
Observing Mental Models in Novice Programmers

Richard Bornat1, Saeed Dehnadi1 and David Barton2

R.Bornat@mdx.ac.uk, S.Dehnadi@mdx.ac.uk, bartond@trinityhigh.net
1School of Science and Technology, Middlesex University, London, UK;

2Redditch Trinity High School, Redditch, UK

Abstract. A test which partitions subjects into those who appear to use an algorithmic model of
program execution and those who do not has been automated. Experiments have been conducted
in a UK school with a year cohort of students aged 13-14 and in a Mexican university with a
cohort of novice computer scientists. In the school about a third of subjects appeared to use an
algorithmic model, which we find surprisingly many; in the university there were around half in the
same category, which is in line with university results in the UK. Operation of the online test and
the analysis tool is described. Interviews with subjects in the school revealed some ways in which
the algorithmic classification may be expanded. End-of-course results are not yet available for the
test subjects, so statistical associations have not yet been explored.

1 Background

Dehnadi (2006, 2009) observed that some novices confronted by simple programming exercises
give rational but incorrect answers. Their answers are algorithmically plausible though not
always orthodox: for example, they might assign the value of a variable from left to right rather
than right to left, or move a value in an assignment rather than copy it. He devised a test made
up of questions about assignment and sequence programs, delivered to novice programmers
without giving an explanation of the questions; those who consistently gave algorithmically-
plausible results were significantly more likely to pass the end-of-course examinations than
those who did not. Dehnadi et al. (2009) summarise the results of his experiments, applied to a
large number of students in a wide range of universities in the UK, showing that consistent use
of an algorithmic model is not simply the result of background programming experience, and
that by contrast such experience on its own has little or no effect on success in the end-of-course
examination; it also gives references to and discussion of previous related work.

Robins (2010) took note of Dehnadi’s results, and hypothesised that learning to program
is difficult because courses present a sequence of topics, each strongly supporting the next. If
a student fails to understand one topic, then the next becomes far more difficult. In statistical
simulations he showed that quite weak topic-on-topic dependencies produce strongly bimodal
course results, a ubiquitous effect in first courses in programming which is otherwise hard to
explain. It seems likely that Dehnadi’s test quantifies a cognitive obstacle which trips up many
students early on in their first programming course. We hypothesise (at this stage without ex-
perimental confirmation) that many novices find it difficult at first to understand that machines
act utterly formally, without considering the consequences and without intention.

Ford and Venema (2010) administered Dehnadi’s test to a course cohort after the course
examination. Only 50% of those who passed the course could answer the multiple-assignment
questions using the correct programming-language model. This opened up a new way of using
the test, as a measure of successful learning in supposed practioners.

We want to administer Dehnadi’s test more widely, in schools as well as in universities,
and to administer it in non-English-speaking countries. To do so we decided to construct an
automated version.

2 An online test

Dehnadi’s test was paper-based, which made it difficult and expensive to administer – all the
test cohort had to be gathered, examination-style, in the same room at the same time – and

expensive to assess – he had to read every test script and apply a fairly intricate algorithm to
come to a judgement of ‘consistency’ or ‘inconsistency’.

We had hoped to be able to integrate the test into one of the widely-used ILEs (Interactive
Learning Environments) such as Blackboard or Moodle, so that teachers could easily administer
it as part of the normal course activity, could receive data on performances of the individuals
and groups, and could easily correlate the test results with course results. We would also avoid
difficult questions about data protection by operating entirely inside the ILE firewall. But
the question format of the ILEs we looked at were unhelpful, and none of them were able to
implement the subtleties of the assessment algorithm (see section 2.1).

int a = 10; int b = 20; a = b;

int a = 10; int b = 20; b = a;

int big = 10; int small = 20; big = small;

int a = 10; int b = 20; a = b; b = a;

int a = 10; int b = 20; b = a; a = b;

int a = 10; int b = 20; int c = 30; a = b; b = c;

int a = 5; int b = 3; int c = 7; a = c; b = a; c = b;

int a = 5; int b = 3; int c = 7; c = b; b = a; a = c;

int a = 5; int b = 3; int c = 7; c = b; a = c; b = a;

int a = 5; int b = 3; int c = 7; b = a; c = b; a = c;

int a = 5; int b = 3; int c = 7; b = a; a = c; c = b;

int a = 5; int b = 3; int c = 7; a = c; c = b; b = a;

Fig. 1. Dehnadi’s test questions

We had already developed a program which could generate the paper version of Dehnadi’s
test from a textual description such figure 1, using a formal description of each of his models to
generate the answers and producing LATEX code for the question and answer sheets. We took
the output of the program and transcribed it into SurveyMonkey (SurveyMonkey, 2012). Each
question was coded as a multiple choice; subjects could tick as many responses as they wished;
there was a text box to enter alternative answers. A sample question is shown in figure 2. There
were some difficulties in the transcription, so to improve accuracy we modified the generator
program to produce also a text file that could be pasted, piece by piece into SurveyMonkey to
produce an exact version of the test. Question answers are presented in a randomised order by
the SurveyMonkey mechanism, in order to avoid the questionnaire bias which might arise if the
same model appeared in the same answer-position in each question.

2.1 Analysing the output

SurveyMonkey can generate a CSV (comma-separated values) output of survey responses, each
line of the output corresponding to one session with a particular subject. Our generator pro-
gram was modified to analyse this output, applying a version of Dehnadi’s original assessment
algorithm (Dehnadi, 2006, 2009). Mental models are made up of an assignment model (one of
M1-M11, each describing the action of a single assignment statement) and a sequence model
(one of S1-S3, each describing the action of a number of assignments written one after the
other). Each mental model determines an answer to each question, which can be a tick in a
single box or in several boxes. In all but the first three single-assignment questions there are
many responses – sets of ticks – which are ambiguous in their interpretation.

To resolve this ambiguity Dehnadi had used a marksheet (figure 3) with a column for each
assignment model. An ambiguous answer marked all the columns whose assignment model
generated that answer. Marks were notionally in pencil. Then marks in the column with the
most ticks were notionally inked, and ‘consistency’ in answering the test was judged as follows:

Fig. 2. One of Dehnadi’s test questions in SurveyMonkey

Participant

code

Age Sex Time to do

test

Prior programming A-Level/s Prior programming

courses

Course result

Assignment
No

effect

Equal

sign

Swap

values

Assign-to-left Assign-to-right
Add-Assign-to-

left

Add-Assign-to-

right
Questions

Lose-

value

(M1)

/Ss / I

Keep-

value

(M2)

/Ss / I

Lose-

value

(M3)

/Ss / I

Keep-

value

(M4)

/Ss / I

Keep-

value

(M5)

/Ss / I

Lose-

value

(M6)

/Ss / I

Keep-

value

(M7)

/Ss / I

Lose-

value

(M8)

/Ss / I

Values

don't

change

(M9)

/ S

Assign

means

equal

(M10)

/ S

Swap

values

(M11)

/Ss / I

Remarks (including participants’

working notes)

1

2

3

4

5

6

7

8

9

10

11

12

C0

C1

C2

C3

Additional notes:

s.dehnadi@mdx.ac.uk r.bornat@mdx.ac.uk Simon@newcastle.edu.au

Fig. 3. Dehnadi’s marksheet

1. A response with six inked marks in the same column for Q1-Q6 (single and double assign-
ment) was judged consistent.

2. Otherwise, a response with 8 or more inked marks in the same column was judged consistent.
3. Otherwise, a response with fewer than 8 marked rows (two-thirds of questions) was judged

blank.
4. Otherwise, the response was judged inconsistent.

Note that the assessment ignored the subject’s use of sequence models, because of the difficulty of
analysing the test results on paper. Note also that ‘consistency’ is an abbreviation for ‘consistent
use of a recognised rational mental model’: Dehnadi was not judging a psychometric attribute
of the subject, but rather a particular characteristic of their test performance.

The analysis tool uses a similar algorithm, but takes account of the use of sequence models to
refine its judgements. Each subject’s answer to each question is a set of ticks (write-in answers
are converted to ticks of imaginary boxes with that answer). The first three questions don’t
require a sequence model, so answers to those questions are interpreted ambiguously as using
any one of the sequence models. Rather than using ‘consistent’ and ‘inconsistent’, which can be
misinterpreted, it makes judgements ‘Algorithmic’ and ‘Unrecognised’.

Each question-response – a set of ticks – corresponds to a set of mental models, use of
any of which will generate that response. The tool looks for the mental model which appears
most often in the responses over the whole test (by analogy with Dehnadi’s ‘inking’ step). If
a single model is used in each of the first six questions, the response is judged ‘Algorithmic
(first 6)’; otherwise a single model used eight times gives ‘Algorithmic overall’. This is a harsher
assessment scheme than Dehnadi’s because, for example, a subject who uses M2+S1 in four
questions and M2+S2 in four others would not be judged Algorithmic, though Dehnadi would
have labelled them ‘consistent’: so there’s a lesser judgement ‘Possibly algorithmic’, assessed by
considering only the assignment model and ignoring the sequence models used. There is also a
judgement ‘No change’ applied to those who simply ticked the values from the original state
(Dehnadi would have judged them ‘consistent’ using model M9).

3 A first experiment

We applied the test to 126 school students in an ‘academy’1 at the end of year 9 (ages 13-14).
These students had been exposed to programming with MIT Scratch (MIT, 2007) and to ICT
tools such as Microsoft Office (Microsoft, 2012). The analysis of their responses is shown in
table 1.

Table 1. School experiment

Algorithmic Possibly algorithmic Unrecognised No change Blank
overall first 6 overall first 6

42 2 4 0 70 5 3

Although these students were not complete novices, they had not been exposed to any notion
of assignment, hardly at all to sequence, and not at all to formal programming notation. In
fact most judged Algorithmic used the sequence model S3, in which assignments are executed
in parallel. They were a complete year cohort, not a group self-selected for their interest in
programming. In undergraduate novice computer scientists we have typically seen 50% or more
judged algorithmic; we were surprised to find that as many as a third of these school students
appeared to use an algorithmic model in 8 out of 12 questions, and that almost none had
answered fewer than 8 questions.

1 A state-funded school with a comprehensive – non-selected – intake and a state-approved aspirational agenda
for its pupils.

Because the test was marked by a program, we could analyse the responses in minutes and
review the judgements immediately. The school allowed us to interview some subjects on the
afternoon of the day they took the test, some selected by them and some selected by us. The
school’s selection included both Algorithmic and Unrecognised subjects, in each group some
who their teachers had expected to be placed there and some surprises. We picked out some
more Algorithmic and Unrecognised individuals, and in the time we had left we tried to select
at random from the students in the classroom. Overall we interviewed about fifteen subjects,
out of 40 who had taken the test that morning.

We found that every interviewed student judged Algorithmic, prompted only by the question
“what did you think was happening?”, reported use of the mechanism identified by the analysis
tool. Three of those judged Unrecognised reported something new to us: two seemed to have
switched models mid-test, and one seemed to be using two models at the same time, reporting
both answers. Some other Unrecognised students answered that question with a shrug, and we
hadn’t enough time to probe their thinking.

The analysis tool was refined to try to pick up the sequential and concurrent model users.
Observation of the data showed that some subjects had ticked all or almost all the answer boxes
in each question, and a judgement ‘Ticked everything’ was applied to them: we feel that those
responses are a kind of protest, more Blank than Unrecognised. It was also possible to see that
some students appeared to be algorithmic in 6 out of the last 9 questions (double and triple
assignments). The refined analysis is shown in table 2. The drop in ‘Algorithmic overall’ is due
to a decision to demote consistent use of the Equality model to ‘Possibly algorithmic’; other
changes are due to introduction of new judgements.

Table 2. School experiment (refined analysis)

Algorithmic Possibly algorithmic Unrecognised No Ticked Blank
overall first 6 last 9 sequential concurrent overall first 6 last 9 change everything

39 2 7 7 1 5 0 2 54 5 3 3

Dehnadi’s marksheet assessment would have reported 48 ‘consistent’; the tool reports 46 in
the corresponding columns ‘Algorithmic overall’, ‘Algorithmic (first 6)’, ‘Possibly algorithmic
(overall)’ and ‘Possibly algorithmic (first 6)’. It has spotted 6 rejections where the marksheet
algorithm would have had 3, though a human marker would surely have noted the ‘Ticked
everything’ responses at least informally as rejections.2 It has demoted 3 ‘consistent’ responses
to ‘No change’ and recognised two ‘inconsistent’ responses as the same thing.

Some of the new judgements may or may not correlate with success in the course examina-
tion. The ‘Algorithmic (sequential)’ category is small but may prove interesting; the ‘Algorithmic
(concurrent)’ category may be an artefact of looking too hard. So may the ‘first 6’ and ‘last 9’
judgements. ‘last 9’ is especially problematic in this experiment: inspection of the tool’s output
showed that one way to produce it was to tick the same answer in each of the last six questions,
an aspect of questionnaire bias that we hadn’t previously noted. The generation/analysis tool
has already been modified to check tests for that particular bias so that in future experiments
we don’t provoke such opportunistic behaviour.

4 A second experiment

LimeSurvey (Limesurvey, 2012) is an open-source tool which provides a very similar mechanism
to SurveyMonkey but also allows direct input of survey descriptions. Although the copy-and-

2 Dehnadi didn’t see of that kind of response in his experiments. It may be that school students are more
rebellious than undergraduates and college students, or it may be a consequence of online administration of
the test. At the time of administration the analysis tool didn’t generate this judgement, so we weren’t able to
interview any of the corresponding subjects.

Table 3. Mexican experiment (refined analysis)

Algorithmic Possibly algorithmic Unrecognised No Ticked Blank
overall first 6 last 9 sequential concurrent overall first 6 last 9 change everything

44 2 7 3 1 3 0 3 20 1 0 8

paste mechanism of SurveyMonkey allows accurate transcription of test questions and answers,
it is somewhat tedious, and SurveyMonkey requires payment in order to support a test with
as many questions as Dehnadi’s together with administrative questions such as ‘what is your
name’, auxiliary questions such as ‘have you programmed before’, and so on. We modified the
generator tool to generate an XML file describing the test to LimeSurvey (still using the original
test as in figure 1, because we hadn’t at that time recognised the ‘last 9’ questionnaire bias).
Edgar Cambranes-Martinez of the University of Sussex translated its English texts into Spanish.
This Spanish version was tried out on 92 students from a university novice computer science
cohort in Mexico.

Analysis of the results is in table 3. This result is like Dehnadi’s results (Dehnadi, 2009) in
UK universities: 49, or just over half, would have been judged ‘consistent’ by him (Algorithmic
or Possibly algorithmic, overall or first 6). The ‘Algorithmic (sequential)’ category is present,
as in the first experiment, but proportionally a little smaller in this case (3/93 rather than
7/126). Most of the other categories are populated too, but we note that there were no ‘Ticked
everything’ protests.

5 The benefits of interviewing

The statistical association of ‘consistent’/‘inconsistent’ judgements in Dehnadi’s test with suc-
cess/failure in the course examination is highly significant. But viewed as a predictor of success
or failure in the course examination the test doesn’t do so well (Bornat et al., 2008). Less than
20% of his ‘consistent’ subjects fail, which makes ‘consistency’ look like quite a good predictor
of success, but over 40% of ‘inconsistent’ subjects pass, which makes ‘inconsistency’ not such a
good predictor of failure (see (Dehnadi et al., 2009), table 9). Those ‘false negatives’ are clearly
very interesting.

It was always clear that Dehnadi’s experiments were incomplete without interviews with
both kinds of subjects. We have so far carried out only a very few very unstructured interviews
under difficult conditions, but we immediately saw that there were some previously unrecognised
ways of answering the test with an algorithmic mindset. So far those categories which we have
recognised and can pick out from the data with an analysis tool cover few subjects, but we
expect that more careful interviewing of more subjects judged Unrecognised will refine our
analysis still further.

In the school experiment, almost all of the subjects placed in one of the algorithmic cat-
egories were those expected to do well by their teachers, but our tool also picked out some
others. From the 40 that were tested during our visit the tool spotted four of these surprises:
each one on interview reported use of the model the tool had identified. The teachers were
delighted because they had an opportunity to congratulate students who didn’t otherwise get
much encouragement, and the students were gratified.

In at least one case an interview revealed a novel description of an algorithmic model. It was
unfortunately impossible to explore that description further at the time. Future experiments
will certainly try to explore subjects’ descriptions in depth.

One surprise in our interviews was that at least one student, although judged Unrecognised,
is keen to learn programming, but only if it has nothing to do with ICT. We were able to assure
him that it doesn’t, but we don’t yet know if he will be successful.

6 Conclusions and further work

Now that we have an online test and an automatic analysis tool, it is much easier to conduct
an experiment and to analyse its result. The analysis tool has already shown us some ways in
which the test can be improved (removal of one kind of questionnaire bias) and can recognise
some new groups who seem to be responding algorithmically. It remains to be seen how closely
its judgements align with course success.

The most striking result from the two experiments we have conducted with the new tools
is that interviewing subjects soon after test administration is very illuminating. We expected
to find something, but not so much, so soon and so easily. We intend to do very much more
interviewing in future experiments.

Interviews can do much more than tell us if our tools are getting the ‘right’ result. We want
to know why subjects who aren’t recognised as algorithmic by the tools answer as they do,
because we are interested in understanding the obstacle to learning which the test has begun to
quantify. We haven’t so far been able to conduct interviews which probe in that way: certainly,
short interviews with apparently un-algorithmic school students were unproductive.

7 Acknowledgements

We are grateful to the staff of Trinity High School, Redditch, for allowing us to test their
students, and to the students for their good-humoured cooperation. We are grateful to Edgar
Cambranes-Martinez for assistance in translating the test into Spanish, and for administering
the test in Mexico.

References

Richard Bornat, Saeed Dehnadi, and Simon. Mental models, consistency and programming apti-
tude. In Simon and Margaret Hamilton, editors, Tenth Australasian Computing Education Confer-
ence (ACE 2008), volume 78 of CRPIT, pages 53–62, Wollongong, NSW, Australia, 2008. ACS. URL
http://crpit.com/confpapers/CRPITV78Bornat.pdf.

Saeed Dehnadi. Testing Programming Aptitude. In P. Romero, J. Good, E. Acosta Chaparro,
and S. Bryant, editors, Proceedings of the PPIG 18th Annual Workshop, pages 22–37, 2006. URL
http://www.ppig.org/papers/18th-dehnadi.pdf.

Saeed Dehnadi. A Cognitive Study of Learning to Program in Introductory Programming Courses. PhD thesis,
Middlesex University, 2009.

Saeed Dehnadi, Richard Bornat, and Ray Adams. Meta-analysis of the effect of consistency on success in
early learning of programming. In PPIG ’09: Proceedings of the 21st Annual Workshop of the Psychology of
Programming Interest Group, 2009. URL http://www.ppig.org/papers/21st-dehnadi.pdf.

Marilyn Ford and Sven Venema. Assessing the Success of an Introductory Programming Course. Journal of
Information Technology Education, 9:133–145, 2010.

Limesurvey. Website, 2012. URL http://www.limesurvey.org.
Microsoft. Office website, 2012. URL http://office.microsoft.com.
MIT. Scratch, 2007. URL http://scratch.mit.edu/.
Anthony Robins. Learning edge momentum: A new account of outcomes. Computer Science Education, 20(1):

37–71, 2010. doi: 10.1080/08993401003612167.
SurveyMonkey. Website, 2012. URL http://www.surveymonkey.com.

