that brsc 4 ws is invariant. Dropping irrelevant detail, this verification

3 By convention we write quantified variables in upper case and in the absence of explicit quantification there is an implicit
universal quantification over the entire verification. So B, W and WS are universally quantified in fig. 6.

{
∃B,WS ( b = B ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws )

}µ {b = B ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws}
y := b

{y = B ∧ b = B ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws}
rs := rs.y

{y = B ∧ b = B ∧ rs = RS .B ∧ ws = WS .B ∧ brsc 4 ws} ⇒
{y = B ∧ rs = RS .B ∧ brsc 4 ws ∧ wsΩ = b}

ø
{
∃B
(
y = B ∧ rs = RS .B ∧ brsc 4 ws ∧ wsΩ = b

)}
Fig. 8. Full-stability verification of single-variable reader
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{
b = B ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws

}
〈y := b〉{
y = B ∧ b = B ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws

}
⇒ (stability){

y = B ∧ rs = RS ∧ bRS .Bc 4 ws ∧ brsc 4 ws ∧ wsΩ = b
}

〈rs := rs.y〉{
y = B ∧ rs = RS .B ∧ brsc 4 ws ∧ wsΩ = b

}
Fig. 9. Atomicity refinement of single-variable reader

data b = null indata*ws = .null , rs = . inâ
. . .

write(dataw) =̂

≠
b := w;
ws := ws.w

∑ . . .
data read( ) =̂ data y in

〈y := b〉;
〈rs := rs.y〉;
return y

ni

ì
ni ni

Fig. 10. Atomicity-refined single-variable single-place buffer

generates the action

b = B ∧ rs = RS  b = B ∧ rs = RS .B (12)

In the instantaneous postcondition y holds the same value as the last element in the written sequence – that
is, the reader has retrieved the freshest possible value. This is definitely a mid-stability deduction: both pre
and postcondition are unstable since the writer can alter both b and ws. The full-stability verification is
shown in fig. 8, in which it is only possible to see that the reader has retrieved a fresh value if we look at
the deduction inside the angle brackets. This enables us to see the stable pre and postcondition of a read( )
procedure call, for what it’s worth.

5.4. Atomicity refinement of the single-variable algorithm

We can’t do atomicity refinement on the writer, because if we separate the updates of b and ws we cannot keep
wsΩ = b invariant. But we can atomically refine the reader’s atomic operation into 〈y := b〉; 〈rs := rs.y〉.
The verification in fig. 9 uses the same precondition as fig. 7. In the postcondition of the first step we see
freshness just as before: y = b = wsΩ. In the stability weakening step, required in the sequence rule (6) and
allowing in this case for the fact that the writer can alter b and add to ws, that association is lost. But
the fact that B is a valid appendage to rs is stable under the writer’s action (11), so we retain it. In the
postcondition we see that the value of b at the instant we begin is the value of y at the instant we end;
otherwise the postcondition is a stabilised version of the postcondition of fig. 7, which fulfils the second
requirement of atomicity refinement. The action of 〈y := b〉 is the identity action, which cannot destabilise
anything; the action of 〈rs := rs.y〉 is

rs = RS ∧ bRS .Bc 4 ws  rs = RS .B (13)

which does not destabilise the writer’s pre or postcondition since it only writes to rs in circumstances which
preserve brsc 4 ws, which fulfils the first condition of atomicity refinement. We have an atomicity refinement,
shown in fig. 10.

6. Refinement to two slots

We need atomicity in the single-variable algorithm because reader and writer compete for access to the same
variable. If the buffer variable could be refined by two variables to give a multi-variable but still single-place
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data c[2] = (null ,null) in bit l = 0 indata*ws = .null , rs = . inâ
. . .
write(dataw) =̂
〈c[!l] := w; l := !l;ws := ws.w〉

. . .
data read( ) =̂

data y in
〈y := c[l]〉; 〈rs := rs.y〉
return y

ni

ì
ni ni ni

Fig. 11. Two slots, writer chooses{
w = W ∧ l = L ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B

}
〈c[!l] := w; l := !l;ws := ws.w〉{
w = W ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

}
Fig. 12. Data refinement of fig. 6 to two slots (writer chooses)

buffer, we might hope that reader and writer could operate in different variables at the same time, achieving
overlapping executions without compromising coherence. Following [Sim90] we use a two-element array c4

and a single-bit index variable l to point to the position – the slot – containing the last-written value. In
assertions we replace b = E by c[l] = E. The refined invariant is

brsc 4 ws ∧ c[l] = wsΩ (14)

We can easily refine 〈y := b〉 to 〈y := c[l]〉, but refining 〈b := w〉 isn’t so immediate. There are two
straightforward possibilities:5

〈c[l] := w〉 (15)

〈c[!l] :=w; l := !l〉 (16)

The first writes directly into c[l]; the second does not write to c[l] but by manipulating l it changes the
referent of c[l] and so achieves c[l] = w. The second operates in two steps, which will be important when we
come to atomicity refinement. For now we note that a refinement which used only the single-step (15) would
use only one of the two slots, which would seem to make the refinement pointless. We investigate first of all,
therefore, an algorithm which uses only the two-step (16).

7. A two-slot algorithm – first attempt

Fig. 11 shows the two-slot algorithm which refines b := w with (16). Inspired by Simpson [Sim97a] we call
this algorithm ‘writer chooses’, because the writer decides the slot into which it will write and the reader
must follow.

Because everything is atomic we retain coherence; because we have refined y := b by y := c[l]; and because
we retain c[l] = wsΩ we retain freshness. In the writer, data refinement of the pre and postcondition from fig.
6 and introduction of a universally-quantified L so that we can track the value of l gives us the specification
in fig. 12, which is easily verified (details omitted) and produces the action

l = L ∧ ws = WS ∧ c[L] = B  l = !L ∧ ws = WS .W ∧ c[L] = B ∧ c[!L] = W

This is a straightforward data refinement of (11). We have had to be explicit about the value of l because
it is changed, but otherwise it changes c[l] = B on the left to c[l] = W on the right, just as (11) changes

4 In our refinements we do not use the long variable names that Simpson and Harris used. Instead we use single-letter names
to save space in assertions.
5 To save space in our programs and assertions we use the C bit-inversion !E rather than 1 − E to invert a single-bit value
(!0 = 1− 0 = 1, !1=1-1=0).
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{
rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[l] = B

}
〈y := c[l]〉{
y = B ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[l] = B

}
⇒ (stability){

y = B ∧ rs = RS ∧ bRS .Bc 4 ws ∧ brsc 4 ws ∧ c[l] = wsΩ

}
〈rs := rs.y〉{
y = B ∧ rs = RS .B ∧ brsc 4 ws ∧ c[l] = wsΩ

}
Fig. 13. Data refinement of fig. 9 to two slots (writer chooses){

w = W ∧ l = L ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B
}

〈c[!l] := w〉{
w = W ∧ l = L ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

}
〈l := !l;ws := ws.w〉{
w = W ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

}
Fig. 14. Atomicity refinement of two-slot writer (writer chooses)

b = B to b = W . In this action c[L] = B appears on both sides, because that slot doesn’t change, but we
don’t need to mention parts of shared store which don’t change. We simplify the action, therefore, into

l = L ∧ ws = WS  l = !L ∧ ws = WS .W ∧ c[!L] = W (17)

In the reader, data refinement of assertions gives us fig. 13, which also verifies easily. Because b wasn’t
mentioned in the single-slot reader’s actions the refined version produces the same actions as before: identity
action in the first step; (13) in the second step. As before we see freshness, and we have a simply refined
postcondition.

The writer is ripe for atomicity refinement. We can separate c[!l] := w from l := !l: the reader’s assertions
depend on the value in c[l], not c[!l]; so c[!l] := w won’t disturb any stability considerations. On the other
hand we can’t separate l := !l and the update of ws, because together they preserve c[l] = wsΩ but separately
they do not. The verification in fig. 14 shows two actions

l = L l = L ∧ c[!L] = W (18)

l = L ∧ ws = WS ∧ c[!L] = W  l = !L ∧ ws = WS .W ∧ c[!L] = W (19)

neither of which disturbs the invariant: (18) changes only c[!l]; and (19) updates both l and ws at the same
time so as to preserve wsΩ = c[l]. Note that the linearisation point is the assignment to l: before that point
the reader can’t see the effect of the write; after that point it is completed.

We can go further. We shall see that it is an advantage to use atomic instructions which make only a
single access to a single shared variable or array element. If we introduce in the writer a local single-bit
variable wt (for writer temporary) we can decompose 〈c[!l] := w〉 into 〈wt := !l〉; 〈c[wt ] := w〉, and then we
can replace l := !l by l := wt . The verification is shown in fig. 15. The first step generates the identity action,
and the second and third generate (18) and (19) as before.

Something important has happened, indicated by the double-angle-bracketing of the first and third in-
structions. An instruction which makes a single access – either read or write – to a single-bit shared variable
can be called naturally atomic. Stores serialise such accesses, and Simpson’s algorithm rests on the assump-
tion that they do, and on the assumption that competing store accesses are scheduled fairly, or at least not
infinitely unfairly.6 From now on we shall make the same assumptions, and we defer until §15 the discussion
of what happens in modern processor designs with their so-called ‘weak memory models’.

6 Shared-store concurrency always depends on the assumption that the store arbiter is fair. If it isn’t fair or fair-ish, there
really doesn’t seem much point in sharing store.
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{
w = W ∧ l = L ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B

}
〈〈wt := !l〉〉{
w = W ∧ wt = !L ∧ l = L ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B

}
〈c[wt ] := w〉{
w = W ∧ wt = !L ∧ l = L ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

}
〈〈l := wt ;ws := ws.w〉〉{
w = W ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

}
Fig. 15. Second atomicity refinement of two-slot writer (writer chooses){

l = L ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B
}

〈〈rt := l〉〉{
rt = L ∧ l = L ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B

}
⇒ (stability){

rt = L ∧ rs = RS ∧ brsc 4 ws ∧ c[l] = wsΩ

}
〈y := c[rt ]〉{
∃B′

(
y = B′ ∧ rs = RS ∧ brsc 4 ws ∧ c[l] = wsΩ

)}
〈rs := rs.y〉{
∃B′

(
y = B′ ∧ rs = RS .B′ ∧ c[l] = wsΩ

)}
Fig. 16. Unsuccessful atomicity refinement of two-slot reader (writer chooses)

write(W )
{

l = L ∧ c[L] =
}

read( )

〈〈wt := !l〉〉 〈〈rt := l〉〉
{wt = !L} {rt = L}

〈c[wt ] := w〉
{

l = L ∧ c[L] = ∧ c[!L] = W
}

〈〈l := wt〉〉
{

l = !L ∧ c[L] = ∧ c[!L] = W
}

...
write(W ′)

〈〈wt := !l〉〉
{wt = L}

〈c[wt ] := w〉
{

l = !L ∧ c[L] = W ′ ∧ c[!L] = W
}
〈y := c[rt ]〉
{y = W ′}
...

read( )
〈〈rt := l〉〉
{rt = !L}
〈y := c[rt ]〉
{y = W}

Fig. 17. Writer-chooses reader, after atomicity refinement, can read out of sequence
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data c[2] = (null ,null) in bit l = 0 indata*ws = .null , rs = . in

. . .
write(dataw) =̂

bit wt in
〈〈wt := !l〉〉;
〈c[wt ] := w〉;
〈l := wt ;ws := ws.w〉

ni

. . .
data read( ) =̂

data y in bit rt in
〈〈rt := l〉〉; 〈y := c[rt ]〉; 〈rs := rs.y〉
return y

ni ni


ni ni ni

Fig. 18. Two slots, writer chooses, imperfectly refined

data c[2] = (null ,null) in bit l = 0, r = 0 indata*ws = .null , rs = . inâ
. . .
write(dataw) =̂
〈c[!r] := w; l := !r;ws := ws.w〉

. . .
data read( ) =̂

data y in
〈r := l; y := c[l]〉; 〈rs := rs.y〉
return y

ni

ì
ni ni ni

Fig. 19. Two slots, reader chooses

Next we turn to atomicity refinement in the reader. To split 〈y := c[l]〉 into a sequence of single-shared-
access instructions we add a local variable rt and decompose it into 〈〈rt := l〉〉; 〈y := c[rt ]〉. Unfortunately
we discover, in fig. 16, that this is not an atomicity refinement: after the first step the initial value of l is
captured, but the writer can change l, c[l] and ws before the second step. The stability weakening expresses
this loss of information, so that in the second step we can’t assert that y receives the latest written value:
action (13) becomes

rs = RS  rs = RS .B (20)

We can’t be sure that this action updates rs so that brsc 4 ws. We have made the writer’s stable assertions
unstable. We don’t have an atomicity refinement.

This is more than a failure to prove a result: the communication invariant brsc 4 ws can actually be
violated. The reader can read a value which has not yet been added to the written sequence – c[!l] has
been written but l and ws haven’t yet been updated – and then come back to read the previous written
value, as illustrated in fig. 17. The writer writes W , then writes W ′ but pauses before it is added to ws; the
reader begins before W is added to ws, pauses until W ′ is about to be added to ws; then the writer pauses,
the reader restarts and retrieves W ′, then begins again and sees W . It’s possible to see this as a failure of
coherence (the reader retrieves a value W ′ which is not yet part of the written sequence), but we describe it
as an out-of-sequence read (W ′ before W ). In either case we fail to preserve brsc 4 ws.

This is a real problem which we can’t solve by doing atomicity and data refinement in some other order.
However we try, we can’t prevent the reader sometimes getting one step ahead of the writer-chooses writer.
Simpson in [Sim97a, Sim97b] and in private communication argues that this is not a crippling problem in
practice – the reader is guaranteed the latest value or at worst the one before, so there is a kind of freshness
guarantee – and he goes on to derive a four-slot algorithm which retains the feature. But that’s not a true
descendant of the idealised algorithm and it won’t do for us.

8. Two slot algorithm – second attempt

The writer in fig. 18 constantly switches slots, and therefore can overtake the reader, producing the out-of-
sequence read in fig. 17. Simpson’s solution is to add a shared index variable r in which the reader indicates
the slot c[r] it is reading from, and the writer writes to slot c[!r]. The writer still updates l to show which is
the latest value written, and the reader still reads that latest value. The refinement/bug-fix has surprising
consequences.
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{
w = W ∧ l = L ∧ r = R ∧ ws = WS .B ∧ brsc 4 ws ∧ c[l] = B

}
〈c[!r] := w; l := !r;ws := ws.w〉{
w = W ∧ l = !R ∧ r = R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[l] = W

}
Fig. 20. Data refinement of fig. 6 to two slots (reader chooses){

l = L ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B
}

〈r := l; y := c[l]〉;{
y = B ∧ l = r = L ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B

}
⇒ (stability){

y = B ∧ r = L ∧ rs = RS ∧ bRS .Bc 4 ws ∧ brsc 4 ws ∧ c[l] = wsΩ

}
〈rs := rs.y〉{
y = B ∧ r = L ∧ rs = RS .B ∧ brsc 4 ws ∧ c[l] = wsΩ

}
Fig. 21. Data refinement of fig. 9 to two slots (reader chooses)

In fig. 19 we have backtracked, for reasons of explanation, on the atomicity refinement of the writer-
chooses algorithm and gone back to atomic buffer accesses in both reader and writer. The reader reads from
c[l], but it also writes in a shared variable r the index of the slot it is reading from, and the writer always
writes in the opposite slot. Inspired by Simpson [Sim97a] we call this algorithm ‘reader chooses’. Two slots
are not enough to guarantee coherent operation without using atomic instructions, so it isn’t a complete
solution, but it does avoid the out-of-sequence problem.

An obvious property of the algorithm is that the writer only ever alters l so as to make l = !r and the
reader only ever alters r so as to make r = l. That is, l = r is stable under the reader’s actions, and l 6= r
under the writer’s. These facts are preserved in refinement to the four-slot algorithm and they are important
in its proof, but they are harder to spot there than in fig. 19. It is an advantage of the refinement approach
that they emerge so early in development.

Data refinement is straightforward, once we have added universally quantified L and R to track the values
of the indexed variables. Refining pre and postconditions from fig. 6, the writer’s specification is shown in
fig. 20. We verify this specification below, but note already that it generates the action

l = L ∧ r = R ∧ ws = WS ∧ c[l] = B  l = !R ∧ r = R ∧ ws = WS .W ∧ c[l] = W

Because we don’t know the relationship between l and r on the left-hand side, it isn’t really clear what
happens to l. We make it clearer by describing two actions: one in the case that l = r initially, and the other
in the case that l 6= r:

l = r = L ∧ ws = WS ∧ c[L] = B  !l = r = L ∧ ws = WS .W ∧ c[L] = B ∧ c[!L] = W

l = !r = L ∧ ws = WS ∧ c[L] = B ∧ c[!L] = B′  l = !r = L ∧ ws = WS .W ∧ c[L] = W ∧ c[!L] = B′

We can simplify these actions, just as in the writer-chooses case, by not mentioning the slot which doesn’t
change:

l = r = L ∧ ws = WS  !l = r = L ∧ ws = WS .W ∧ c[!L] = W (21)

l = !r = L ∧ ws = WS ∧ c[L] = B  l = !r = L ∧ ws = WS .W ∧ c[L] = W (22)

Each of these actions preserves the invariant (14). Action (21) has the effect of the two-stage refinement (16)
of 〈b := w〉, writing to c[!l] and inverting l; action (22) has the effect of the single-stage refinement (15),
writing directly to c[l]. This is the second important property of this two-slot algorithm: the writer sometimes
makes a two-stage update, sometimes one-stage (though at this point, before atomicity refinement, even the
two-stage update takes place in a single instant).

The reader isn’t so subtle. We data-refine fig. 16 with additions to track the values of l and r to give
fig. 21, which verifies directly. The first step, which in the single-slot case generated the identity action, now
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l = r = L !l = r = L

l = !r = L !l = !r = L

w(21)
w(22)

r(23)

w(21)
w(22)

r(23)

Fig. 22. Sequencing of actions in the reader-chooses algorithm

generates

l = L l = r = L

We can clarify this by noting that when l = r initially it’s the identity action, and otherwise it inverts r:

l = !r = L l = r = L (23)

The second step generates (13) as before.
Another important property of the two-slot algorithm can now be seen if we consider the behaviour of

the writer and reader with respect to r and l. Fig. 22 shows a finite state machine in which the actions of
the writer are shown horizontally and the actions of the reader vertically. After a two-step update (21) the
writer has set l 6= r, and its only possible action then, without intervention of the reader, is a one-step (22).

Now that we know the actions of each process, we can verify the writer. The difficulty is that it generates
different actions in different starting states. In the RGSep atomic instruction rule (2) the action is calculated
by the Hoare logic verification of the command inside the atomic brackets. We expect to generate two actions,
one each for the disjunctive possibilities l = r and l 6= r. We analyse each possibility separately and combine
the results with Floyd’s specification-disjunction rule [Flo67].

{Q} C {R} {Q′} C {R′}
{Q ∨Q′} C {R ∨R′} (24)

In the first case, when l = r, we have

{w = W ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B}
c[!r] := w; l := !r;ws := ws.w

{w = W ∧ !l = r = L = R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W }
(25)

In the second case, when l = !r, we have

{w = W ∧ l = !r = L = !R ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B}
c[!r] := w; l := !r;ws := ws.w

{w = W ∧ l = !r = L = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = W }
(26)

Putting these two together with the specification-disjunction rule gives the verification in fig. 23.
Data refinement is successful, then, even though the verification of the writer wasn’t as simple as we

might have hoped.

8.1. Atomicity refinement of reader-chooses writer

The writer’s atomic action, without auxiliary annotation, is 〈c[!r] := w; l := !r〉. It’s immediately clear that
we can’t simply separate c[!r] := w from l := !r: updating c[!r] first would allow the reader to change r so
that l wouldn’t point at the slot just written; putting the update of l first would allow the writer to point l
at a slot not yet written. So we can’t make an atomicity refinement in two stages as in the writer-chooses
case. Instead we have to move immediately to a sequence which reads r into a local variable, uses that value
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w = W ∧ (l = r = L = R ∨ l = !r = L = !R) ∧ ws = WS .B ∧

brsc 4 ws ∧ c[L] = B

´
µ 

ß
w = W ∧ (l = r = L = R ∨ l = !r = L = !R) ∧ ws = WS .B ∧
brsc 4 ws ∧ c[L] = B

™
c[!r] := w; l := !r;ws := ws.ww = W ∧ ws = WS .B.W ∧ brsc 4 ws ∧Å

(!l = r = L = R ∧ c[L] = B ∧ c[!L] = W ) ∨
(l = !r = L = !R ∧ c[L] = W )

ã ⇒
{w = W ∧ l = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[l] = W }



ø
{
w = W ∧ l = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[l] = W

}
Fig. 23. Verification of two-slot writer (reader chooses)

to index c, and then updates l from the value it read in the first step:

〈〈wt := !r〉〉; 〈c[wt ] := w〉; 〈〈l := wt〉〉 (27)

Even then we haven’t solved the problem, because it isn’t clear where to put the auxiliary update to ws.
Analysis of the writer has shown that it produces two actions, one if initially l = r, another if initially l 6= r.
In the first case (action (21)) the writer changes c[!l] and then updates l: to preserve wsΩ = c[l] the update
to ws has to go with the update to l. In the second case (action (22)) the writer updates c[l] directly and
then doesn’t change l: to preserve wsΩ = c[l] the update to ws has to go with the update to c[l]. That means
that we can’t simply use the specification-disjunction rule to combine verifications of the l = r and l 6= r
cases, because in one case we analyse

〈〈wt := !r〉〉; 〈c[wt ] := w〉; 〈〈l := wt ;ws := ws.w〉〉

and in the other

〈〈wt := !r〉〉; 〈c[wt ] := w;ws := ws.w〉; 〈〈l := wt〉〉

We could solve this problem by using conditional updates to ws, discriminating on whether wt = l or
not, but we’d rather not make auxiliary activity appear to be the major part of the algorithm. What we
are faced with is commonly dealt with in linearisation [HW90]. We know that at some point during the
execution of the writer’s body an update to the refined buffer variable occurs and ws is updated to match,
and we know that it can happen at different points in different circumstances. When we consider the body
overall we don’t care where it happens, merely that it happens somewhere.

Auxiliary assignments don’t really execute: the program can’t detect their effects and can’t choose what
to do on the basis of an auxiliary value. We propose that refinement of an atomic sequence which includes
an auxiliary assignment needn’t be definite about where that assignment happens, provided of course that
stable assertions in other threads remain stable no matter where it actually happens. We define our problem
as to verify

{P}
Å

ws := ws.w
〈〈wt := !r〉〉; 〈c[wt ] := w〉; 〈〈l := wt〉〉

ã
{Q} (28)

in which the floating auxiliary assignment is guaranteed, whatever the initial conditions, to land just once
somewhere in the program below. This notation was inspired by relational separation logic [Yan07] but our
logic and our aims are different: the two levels in our notation interact, sharing state, and produce composite
actions.

The rules we use, which guarantee that the auxiliary assignment is placed somewhere and placed exactly
once, are shown in table 1: if an assignment floats above an atomic command it must be placed there; if it
floats above a sequence it must float either to the left or the right, whichever the proof requires. These rules
are all that we need, since in our examples we are only dealing with sequences of instructions; we could if
necessary add rules which deal with atomic skips so as to handle linearisation in another thread, or to deal
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Table 1. Rules for floating auxiliary assignments

{P} 〈C;A〉 {Q}

{P}
(

A
〈C〉

)
{Q}

postatomic

{P}
(

A
C1

)
; C2 {Q}

{P}
(

A
C1 ; C2

)
{Q}

presequence

{P} C1 ;

(
A

C2

)
{Q}

{P}
(

A
C1 ; C2

)
{Q}

postsequence

{
w = W ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B

}
〈〈wt := !r〉〉{
w = W ∧ wt = !L ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B

}
〈c[wt ] := w〉{
w = W ∧ wt = !L ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

}
〈〈l := wt ;ws := ws.w〉〉{
w = W ∧ wt = !L ∧ !l = r = L = R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

}
Fig. 24. Atomicity refinement of two-slot writer (reader chooses), l = r case

with conditionals and loops. We stress once again that this solution is merely a notational convenience, not
a change in semantics: what is being sugared is conditional execution of auxiliary assignments.

As before, then, we consider two cases and put them together with the specification-disjunction rule. The
precondition disjunction is, as before, between l = r = L = R and l = !r = L = !R. Because we use mid
stability we can consider each case directly. The case when l = r, noting that l = r = L = R is stable under
the reader’s actions (23) and (13), is shown in fig. 24. The first step generates the identity action; the second
and third generate

l = r = L l = r = L ∧ c[!L] = W (29)

l = r = L ∧ ws = WS ∧ c[!L] = W  !l = r = L ∧ ws = WS .W ∧ c[!L] = W (30)

Action (29) has no effect on the invariant (14), because it affects only c[!l]; action (30) updates ws and l to
preserve the invariant. Crucially, these actions can only happen when l = r and can only happen in sequence:
both these facts will turn out to be important.{

w = W ∧ l = !r = L = !R ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B
}

〈〈wt := !r〉〉{
w = W ∧ wt = L ∧ l = !r = L = !R ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B

}
⇒ (stability){

w = W ∧ wt = L ∧ l = L = !R ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B
}

〈c[wt ] := w;ws := ws.w〉{
w = W ∧ wt = L ∧ l = L = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = W

}
〈〈l := wt〉〉{
w = W ∧ wt = L ∧ l = L = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = W

}
Fig. 25. Atomicity refinement of two-slot writer (reader chooses), l 6= r case
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{
l = L ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B

}
〈r := l〉{
l = r = L ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B

}
⇒ (stability)®

∃B′
Å

(l = r = L ∨ !l = r = L) ∧ rs = RS ∧ brs.B.B′c 4 ws ∧
( (c[L] = B′) ∧ (c[l] = wsΩ) )

ã ´
〈y := c[r]〉{
∃B′

(
y = B′ ∧ r = L ∧ rs = RS ∧ brsc 4 ws ∧ brs.B.B′c 4 ws ∧ c[l] = wsΩ

)}
Fig. 26. Atomicity refinement of two-slot reader (reader chooses)

In the case when l = !r initially, we have the verification in fig. 25. The first and third steps generate the
identity action, and the second generates

l = L ∧ ws = WS ∧ c[L] = B  l = L ∧ ws = WS .W ∧ c[L] = W (31)

– almost the same as (22) except that we don’t know, because of the stability weakening, the value of r before
or after. This action preserves the invariant because it updates c[l] and ws consistently and atomically.

In both fig. 24 and fig. 25 the linearisation point, before which the operation of the writer has no effect
on the reader and after which the update is completely visible, is marked by the auxiliary assignment to ws.
The postcondition when we put these disjoint verifications together is

Ç
w = W ∧ wt = !L ∧

!l = r = L = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

å
∨Ç

w = W ∧ wt = L ∧
l = L = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = W

å  ⇒{
w = W ∧ l = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[l] = W

}
(32)

– the same as in the pre-refinement verification fig. 23 except that we have lost r = R because of stabilisation
in the verification of the l 6= r disjunct.

All three actions – (29), (30) and (31) – preserve stability of the asssertions in fig. 21. We have an
atomicity refinement.

8.2. Atomicity refinement of the reader-chooses reader

If we split the first atomic command of the reader of fig. 19 into a sequence 〈r := l〉; 〈y := c[r]〉 we won’t
disturb the writer’s stable assertions: the only effect on the shared store, as before, is to change l 6= r into
l = r. Using the same precondition as fig. 21, we have the verification in fig. 26. The important step is the
stability weakening: l = r = L weakens to l = r = L∨ !l = r = L because of (30); c[L] can be overwritten, it
would seem, by either (29) or (31). The important part of the weakening step is the claim brs.B.B′c 4 ws: if
the reader doesn’t read B, the latest value when it starts, then it reads a later value; if the claim were more
simply brs.B′c 4 ws then we wouldn’t so obviously have proved that rs is not simply a sequence of nulls.

To justify the claim that c[L] always contains a fresh value that is part of the written sequence it is
illuminating to revisit the state machine behaviour of the writer. Atomicity refinement has made the writer
a little more complicated, and we clarify its behaviour by annotating with assignments to an auxiliary
variable ac (for action counter):

bit wt , ac = 0 in
〈〈wt := !r;ac := (l = r ? 3 : 1)〉〉;Å

ws := ws.w
〈c[wt ] := w;ac := ac − 1〉; 〈〈l := wt ;ac := 0〉〉

ã
ni

(33)
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l = r = L
ac = 1

start

l = r = L
ac = 0

start

l = r = L
ac = 3

start

l = r = L
ac = 2

start

!l = r = L
ac = 0

!l = r = L
ac = 1

(35) (36) (37) (38)

(34)(35)

Fig. 27. Sequencing of two-slot writer’s actions after 〈r := l〉

We omit the details of the verification, but there are now two auxiliary actions produced by the first step,
which previously generated the identity action, and other actions now change the action counter:

ac = 0 ∧ l = !r = L ac = 1 ∧ l = !r = L (34)

ac = 1 ∧ l = L ∧ ws = WS ∧ c[L] = B  ac = 0 ∧ l = L ∧ ws = WS .B′ ∧ c[L] = B′ (35)

ac = 0 ∧ l = r = L ac = 3 ∧ l = r = L (36)

ac = 3 ∧ l = r = L ∧ c[!L] = B  ac = 2 ∧ l = r = L ∧ c[!L] = B′ (37)

ac = 2 ∧ l = r = L ∧ ws = WS ∧ c[!L] = B  ac = 0 ∧ !l = r = L ∧ ws = WS .W ∧ c[!L] = B (38)

To reason about stability we have to consider the writer’s actions in the absence of action by the reader
– in this case, what the writer can do after 〈r := l〉. Fig. 27 shows a finite state machine. When the reader
starts we have l = L, and instantaneously after 〈〈r := l〉〉 we have l = r = L. Reading across the diagram from
left to right the boxed action (35) updates c[L] but also makes it wsΩ; (36) is auxiliary; (37) when l = r = L
writes to c[!L]; (38) updates l and ws but doesn’t touch c; (34) is auxiliary; and (35) when l = !r = L also
writes to c[!L]. Only the boxed operation (35) at the left of the diagram writes to c[L] (which is also c[r]);
that can only happen once; and it updates ws at the same time.

So in fig. 26 we can assert brs.B.B′c 4 ws after stability weakening: if B′ is B, because c[L] hasn’t been
overwritten, we have brs.Bc 4 ws, as when the reader starts; and if c[L] is overwritten by the writer it is
with the latest value in the written sequence. It isn’t the case that c[L] = wsΩ is invariant: two actions in
the diagram make c[!L] the latest value, but that doesn’t matter since the reader always reads a value which
is at least as fresh as the latest at the instant it began.

The postcondition of 〈y := c[r]〉 in fig. 26 isn’t the same as the postcondition of 〈r := l; y := c[l]〉 in fig.
21 but they have equivalent force so far as the subsequent update to rs is concerned: the value in y is a valid
extension to rs and is either B or later than B in ws. We have an atomicity refinement.

The matter of linearisability isn’t quite so simple as it was in the single-variable algorithm. Clearly, the
linearisation points in the writer are 〈c[wt ] := w〉 when wt = l, and 〈〈l := wt〉〉, when wt = !l. In the reader
it’s more subtle. If we choose 〈r := l〉 as the linearisation point in the reader we could be mistaken: fig.
27 shows that the writer can execute action (35) and write to c[r] between that point and the execution of
〈y := c[r]〉; the linearisation point must be such that the value received by the reader is produced by the
write-linearisation point which immediately precedes it in the concurrent execution; so 〈r := l〉 could be too
early. If we take 〈y := c[r]〉 we could be too late: after 〈r := l〉 the writer can take various actions in fig. 27
which write to c[!r], none of which would write values that could be received by 〈y := c[r]〉.

The solution to the problem is part of the theory of linearisability. Sometimes the linearisation point
of a procedure call is in another process in the same concurrent execution. The linearisation point of the
reader is either 〈r := l〉, if the writer doesn’t write to c[r] between that point and 〈y := c[r]〉; it’s the writer’s
linearisation point itself if it does. This may seem like special pleading, but all we must do is to show that
there is an instant during the execution of each procedure call after which the actions of the environment
don’t have an effect. This algorithm is linearisable; for every concurrent execution there is an equivalent
sequential execution.
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l = !r = L
〈〈wt := !r〉〉
{wt = L}

〈r := l〉
l = r = L

〈c[wt ] := w〉 〈y := c[r]〉
Fig. 28. Collision in atomicity-refined reader-chooses algorithm{

l = L ∧ rs = RS ∧ brsc 4 ws ∧ ws = WS.B ∧ c[L] = B
}

〈〈rt := l〉〉{
rt = L ∧ l = L ∧ rs = RS ∧ brsc 4 ws ∧ brs.Bc 4 ws ∧ wsΩ = B ∧ c[L] = B

}
⇒ (stability)®

rt = L ∧ ∃B′
Å

(l = r = L ∨ l = !r = L ∨ !l = r = L) ∧ rs = RS ∧ brsc 4 ws ∧ brs.B.B′c 4 ws ∧
((c[L] = B′) ∧ (c[l] = wsΩ))

ã ´
〈〈r := rt〉〉®
rt = L ∧ ∃B′

Å
r = L ∧ rs = RS ∧ brsc 4 ws ∧ brs.B.B′c 4 ws ∧

((c[L] = B′) ∧ (c[l] = wsΩ))

ã ´
〈y := c[rt ]〉{
∃B′

(
y = B′ ∧ r = L ∧ rs = RS ∧ brsc 4 ws ∧ brs.B.B′c 4 ws ∧ c[l] = wsΩ

)}
Fig. 29. Second atomicity refinement of two-slot reader (reader chooses)

9. The essence of Simpson’s algorithm

We now have almost all the information we need to see how and why Simpson’s algorithm works. Writer and
reader can operate in the same slot in the two-slot reader-chooses algorithm, as illustrated in fig. 28, so two
slots are not a solution. But fig. 27 shows that there can be only one such collision: after 〈r := l〉 the writer
can only write once in the slot c[r], with a single-step update, and afterwards, until the reader intervenes to
change r, it has to write repeatedly in c[!r]. Further atomicity refinement of the two-slot reader preserves
that property, and refinement to four slots simply allows the two processes to avoid each other when the
refined collision occurs.

Once again refinement has revealed an essential property of the algorithm before it is buried in imple-
mentation detail.

l = r = L
ac = 1

start

l = r = L
ac = 0

start

l = r = L
ac = 3

start

l = r = L
ac = 2

start

!l = r = L
ac = 0

l = !r = L
ac = 1

start

l = !r = L
ac = 0

start

!l = r = L
ac = 1

(35) (36) (37) (38)

(34)(35)

(34)

(35)(23) (23)

Fig. 30. Sequencing of two-slot actions after 〈rt := l〉
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data c[2] = (null ,null) in bit l = 0, r = 0 indata*ws = .null , rs = . in

. . .
write(dataw) =̂

bit wt in
〈〈wt := !r〉〉;Å

ws := ws.w
〈c[wt ] := w〉; 〈〈l := wt〉〉

ã
ni

. . .
data read( ) =̂

data y in bit rt in
〈〈rt := l〉〉;
〈〈r := rt〉〉;
〈y := c[rt ]〉;
〈rs := rs.y〉;
return y

ni ni


ni ni ni

Fig. 31. Two-slot reader-chooses algorithm after atomicity refinement

10. Further refinement of the reader-chooses reader

We can make another step of atomicity refinement and move to single-access atomic instructions in the
reader, using a local variable rt to refine 〈r := l〉; 〈y := c[r]〉 into 〈〈rt := l〉〉; 〈〈r := rt〉〉; 〈y := c[rt ]〉. In fig.
29 the first step generates the identity action. The stability weakening is, once again, the important part of
the verification. The finite-state machine in fig. 30 shows the situation after 〈〈rt := l〉〉 and its transition, via
action (23) of the reader (the vertical arrows to the left of the diagram) to the same machine as fig. 27 after
〈〈r := rt〉〉.

Initially, as before, we have l = L and either l = r or l = !r. The reader’s 〈〈rt := l〉〉 doesn’t change any
of that, so the writer can start in any of the six indicated states. This time there are two transitions which
can write to c[L], both on the left of the diagram. The lower one can happen repeatedly, but each time it
does ws is updated and c[L] becomes the latest value. Then the reader’s 〈〈r := rt〉〉 moves, with action (23),
from whichever of the two lower states is active to the corresponding upper state, and (as before atomicity
refinement) there is only the possibility of a single further collision.

The third step in fig. 29 generates the identity action and produces the same postcondition as fig.
26. Overall we have the same actions and the same postcondition, and therefore an atomicity refinement.
Linearisation in the reader is as indicated in §5.2: either at 〈〈rt := l〉〉, if it picks up B, or at the last write
to c[r] which occurs between that point and 〈y := c[rt ]〉, if it picks up a later value B′.

The refined algorithm is shown in fig. 31. It uses two slots, it always reads in sequence, and though the
reader doesn’t necessarily get the latest value, it gets one which is no earlier than the one which was latest
when it executed its first instruction.

11. Refinement to four slots

So far we’ve data-refined the one-slot atomic buffer of fig. 2 into the two-slot reader-chooses atomic buffer
of fig. 19, and atomicity-refined to the algorithm of fig. 31. It remains to refine the buffer-slot accesses
〈c[wt ] := w〉 and 〈y := c[rt ]〉.

In the two-slot reader-chooses algorithm there can be at most one collision once the reader has declared,
in variable r, which slot it is about to read from. Suppose that we double each slot, replacing c[2] by d[2][2],
introduce an array of single-bit index variables i [2], and refine c[l] by d[l][i [l]] – i.e. l points to the latest pair,
and i [I] points to the latest slot within pair I.

As in the two-slot data refinement we have a choice in refining 〈c[wt ] := w〉: either to use a single-step
refinement 〈d[wt ][i [wt ]] := w〉 which writes directly to the latest slot in the pair; or a two-step refinement
〈d[wt ][!i [wt ]] := w; i [wt ] := !i [wt ]〉 which writes to the not-latest slot and then inverts the index variable. As
before, the single-step choice would be pointless, but making the two-step choice got us into trouble in the
writer-chooses algorithm. That trouble came about on the second write, and this time, as we’ve seen, when
there is a collision there is no second write to the same pair. Writer and reader, in the refined algorithm, will
collide at most once in the same pair and then go their separate ways; in that pair-collision the writer will
write to d[L][!i [L]] and the reader will read from d[L][i [L]]. So there will be no slot-collision, and therefore
not even a need for atomic buffer accesses. It remains only to work out the details.
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data d[2][2] = ((null ,null), (null ,null)) in bit l = 0, r = 0, i [2] = (0, 0) in
data*ws = .null , rs = . in

. . .
write(dataw) =̂

bit wt in
〈〈wt := !r〉〉;Ñ

ws := ws.w≠
d[wt ][!i [wt ]] := w;
i [wt ] := !i [wt ]

∑
; 〈〈l := wt〉〉

é
ni

. . .
data read( ) =̂

data y in bit rt in
〈〈rt := l〉〉;
〈〈r := rt〉〉;
〈y := d[rt ][i [rt ]]〉;
〈rs := rs.y〉;
return y

ni ni


ni ni ni

Fig. 32. Reader-chooses algorithm refined to four slots

{
w = W ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧ i [L] = I ∧ d[L][I ] = B ∧ i [!L] = I ′

}
〈〈wt := !r〉〉{
w = W ∧ wt = !L ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧ i [L] = I ∧ d[L][I ] = B ∧ i [!L] = I ′

}
〈d[wt ][!i [wt ]] := w; i [wt ] := !i [wt ]〉®
w = W ∧ wt = !L ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧

i [L] = I ∧ d[L][I ] = B ∧ i [!L] = !I ′ ∧ d[!L][!I ′] = W

´
〈〈l := wt ;ws := ws.w〉〉®
w = W ∧ !l = r = L = R ∧ ws = WS .B.W ∧ brsc 4 ws ∧

i [L] = I ∧ d[L][I ] = B ∧ i [!L] = !I ′ ∧ d[!L][!I ′] = W

´
Fig. 33. Data refinement of writer to four slots (l = r case from fig. 24)

Fig. 32 shows the data-refined algorithm; the refined communication invariant is

brsc 4 ws ∧ d[l][i [l]] = wsΩ (39)

We verify the data-refined writer in two cases, as before. First when l = r we have fig. 33. The first step
generates the identity action, as before; the second and third generate

l = r = L ∧ i [!l] = I  l = r = L ∧ i [!l] = !I ∧ d[!l][!I ] = W (40)

l = r = L ∧ ws = WS ∧ i [!l] = I ∧ d[!l][I ] = W  !l = r = L ∧ ws = WS .W ∧ i [l] = I ∧ d[l][I ] = W
(41)

which are obvious data refinements of (29) and (30). Verification is straightforward.
In the case that l 6= r, we have fig. 34. The first and third steps generate the identity action, and the

second step generates

l = L ∧ ws = WS ∧ i [l] = I  l = L ∧ ws = WS .W ∧ i [l] = !I ∧ d[l][!I ] = W (42)

which is a data refinement of (31) in the same sense that (17) was a data refinement of (11): if we include
d[l][I ] = B on both sides, since it is unchanged by the second step, it clearly acts to change d[l][i [l]] = B
into d[l][i [l]] = W . Verification is once again straightforward.



24 R. Bornat and H. Amjad

{
w = W ∧ l = !r = L = !R ∧ ws = WS .B ∧ brsc 4 ws ∧ i [L] = I ∧ d[L][I ] = B

}
〈〈wt := !r〉〉{
w = W ∧ wt = L ∧ l = !r = L = !R ∧ ws = WS .B ∧ brsc 4 ws ∧ i [L] = I ∧ d[L][I ] = B

}
⇒ (stability){

w = W ∧ wt = L ∧ l = L = !R ∧ ws = WS .B ∧ brsc 4 ws ∧ i [L] = I ∧ d[L][I ] = B
}

〈d[wt ][!i [wt ]] := w; i [wt ] := !i [wt ];ws := ws.w〉{
w = W ∧ wt = L ∧ l = L = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ i [L] = !I ∧ d[L][I ] = B ∧ d[L][!I ] = W

}
〈〈l := wt〉〉{
w = W ∧ wt = L ∧ l = L = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧ i [L] = !I ∧ d[L][I ] = B ∧ d[L][!I ] = W

}
Fig. 34. Data refinement of writer to four slots (l = !r case from fig. 25){

l = L ∧ rs = RS ∧ brsc 4 ws ∧ wsΩ = B ∧ i [L] = I ∧ d[L][I ] = B
}

〈〈rt := l〉〉{
rt = L ∧ l = L ∧ rs = RS ∧ brs.Bc 4 ws ∧ wsΩ = B ∧ i [L] = I ∧ d[L][I ] = B

}
⇒ (stability)®

rt = L ∧ ∃B′
Å

(l = r = L ∨ l = !r = L ∨ !l = r = L) ∧ rs = RS ∧ brs.B.B′c 4 ws ∧
∃I ′(i [L] = I ′ ∧ d[L][I ′] = B′) ∧ ∃I ′′(i [l] = I ′′ ∧ d[l][I ′′] = wsΩ)

ã ´
〈〈r := rt〉〉®
rt = L ∧ ∃B′

Å
r = L ∧ rs = RS ∧ brs.B.B′c 4 ws ∧
∃I ′(i [L] = I ′ ∧ d[L][I ′] = B′) ∧ ∃I ′′(i [l] = I ′′ ∧ d[l][I ′′] = wsΩ)

ã ´
〈y := d[rt ][i [rt ]]〉{
∃B′

(
y = B′ ∧ r = L ∧ rs = RS ∧ brsc 4 ws ∧ brs.B.B′c 4 ws ∧ ∃I ′′(i [l] = I ′′ ∧ d[l][I ′′] = wsΩ)

)}
Fig. 35. Data refinement of reader to four slots (from fig. 29)

Combining the postconditions of fig. 33 and fig. 34 gives a data refinement of (32):

Ü
w = W ∧ wt = !L ∧

!l = r = L = R ∧ ws = WS .B.W ∧ brsc 4 ws ∧
i [L] = I ∧ d[L][I ] = B ∧
i [!L] = !I ′ ∧ d[!L][!I ′] = W

ê
∨Ñ

w = W ∧ wt = L ∧
l = L = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧

i [L] = !I ∧ d[L][I ] = B ∧ d[L][!I ] = W

é

⇒

®
w = W ∧ l = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧

∃I ′′(i [l] = I ′′ ∧ d[l][I ′′] = W )

´ (43)

So far as the writer is concerned, then, we have a data refinement. Its actions preserve the invariant (39)
so we shouldn’t have any stability issues in the reader; the reader still only alters r and rs, both of which
were allowed for in stability arguments before data refinement.

In the reader, data refinement of fig. 29 gives fig. 35. The stability argument carries across the refinement:
(40) writes to i [!L] and d[!L][ ]; (41) writes to l and ws; (42) can write to i [L] and d[L][ ] but, when it does
so, it updates ws so that d[L][i [L]] is always a valid update to rs. The action generated by the second step is
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w = W ∧ wt = !L ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧

i [L] = I ∧ d[L][I ] = B ∧ i [!L] = I ′

´
〈〈wi := !i [wt ]〉〉®
w = W ∧ wt = !L ∧ wi = !I ′ ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧

i [L] = I ∧ d[L][I ] = B ∧ i [!L] = I ′

´
〈d[wt ][wi ] := w〉®
w = W ∧ wt = !L ∧ wi = !I ′ ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧

i [L] = I ∧ d[L][I ] = B ∧ i [!L] = I ′ ∧ d[!L][!I ′] = W

´
〈〈i [wt ] := wi〉〉®
w = W ∧ wt = !L ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧

i [L] = I ∧ d[L][I ] = B ∧ i [!L] = !I ′ ∧ d[!L][!I ′] = W

´
Fig. 36. Atomicity refinement of four-slot writer, l = r case®

w = W ∧ wt = L ∧ l = L = !R ∧ ws = WS .B ∧ brsc 4 ws ∧
i [L] = I ∧ d[L][I ] = B ∧ i [!L] = I ′

´
〈〈wi := !i [wt ]〉〉®
w = W ∧ wt = L ∧ wi = !I ∧ l = L = !R ∧ ws = WS .B ∧ brsc 4 ws ∧

i [L] = I ∧ d[L][I ] = B ∧ i [!L] = I ′

´
〈d[wt ][wi ] := w〉®
w = W ∧ wt = L ∧ wi = !I ∧ l = L = !R ∧ ws = WS .B ∧ brsc 4 ws ∧

i [L] = I ∧ d[L][I ] = B ∧ d[L][!I ] = W ∧ i [!L] = I ′

´
〈〈i [wt ] := wi ;ws := ws.w〉〉®
w = W ∧ wt = L ∧ l = L = !R ∧ ws = WS .B.W ∧ brsc 4 ws ∧

i [L] = !I ∧ d[L][I ] = B ∧ d[L][!I ] = W ∧ i [!L] = I ′

´
Fig. 37. Atomicity refinement of four-slot writer, l 6= r case

(23) when l = !r = L, as before. The postcondition provides all that is needed for the subsequent update to
rs to generate (13) (details omitted). Linearisation is just as for the pre-refinement fig. 31, either at 〈〈rt := l〉〉
if B′ = B or at the writer which produces B′, otherwise.

So we have a data refinement to four slots.

11.1. Atomicity refinement of the four-slot writer

To atomicity-refine the writer we have to verify the l = r case from fig. 33 and the l = !r case from fig.
34. In each case we introduce a new local variable wi and replace d[wt ][!i [wt ]] := w; i [wt ] := !i [wt ] by
wi := !i [wt ]; d[wt ][wi ] := w; i [wt ] := wi .

Extracting the precondition of the second step in fig. 33 and splitting up the atomic sequence we have
fig. 36. The postcondition is just the postcondition of the second step in fig. 33. But now the single action
(40) has become two actions generated by the second and third steps:

l = r = L ∧ i [!l] = I  l = r = L ∧ i [!l] = I ∧ d[!l][!I ] = W (44)

l = r = L ∧ i [!l] = I  l = r = L ∧ i [!l] = !I (45)

Nothing in the stability assertions in the reader is disturbed: (44) only operates on d[!rt ][ ], and (45) only
operates on i [!rt ]. This is an atomicity refinement.

In the other case, taking the precondition of the second step from fig. 34 and splitting up the atomic
sequence – note that we keep the updates of i [wt ] and ws together in a single atomic step – we have fig. 37.
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rt = L ∧ ∃B′

Å
r = L ∧ rs = RS ∧ brsc 4 ws ∧ brs.B.B′c 4 ws ∧
∃I ′(i [L] = I ′ ∧ d[L][I ′] = B′) ∧ ∃I ′′(i [l] = I ′′ ∧ d[l][I ′′] = wsΩ)

ã ´
〈〈ri := i [rt ]〉〉∃I

′

á
rt = L ∧ ri = I ′ ∧

∃B′

Ñ
r = L ∧ rs = RS ∧ brsc 4 ws ∧ brs.B.B′c 4 ws ∧Å
∃I ′(i [L] = I ′ ∧ d[L][I ′] = B′) ∧
∃I ′′(i [l] = I ′′ ∧ d[l][I ′′] = wsΩ)

ã é ë
⇒ (stability)∃I

′

á
rt = L ∧ ri = I ′ ∧

∃B′

Ñ
r = L ∧ rs = RS ∧ brsc 4 ws ∧ brs.B.B′c 4 ws ∧Å

(d[L][I ′] = B′) ∧
∃I ′′(i [l] = I ′′ ∧ d[l][I ′′] = wsΩ)

ã é ë
〈y := d[rt ][ri ]〉®
∃B′

Ç
y = B′ ∧ r = L ∧ rs = RS ∧ brsc 4 ws ∧ brs.B.B′c 4 ws ∧

(∃I ′′(i [l] = I ′′ ∧ d[l][I ′′] = wsΩ) )

å´
Fig. 38. Atomicity refinement of four-slot reader

l = r = L
ac = 2

start

l = r = L
ac = 1

start

l = r = L
ac = 0

start

l = r = L
ac = 5

start

l = r = L
ac = 4

start

!l = r = L
ac = 1

!l = r = L
ac = 2

!l = r = L
ac = 0

l = r = L
ac = 3 start

(49) (50) (51) (52)

(53)

(54)(48)(49)

(50)

Fig. 39. Sequencing of four-slot writer’s actions after 〈〈r := rt〉〉

Again, the postcondition is just the postcondition of the second step in fig. 34. Again the single action (42)
has been split into two:

l = L ∧ i [l] = I  l = L ∧ i [l] = I ∧ d[l][!I ] = W (46)

l = L ∧ ws = WS ∧ i [l] = I ∧ d[l][!I ] = W  l = L ∧ ws = WS .W ∧ i [l] = !I ∧ d[l][!I ] = W (47)

Again, this doesn’t disturb stability in the reader: (46) can write to the d[rt ] pair, but only to the !i [rt ] slot;
when (47) alters i [rt ] it updates ws consistently. We have an atomicity refinement.

Linearisation points in each of these verifications are marked by assignment to ws. Note that this means
assignment to an element of d – a buffer slot – is no longer a linearisation point in either of the two cases
l = r (fig. 33, linearisation point 〈〈l := wt〉〉) or l 6= r (fig. 37, linearisation point 〈〈i [wt ] := wi〉〉). This fact
will become important when we consider removing atomicity from buffer accesses.
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data d[2][2] = ((null ,null), (null ,null)) in bit l = 0, r = 0, i [2] = (0, 0) indata*ws = .null , rs = . in

. . .
write(dataw) =̂

bit wt in
〈〈wt := !r〉〉;â

ws := ws.w
bit wi in
〈〈wi := !i [wt ]〉〉; d[wt ][wi ] := w;
〈〈i [wt ] := wi〉〉

ni;
〈〈l := wt〉〉

ì
ni

. . .
data read( ) =̂

data y in bit rt in
〈〈rt := l〉〉;
〈〈r := rt〉〉;
bit ri in
〈〈ri := i [rt ]〉〉;
y := d[rt ][ri ]

ni;
〈rs := rs.y〉;
return y

ni ni


ni ni ni

Fig. 40. Simpson’s four-slot algorithm

11.2. Atomicity refinement of the four-slot reader

Atomicity refinement of the second step of fig. 35 is verified in fig. 38. Both steps generate the identity
action but, as before, it is the stability step that requires most attention. Essentially, the writer can alter
i [L] but it can’t alter d[L][I ′]. To understand this we appeal, as before, to a finite-state machine diagram
of the writer’s actions after 〈〈r := rt〉〉. Fig. 39 is the refinement of fig. 30 after the reader action eliminates
the two bottom-left states. We have produced this figure by using once again the technique of (33) (details
omitted) to show that the writer’s actions are

ac = 0 ∧ l = !r = L ac = 2 ∧ l = !r = L (48)

ac = 2 ∧ l = L ∧ i [l] = I  ac = 1 ∧ l = L ∧ i [l] = I ∧ d[l][!I ] = W (49)

ac = 1 ∧ l = L ∧ ws = WS ∧
i [l] = I ∧ d[l][!I ] = W

 ac = 0 ∧ l = L ∧ ws = WS .W ∧ i [l] = !I ∧ d[l][!I ] = W (50)

ac = 0 ∧ l = r = L ac = 5 ∧ l = r = L (51)

ac = 5 ∧ l = r = L ∧ i [!l] = I  ac = 4 ∧ l = r = L ∧ i [!l] = I ∧ d[!l][!I ] = W (52)

ac = 4 ∧ l = r = L ∧ i [!l] = I  ac = 3 ∧ l = r = L ∧ i [!l] = !I (53)

ac = 3 ∧ l = r = L ∧ ws = WS ∧
i [!l] = I ∧ d[!l][I ] = W

 ac = 0 ∧ !l = r = L ∧ ws = WS .W ∧ i [l] = I ∧ d[l][I ] = W (54)

– more actions than before because some have been split into two stages. None of the actions in the diagram
alter d[L][i [L]]. Actions (49) and (50) correspond to (35) in the two-slot algorithm, which wrote to c[L] at
the top left of fig. 30 and could produce a collision; but (49) writes to d[L][!i [L]] and (50) inverts i [L]. The
collision has gone and we have stability: after the writer has selected a pair and a slot within the pair – i.e.
after 〈〈r := rt〉〉; 〈〈ri := i [rt ]〉〉 – its value is stable. We have an atomicity refinement.

The linearisation point in the reader is at the earliest 〈〈rt := l〉〉 and at the latest 〈〈ri := i [rt ]〉〉: after the
second point writes no longer have any effect on the value returned. But as usual we have to say that it is
the write which provided B′, if B′ 6= B; all we care about is that the linearisation point exists.

11.3. Four slots with non-atomic slot access

Atomicity refinement in the four-slot reader has produced an algorithm in which, once the reader has selected
a slot, the writer cannot write to the selected slot. We no longer need atomic slot accesses, and fig. 40 is
Simpson’s classic four-slot algorithm [Sim90]. All we have done since atomicity refinement is to remove
atomicity brackets round d[wt ][wi ] := w in the writer and y := d[rt ][ri ] in the reader. Linearisation points
remain unchanged.

So far we have required that access to shared store take place only within an atomic command, so that
we can associate actions with atomic executions. We suppose that non-atomic reads and writes take place as
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w = W ∧ wt = !L ∧ wi = !I ′ ∧ l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧

i [L] = I ∧ d[L][I ] = B ∧ i [!L] = I ′

´
— {d[wt ][wi ] = X stable under R

d[wt ][wi ] := ww = W ∧ wt = !L ∧ wi = !I ′ ∧
l = r = L = R ∧ ws = WS .B ∧ brsc 4 ws ∧

i [L] = I ∧ d[L][I ] = B ∧
i [!L] = I ′ ∧ d[!L][!I ′] = W )


Fig. 41. Verification of four-slot non-atomic write, l = r case∃I ′

Ü
rt = L ∧ ri = I ′ ∧ ∃B′

Ö
r = L ∧ rs = RS ∧ brsc 4 ws ∧ brs.B.B′c 4 ws ∧(

(d[L][I ′] = B′) ∧
∃I ′′(i [l] = I ′′ ∧ d[l][I ′′] = wsΩ) ∧
(i 7→ ( , ) ∧ d 7→ ( , , , ))

) è ê
— {d[rt ][ri ] = B′ stable under R

y := d[rt ][ri ]®
∃B′

Ç
y = B′ ∧ r = L ∧ rs = RS ∧ brsc 4 ws ∧ brs.B.B′c 4 ws ∧

(∃I ′′(i [l] = I ′′ ∧ d[l][I ′′] = wsΩ) )

å´
Fig. 42. Verification of four-slot non-atomic read

a series of atomic mini-writes, serialised by the store. So a non-atomic write alters its destination piecewise,
a non-atomic read assembles its results piecewise; a non-atomic read will retrieve a non-coherent value if its
mini-reads overlap with a sequence of mini-writes; and two writers can produce an incoherent result if their
sequences of mini-writes overlap.

Vafeiadis’s non-atomic write rule [Vaf07] applies to an assignment which copies a value computed from
local variables into shared heap, and deals with cells which might go into and out of the heap. In our case we
write from local store to a shared array element which cannot disappear. Specialising our concerns to two-
dimensional arrays, we suppose that the non-atomic instruction a[I][J ] := E is executed as a sequence of k
naturally-atomic assignments 〈〈a[I][J ]1 := E1〉〉; 〈〈a[I][J ]2 := E2〉〉; . . . ; 〈〈a[I][J ]k := Ek〉〉. Adapting Vafeiadis’s
rule by replacing heap addressing with array indexing we derive the the rule

P ∧ I = X,P ∧ J = Y, P ∧ a[I][J ] = Z stable under R P  P ∧ a[I][J ] = Z ⊆ G¶
E = F ∧ P

©
a[I][J ] := E

{
E = F ∧ P ∧ a[I][J ] = F

} non-atomic write

(55)

There must be no competing writers to the array element (P ∧ a[I][J ] = Z stable under R); nothing can
alter the index formulale I and J (P ∧ I = X,P ∧ J = Y stable under R); E must be a local formula
(though it would be enough for it to be stable); and the writer must declare its action to the environment
(P  P ∧a[I][J ] = Z ⊆ G). We have all four conditions when we consider d[wt ][wi ] := w: the reader doesn’t
write to the array at all; it cannot alter wt or wi because they are local to the writer; w is local; and the
effect of the assignment is included in the guarantee in actions (44) and (46). In the case that wt = !L (fig.
41) we have the same pre and postcondition and the same action as in fig. 36. The other case, when wt = L,
is equally straightforward (details omitted).

A non-atomic read rule which copies a value from a shared array element to a local variable is equally
straightforward to derive

P ∧ I = X,P ∧ J = Y, P ∧ a[I][J ] = Z stable under R{
∃E(P ∧ a[I][J ] = E)

}
x := a[I][J ]

{
∃E
(
x = E ∧ P ∧ a[I][J ] = E

)} non-atomic read

(56)

– provided that the indices I and J and the value of the array element are stable under the actions of the
environment, we are guaranteed to be able to read coherently. In the four-slot reader (fig. 42) we have the
same pre and postcondition as in fig. 38 and the same identity action. We have completed our refinement.
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The most important steps in the refinement process were all made in the two-slot case. We showed that
the writer only moves l to make l 6= r and the reader only moves r to make r = l; we showed that the writer
does one thing when l = r initially and another when l 6= r; we showed that the writer only collides with
the reader briefly, once the reader has selected a slot. The rest was more or less mechanical.

The algorithm is evidently wait-free – there are no loops in either write or read procedure body – and it
provably emulates the single-slot idealised original. It doesn’t depend on hardware concurrency mechanisms,
provided only that the store serialises single-bit reads and writes. That is a larger assumption than it may
seem, and it is discussed further in §15. But, for the moment, we have achieved what we set out to do.

12. Dialectical refinement?

Conventional refinement, of whatever flavour, starts with a more or less abstract specification and a more
or less magical algorithm and proceeds by refinement steps, reducing abstraction in the specification and/or
magic in the algorithm but always preserving the truth of their correspondence, to reach an implementation.

In our refinement so far that is what we have done. There was a little dead end development to produce
fig. 18, but we backtracked, re-refined to two slots in fig. 19, and proceeded by logical refinement to produce
the four-slot algorithm of fig. 40.

But something else happened in that dead end. We discovered a bug – reading out of sequence – and con-
structed an algorithm to avoid it. That has a little of the dialectical in it: thesis (simple two-slot refinement)
plus antithesis (observable bug / proof failure) yields synthesis (cleverer two-slot refinement). In producing
Harris’s three-slot algorithm we don’t backtrack: we modify the faulty algorithm of fig. 18 to avoid the same
bug, producing a radically different algorithm which isn’t wait-free; then we modify that algorithm again to
produce a wait-free algorithm. This has something of the quality, if not the elegance, of the dialectical devel-
opments described by Lakatos [Lak76]. We seem to proceed by a kind of monster-barring, and we certainly
make steps which aren’t truth-preserving.

In our experience, straying into the false in the course of a development is part of the algorithm-discovery
process, and we feel it ought to be one of the ways in which they are explained and refined. We put forward
our refinement of Harris’s algorithm as an example.

13. Refinement to two slots – third attempt

The problem with fig. 18 is out-of-sequence reading. As we observed above in the refinement from two slots
(reader chooses) to four slots, the problem arises in the second write after the reader has chosen a slot: the
reader must read the current value of l = L, the writer must invert l and write to the c[!l] = c[L] slot, and
then the reader can retrieve the partially-written value – coherently, because buffer reads and writes in that
algorithm are atomic, but not yet part of the written sequence and therefore out-of-sequence. Simpson’s
reader-chooses algorithm avoids the problem by signalling between reader and writer to alter the writer’s
behaviour, so that it doesn’t always invert l. Harris’s solution is to signal between writer and reader to alter
the reader’s behaviour, so that it doesn’t rely on a value written after the writer inverts l, the first step in
the sequence of its actions which can set up an out-of-sequence read.

In fig. 43, which is the atomically-misrefined writer-chooses algorithm of fig. 18 changed to make use of
a signalling variable ok , the writer sets ¬ok after it has inverted l. The reader sets ok when it starts, and
if it manages to read before the writer sets ¬ok , it returns a value; if not, it simply tries again.7 This is
now an extremely ‘racy’ algorithm: the reader can retrieve possibly-incoherent or possibly-out-of-sequence
values but if so it rejects them and tries again. The signalling is over-cautious – the writer sends the signal
immediately it has inverted l, which may be long before it begins to write a new value to the buffer – but it
is safe. If the reader retrieves a value before 〈〈ok := false〉〉 then it is a fresh member of the written sequence.
All this assumes, as in the refinement of Simpson’s algorithm, that the writer’s writes to the shared store
happen in the sequence they are executed, and likewise the reader’s reads and writes, and that the store

7 In our development we access shared store only in atomic instructions or in carefully-checked non-atomic instructions. ok is
in shared store so to treat it properly we fastidiously do not write do . . . until¬ok . Instead we read its value into a local variable
in an atomic command, and loop on the value of that variable. It’s a minor point but it keeps our development scrupulously
honest.
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data c[2] = (null ,null) in bit l = 0, ok indata*ws = .null , rs = . in

. . .
write(dataw) =̂

bit wt in
〈〈wt := !l〉〉;
〈c[wt ] := w〉;
〈〈l := wt ;ws := ws.w〉〉;
〈〈ok := false〉〉

ni

. . .
data read( ) =̂

data y in bit rt in
do
〈〈ok := true〉〉;
〈〈rt := l〉〉;
〈y := c[rt ]〉;
〈〈rt := ok〉〉

until rt ;
〈〈rs := rs.y〉〉;
return y

ni ni


ni ni ni

Fig. 43. A danger-signalling two-slot algorithm with a changed specification

serialises single-bit shared-memory accesses. These are not trivial assumptions: see §15 for a discussion of
what might happen on a modern processor.

This algorithm has the same invariant (14) as previous two-slot algorithms. But in one respect it is
distinctly inferior to the reader-chooses algorithm, because it is no longer wait-free. Previously the write(w)
and read( ) procedure calls were guaranteed to terminate, because their procedure bodies were sequences of
straightforward certain-to-terminate assignment instructions. Now we have a loop in the reader, and there
is no guarantee that it will ever terminate: the writer may write so often that the reader never has a chance
to read a value before the writer sets ¬ok . We can fix that problem to produce a wait-free algorithm, but
for the time being we explore this version, in which y := b has been refined by a loop, to explain how the
signalling works.

The actions of the writer in fig. 43 are (18) and (19) from its second and third steps, just as in the
writer-chooses algorithm, plus from the fourth step either the identity action, when ¬ok , or

ok  ¬ok (57)

Each of these actions preserves the invariant (14): (57) because the invariant doesn’t mention ok ; (18),
as before, because the invariant doesn’t mention c[!l]; (19), as before, extends ws and alters l to preserve
c[l] = wsΩ. We omit most of the verification of the writer, which is identical to fig. 15. The final step is{

w = W ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W
}

〈〈ok := false〉〉{
w = W ∧ ¬ok ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

} (58)

which clearly generates (57).
We shall see that the actions of the reader are (13), as in the atomicity-refined single-variable buffer, plus

¬ok  ok (59)

These actions preserve (14), and they certainly don’t affect stability arguments in verifications fig. 15 and
(58). It remains to show that these truly are the actions of the reader.

Action sequencing is at the heart of this design. It’s easy to show by adding an action-sequencing auxiliary
variable (details omitted) that after 〈〈ok := true〉〉 in the reader the writer’s actions change the shared store
according to the finite state machine shown in fig. 44. The dangerous action, the one which can cause an
out-of-sequence read, is (18) when l = !L. But it’s clear from the diagram that this can only happen when
¬ok . As long as ok holds, the value in c[L] is a member of the written sequence.

We verify the body of the loop in the reader, starting with the precondition from fig. 16, in fig. 45. After
the first step ok holds instantaneously. In the stability weakening step we have to forget the unstable values
of ok , ws l and c[l], but so long as ok holds the writer has not overwritten c[L] whether or not l has changed;
also we record that B is a valid appendage to rs. After the second step we have fixed on the value of l, which
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l = L ∧ ok

start

l = L ∧ ok l = !L ∧ ok

l = !L ∧ ¬ok l = !L ∧ ¬ok

l = L ∧ ¬ok l = L ∧ ¬ok

(18)

(19)

(19)

(57)

(57)

(18)

(19)

(18)

(19)

Fig. 44. Sequencing of danger-signalling writer’s actions

{
l = L ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[l] = B

}
〈〈ok := true〉〉{
l = L ∧ ok ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[l] = B

}
⇒ (stability)®

∃B′, B′′
Å

(ok ⇒ (l = L ∧ ws = WS .B) ∨ (l = !L ∧ ws = WS .B.B′ ∧B = B′′)) ∧
rs = RS ∧ brs.Bc 4 ws ∧ wsΩ = B′ ∧ c[l] = B′ ∧ c[!l] = B′′

ã ´
〈〈rt := l〉〉®
∃L′

Ç
rt = L′ ∧ ∃B′, B′′

Å
(ok ⇒ (l = L ∧ ws = WS .B) ∨ (l = !L ∧ ws = WS .B.B′ ∧B = B′′)) ∧
l = L′ ∧ rs = RS ∧ brs.Bc 4 ws ∧ wsΩ = B′ ∧ c[l] = B′ ∧ c[!l] = B′′

ã å´
⇒ (stability)®

∃L′

Ç
rt = L′ ? ∃B′, B′′

Å
(ok ⇒ !l = L′ ⇒ ws = WS .B.B′ ∧B = B′′) ∧

rs = RS ∧ brs.Bc 4 ws ∧ wsΩ = B′ ∧ c[l] = B′ ∧ c[!l] = B′′

ã å´
〈y := c[rt ]〉{
∃B′′′

(
y = B′′′ ∧ (ok ⇒ bRS .B′′′c 4 ws) ∧ rs = RS ∧ brsc 4 ws ∧ c[l] = wsΩ

)}
〈〈rt := ok〉〉∃B′′′

Ñ
y = B′′′ ∧

Ñ(
rt ∧ ok ∧ rs = RS ∧ bRS .B′′′c 4 ws ∧ c[l] = wsΩ

)
∨(

¬rt ∧ ¬ok ∧ rs = RS ∧ brsc 4 ws ∧ c[l] = wsΩ

)
éé

Fig. 45. Verification of two-slot reader (danger-signalling)

can still change, but, so long as ok holds, the value in either slot of the buffer array is a valid appendage
to rs. After the third step either we have the latest value, if ok ∧ l = L′, or B, if ok ∧ !l = L′, or some
other value, if ¬ok – so a valid appendage to rs if ok still holds. After the fourth step the information about
freshness is transferred to the local state.

The only action generated by the reader is (59) from the first step. We can use this verification to produce
a specification of the loop in fig. 46. This gives us a loop postcondition which shows that 〈〈rs := rs.y〉〉
produces the action (13), as in the single-variable verification fig. 9.
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{
rs = RS ∧ brsc 4 ws ∧ c[l] = wsΩ

}
do{
∃L,WS , B ( l = L ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[l] = B )

}
〈〈ok := true〉〉; 〈〈rt := l〉〉; 〈y := c[rt ]〉; 〈〈rt := ok〉〉∃B′′′

Ñ
y = B′′′ ∧

Ñ(
rt ∧ ok ∧ rs = RS ∧ bRS .B′′′c 4 ws ∧ c[l] = wsΩ

)
∨(

¬rt ∧ ¬ok ∧ rs = RS ∧ brsc 4 ws ∧ c[l] = wsΩ

)
éé

⇒ (stability)∃B′′′

Ñ
y = B′′′ ∧

Ñ(
rt ∧ rs = RS ∧ bRS .B′′′c 4 ws ∧ c[l] = wsΩ

)
∨(

¬rt ∧ ¬ok ∧ rs = RS ∧ brsc 4 ws ∧ c[l] = wsΩ

)
éé

until rt{
∃B′′′

(
y = B′′′ ∧ rs = RS ∧ bRS .B′′′c 4 ws ∧ c[l] = wsΩ

)}
Fig. 46. Specification of loop in two-slot reader (danger-signalling)

The linearisation point in the writer is clearly 〈〈l := wt〉〉. The linearisation point in the reader is actually
the last execution of 〈〈rt := l〉〉 before it returns: after that point nothing the writer did had any effect.

We have repaired fig. 18: fig. 43 shows freshness at the expense of losing the wait-free property. Wait-
freeness is important: we cannot be sure in this algorithm that a read( ) procedure call will ever terminate.
We note, however, that this may not be a crippling problem in practice. The Ethernet communication
algorithm, for example, isn’t wait-free – there can be collisions between competing transmitters, and if there
is, both transmitters loop – but it’s certainly practically useful. The danger-signalling algorithm, like the
Ethernet algorithm, is obstruction-free; if the writer is passive, the reader’s loop is guaranteed to terminate.
Obstruction-free algorithms can be made practical by back-off schemes: if there is a collision, both sides
pause for an interval, likely to be different on each side, and then try again. We don’t explore back-off in
this case, because it is possible to restore wait-freeness by a further refinement.

13.1. Non-atomic buffer accesses in the danger-signalling algorithm

The stability argument in fig. 45 relies on the fact that so long as ok holds, the value in slot c[rt ] won’t be
overwritten. That is, there is no collision so long as ok holds, and therefore we can read and write buffer slots
non-atomically so long the reader ignores the result if ¬ok – which it does. This won’t affect linearisation
points, which aren’t on the buffer access instructions.

The writer is straightforward using the non-atomic write rule (55){
w = W ∧ wt = !L ∧ l = L ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B

}
— {c[wt ] = X stable under R

c[wt ] := w{
w = W ∧ wt = !L ∧ l = L ∧ ws = WS .B ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

} (60)

In the reader the non-atomic read rule (56) is inadequate because c[rt ] = B is not stable. To derive an
adequate rule8 we note again that a non-atomic read will be executed as a sequence of atomic mini-reads.
Focussing this time on single-dimensioned array access, we suppose that x and a[I] are made up of k separate
pieces, and a non-atomic read x := a[I] is executed as the sequence 〈〈x1 := a[I]1〉〉; 〈〈x2 := a[I]2〉〉; . . . ; 〈〈xk :=

8 The derivation of rule (62) and the rule itself were suggested to us by Vafeiadis and Parkinson (private communication).
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a[I]k〉〉, and that there is some formula Q which guarantees that a[I] = V . Then for any particular element
of the sequence of atomic mini-reads we may deduce, using the specification-disjunction rule{

(¬Q ∧ c[L] = ) ∨ (Q ∧ c[L] = V )
}

〈〈xi := a[I]i〉〉{
∃V ′

i

(
xi = V ′

i ∧ (¬Q ∧ c[L] = ) ∨ (Q ∧ V ′
i = Vi ∧ c[L] = V )

)} (61)

– we have read a segment of a[I] and if Q holds, a segment of V . If ¬Q is stable, so that we cannot have first
Q then ¬Q then Q, then if Q holds at the end of the sequence of atomic reads it must have held throughout,
and we can conclude that we have successfully read all k segments of V , the value in a[I].

The following rule is thus derived to deal with a non-atomic read from a shared array element to a local
variable, splitting Q into P ∧OK :

∃V ((OK ⇒ V = X) ∧ P (V ) ∧ a[I] = V ), ¬OK stable under R{
∃V (P (V ) ∧ a[I] = V )

}
x := a[I]

{
∃V ′

(
x = V ′ ∧ ∃V ((OK ⇒ V = V ′) ∧ P (V ) ∧ a[I] = V )

)} non-atomic read

(62)

• the value of the array element must be stable throughout the read: ∃V (P (V )∧a[I] = V ) stable under R;

• when OK holds, the value in the array element is fixed: OK ⇒ V = X stable under R;

• OK does not change value from false to true during the read: ¬OK stable under R.

In the reader we have®
∃L′

Ç
rt = L′ ∧ ∃B′, B′′

Å
(ok ⇒ !l = L′ ⇒ ws = WS .B.B′ ∧B = B′′) ∧

rs = RS ∧ brs.Bc 4 ws ∧ wsΩ = B′ ∧ c[l] = B′ ∧ c[!l] = B′′

ã å´
— {¬ok , ok ⇒ c[rt ] = X stable under R

y := c[rt ]{
∃B′′′

(
y = B′′′ ∧ (ok ⇒ bRS .B′′′c 4 ws) ∧ rs = RS ∧ brsc 4 ws ∧ c[l] = wsΩ

)}
(63)

We have a two-slot algorithm which communicates according to (14). It has coherence and freshness.

14. Refinement to three slots

The writer in fig. 43 signals when a write which sets up an out-of-sequence read might be its next action.
If it signalled also the latest value it has written then the reader, when it receives the signal, could use the
signalled value instead of trying to read again from the c array. We use a shared variable c′, in effect a third
buffer slot, for this auxiliary communication.

It is tempting to replace 〈〈ok := false〉〉 in the writer by 〈c′ := w; ok := false〉 but that isn’t a refinement
because the original generates the identity action when ¬ok . We need to wrap the signalling instruction
in a conditional, as shown in fig. 47. Since our rules don’t let us access shared memory in the guard of a
conditional, we fastidiously read the value of ok into a local variable and test that variable.

Using the precondition of 〈〈ok := false〉〉 from (58), we produce the verification in fig. 48. This gives
the same postcondition as (58), except that we have forgotten ¬ok for stability in the second arm of the
disjunction; this postcondition would fit into any sequential context as well as the pre-refinement version.
Action (57) is replaced by

ok ∧ ws = WS .W  ¬ok ∧ ws = WS .W ∧ c′ = W (64)

– clearly a data refinement because it changes ok as before and otherwise only modifies the new variable c′.
We verify the reader in fig. 49. We can assert, in the stability step which follows 〈〈ok := true〉〉, not only

what ok implies, but also, because of (64), which is the only writer action to set ¬ok , ¬ok ⇒ brs.c′c 4 ws.
We have the same postcondition (modulo alpha conversion) as in fig. 46, but without using a loop. Every
step except for the first generates the identity action; the first still generates (59). We have recovered a
wait-free algorithm.
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data c[2] = (null ,null), c′ in bit l = 0, ok indata*ws = .null , rs = . in

. . .
write(dataw) =̂

bit wt in
〈〈wt := !l〉〉;
c[wt ] := w;
〈〈l := wt ;ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then
〈c′ := w; ok := false〉

else skip fi
ni

. . .
data read( ) =̂

data y in bit rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt ];
〈〈rt := ok〉〉;
if ¬rt then〈y := c′〉 else skip fi;
〈〈rs := rs.y〉〉;
return y

ni ni


ni ni ni

Fig. 47. A value-signalling three-slot algorithm

14.1. Atomicity refinement in the three-slot algorithm

Because the writer only writes to c′ when ok and the reader only reads when ¬ok we can refine away all the
remaining non-hardware atomicity in our algorithm. First we refine the writer, replacing 〈c′ := w; ok := false〉
with c′ := w; 〈〈ok := false〉〉. In fig. 50 we have the same pre and postcondition as in fig. 48. The verification
uses a non-atomic write rule just like (55) but with fewer sideconditions because assignment is from a shared
variable rather than an array element. The two steps in this verification generate the actions

ok ∧ c′ = C  ok ∧ c′ = C ′ (65)

ok ∧ ws = WS .W ∧ c′ = W  ¬ok ∧ ws = WS .W ∧ c′ = W (66)

(65) doesn’t affect stability in the writer, whose assertions when ok don’t mention c′, and (66) is included
in (64), which is already allowed for.

In the reader we can use a version of (62) with fewer sideconditions because we are reading from a shared
variable rather than an array element. Verification in fig. 51, shows the same pre and postcondition as in fig.
49, and the same identity action. We have an atomicity refinement.

14.2. Not quite Harris’s algorithm

Fig. 52 is almost Harris’s three-slot algorithm as communicated to us. The conditional assignments to c′

and ok were at the beginning of Harris’s writer; we think our placing fits explanation by refinement better,
and there may even be some very minor efficiency advantage (but we wouldn’t dare defend that hypothesis:
measuring the efficiency of concurrent algorithms is well beyond our expertise). The only significant difference
is in the reader: instead of skip as the alternative to y := c′, Harris had 〈〈ok := false〉〉. Any programmer
would recognise the motivation: the reader can cancel its signal once it’s read an acceptable value, and the
writer may then be able to avoid writing unnecessarily to c′.

It is easy for a programmer to see that this would be a trivial change, and possible to verify the changed
algorithm, but we don’t do that here. It requires a little action-sequencing in the reader, and we don’t think
that to do so would add to our explanation by refinement. We have a three-slot algorithm to set against
Simpson’s four-slot original.

Linearisation is simpler than it was for Simpson’s algorithm. In the writer the linearisation point is
〈〈l := wt〉〉, annotated with an assignment to ws. In the reader the linearisation point depends on what the
reader does. If the reader sees true when it executes 〈〈rt := ok〉〉 then the linearisation point was 〈〈rt := l〉〉
as in the danger-signalling two-slot algorithm. If it sees false then the linearisation point is when the writer
executed 〈〈ok := false〉〉: after that point it was determined that the reader would have to take the value in c′;
no subsequent calls of the write procedure have any effect. So this algorithm, like Simpson’s, is linearisable
and the original idealised single-variable buffer is a specification of its communication behaviour.
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{
w = W ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

}
〈〈wt := ok〉〉
Ç
w = W ∧ wt ∧

ok ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

å
∨Ç

w = W ∧ ¬wt ∧
¬ok ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

å 
⇒ (stability)

Ç
w = W ∧ wt ∧

ok ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

å
∨Ç

w = W ∧ ¬wt ∧
l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

å 
if wt then®

w = W ∧ wt ∧
ok ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

´
〈c′ := w; ok := false〉®
w = W ∧ wt ∧

c′ = W ∧ ¬ok ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

´
⇒ (stability)®

w = W ∧ wt ∧
c′ = W ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

´
else®

w = W ∧ ¬wt ∧
l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

´
skip®
w = W ∧ ¬wt ∧

l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

´
fi{
w = W ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

}
Fig. 48. Verification of three-slot writer, signalling phase

15. Weak memory

Computing practice always runs ahead of computer science. Hardware always has more capability than it is
possible to describe formally in any particular programming language, and programmers have always found
ways to exploit that capability. Our proofs have relied on an assumption that single-bit writes and reads –
or, more realistically, writes and reads of single-bit values stored in single-word variables – are serialised by
a computer store and visible to all threads as soon as they have occurred. This is a reasonable assumption
at the level of the store, but unreasonable when we consider modern shared store technology.

Programs in a modern processor do not access the store directly but via a storage buffer, which records
pending writes, and a cache, which records completed reads. The processor can do hundreds or thousands
of operations in the time it takes to read a single data item from the main store. Data read from memory is
held in the cache and can be re-accessed in a few processor cycles; data to be written is held in the storage
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{
∃C ′ ( l = L ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c′ = C ′ ∧ c[l] = B )

}
〈〈ok := true〉〉{
l = L ∧ ok ∧ rs = RS ∧ ws = WS .B ∧ brsc 4 ws ∧ c[l] = B

}
⇒ (stability) ∃B′, B′′

(
(ok ⇒ (l = L ∧ ws = WS .B) ∨ (l = !L ∧ ws = WS .B.B′ ∧B = B′′)) ∧

(¬ok ⇒ brs.c′c 4 ws) ∧
rs = RS ∧ brs.Bc 4 ws ∧ wsΩ = B′ ∧ c[l] = B′ ∧ c[!l] = B′′

) 
〈〈rt := l〉〉; 〈y := c[rt ]〉; 〈〈rt := ok〉〉 ∃B′′′

Ñ
y = B′′′ ∧

Ñ(
rt ∧ rs = RS ∧ brs.B′′′c 4 ws ∧ c[l] = wsΩ

)
∨(

¬rt ∧ ¬ok ∧ rs = RS ∧ brs.c′c 4 ws ∧ c[l] = wsΩ

)
éé

if ¬rt then{
∃B′′′

(
y = B′′′ ∧ ¬ok ∧ rs = RS ∧ brs.c′c 4 ws ∧ c[l] = wsΩ

)}
〈y := c′〉{
∃C ′

(
y = C ′ ∧ ¬ok ∧ c = C ′ ∧ rs = RS ∧ brs.C ′c 4 ws ∧ c[l] = wsΩ

)}
else{
∃B′′′

(
y = B′′′ ∧ rs = RS ∧ bRS .B′′′c 4 ws ∧ c[l] = wsΩ

)}
skip{
∃B′′′

(
y = B′′′ ∧ rs = RS ∧ bRS .B′′′c 4 ws ∧ c[l] = wsΩ

)}
fi{
∃Y
(
y = Y ∧ rs = RS ∧ bRS .Y c 4 ws ∧ c[l] = wsΩ

)}
Fig. 49. Verification of three-slot reader®

w = W ∧ wt ∧
ok ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

´
— {ok ∧ c′ = C ′ stable under R; ok ∧ c′ = X  ok ∧ c′ = X ′ ⊆ G

c′ := w®
w = W ∧ wt ∧

c′ = W ∧ ok ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

´
〈〈ok := false〉〉®
w = W ∧ wt ∧

c′ = W ∧ ¬ok ∧ l = !L ∧ ws = WS .B.W ∧ brsc 4 ws ∧ c[L] = B ∧ c[!L] = W

´
Fig. 50. Atomicity refinement of signalling operation in three-slot writer{
∃B′′′

(
y = B′′′ ∧ ¬ok ∧ rs = RS ∧ brs.c′c 4 ws ∧ c[l] = wsΩ

)}
— {¬ok ∧ c′ = C,¬ok stable under R

y := c′{
∃C ′

(
y = C ′ ∧ ¬ok ∧ c = C ′ ∧ rs = RS ∧ brs.C ′c 4 ws ∧ c[l] = wsΩ

)}
Fig. 51. Atomicity refinement of value-signal assignment in three-slot reader
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data c[2] = (null ,null), c′ in bit l = 0, ok indata*ws = .null , rs = . in

. . .
write(dataw) =̂

bit wt in
〈〈wt := !l〉〉;
c[wt ] := w;
〈〈l := wt ;ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then
c′ := w; 〈〈ok := false〉〉

else skip fi
ni

. . .
data read( ) =̂

data y in bit rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt ];
〈〈rt := ok〉〉;
if ¬rt then y := c′ else skip fi;
〈〈rs := rs.y〉〉;
return y

ni ni


ni ni ni

Fig. 52. Harris’s three-slot algorithm, minus a pacifying signal

buffer so that it can be re-read or overwritten very rapidly. From the point of view of a program running
on a single processor, nothing has changed: values are read and written just as if the cache and buffer were
not there. But from the point of view of an external observer, the store does not reflect the writes made
by the program unless and until the buffer is empty. So-called memory barrier or fence instructions force
the processor to wait until its storage buffer is empty, but they are expensive, costing many thousands of
processor cycles in practice. To add to the complexity, reads and writes may be re-ordered by the processor,
and there can be corresponding barriers/fences to prevent one kind of reordering or another.

If Simpson’s reader and writer are running on separate processors things therefore become more compli-
cated than our development suggests. The reader’s 〈〈r := rt〉〉, which is crucial for signalling the fact that the
reader is working in the rt pair, will not have an effect immediately. That means that we cannot conclude
in the shared-memory postcondition that r = L immediately and say that the writer will not write twice in
the L pair. We cannot even say that d[r][i [r]] = B is stable, because the writer’s last update of one or other
of the array elements might not yet have been flushed from its buffer.

Processors are intricate concurrent machines in themselves. They are nowadays designed with so-called
weak memory models which cover their behaviour when updating or reading from memory and describe
how they interact with cache and buffer. Those models do not always correspond to processor behaviour,
and correct models are a matter of current research [AFI+09, OSS09, SSZN+09, SSA+11, SSO+10]. The
consequence for the program prover is not only that semicolon has ceased to be a sequencing operator –
writes and reads can occur out of sequence from the point of view of other processors – but that we do not
and at present cannot have a formalism which deals with the problem.

Suppose that the writes of each processor are performed in the order they are generated, that the read
caches of both processors remain consistent with the store, but that if there is a pending write in the store
buffer, the processor reads the value of that write rather than the value in the cache. This could in fact
be the memory model of the x86 processor [OSS09]. Under these assumptions, after the reader executes
〈〈ok := true〉〉 then when it later executes 〈〈rt := ok〉〉 it may see true because its own write is still pending,
even though the store may contain false, and therefore it can’t be sure that the writer hasn’t yet overwritten
the buffer slot it read from.

It seems that with this memory model both Simpson’s and Harris’s algorithms would work properly if
we placed a memory barrier instruction after each write to the single-bit signalling variables (l, r and i [ ]
in Simpson’s algorithm, l and ok in Harris’s algorithm), forcing the processor to wait until all its pending
writes had been completed. But without a clear semantics of the memory model and a formal argument
sound against those semantics, how could we be sure? Researchers who devise concurrent algorithms cope
with this situation by trial and error, and lots and lots of soak testing, and for the time being it seems to
the state of the art –though recently some significant progress has been made in reasoning about programs
under one weak memory model [Owe10]).

Effort expended on verifying concurrent algorithms without a formal weak memory model is not, in our
opinion, wasted. We are finding out how to prove that such algorithms correspond to their specification under
certain assumptions. When the assumptions change the algorithms and/or the proofs have to be remade.
Algorithms like Simpson’s and Harris’s will perhaps turn out to be unsuited to the modern hardware world
because they need too many memory barrier instructions, stopping the processor too often and for too long.
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Or perhaps that won’t be a problem, and they will turn out to be useful. We did not choose to study these
algorithms because we thought they are practical, but because we were sure that they were difficult. Our
aim is to extend our techniques so that we can deal with the algorithms that are actually used, and they are
at least as tricky as these ones. We still cannot do as well as we need to, and that must be remedied.

16. Summary and Conclusion

We started with the obvious but magically-atomic algorithm of fig. 2; refined it to the two-slot but still
magically-atomic writer-chooses fig. 18; noted that there’s an out-of-sequence bug; retreated to the reader-
chooses algorithm fig. 19; and refined that to the four-slot algorithm of fig. 40. The proofs along the way were
intricate, and we had to hide some complexities of action-sequencing and auxiliary assignment placement to
make them at all palatable. In an alternative development we made more radical programming interventions
to fix the problems of the writer-chooses algorithm, producing the danger-signalling two-slot algorithm of
fig. 43; noted that this is not wait-free; made it use atomic buffer accesses nevertheless; and finally refined it
to the three-slot algorithm of fig. 52

Our original intention was to test our formalism against the problem of Simpson’s 1990 algorithm and to
try to develop a beautiful explanatory proof. We think that we have produced an explanatory refinement,
which brings out the essential characteristics of the algorithm more clearly than earlier attempts, but our
refinement proofs are surely still too tedious to be beautiful, and we believe that the tedium may say
something about the problem. Simpson’s algorithm works like a state machine, and that comes out in
all those formal verifications that we have seen or attempted. The decision to do without auxiliary action-
sequencing variables in our proof forced us to rely informally on finite-state diagrams. Simpson’s and Harris’s
algorithms have few enough states that they can be checked by a model-checker. It would be reasonable to
conclude that model-checking rules in this case, but it would be just as reasonable to say that the essential
character of Simpson’s algorithm lies in the sequencing of actions and in the outlawing of certain dangerous
sequences of actions. Our approach brings out that essence, we believe.
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